Skip to main content

Ribosomal RNA Probes for Detection and Identification of Species

  • Protocol
Protocols in Molecular Parasitology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 21))

Abstract

Nucleic acid hybridization probes have a wide range of applica tions for the detection, identification, and quantification of microor ganisms, from environmental studies to medical diagnoses (1,2). They offer unique advantages in terms of sensitivity and specificity, with their potential to recognize the organism of interest in a background of biological material of different origin (3). In addition, the technol ogy is particularly well-suited for the development of fast and simple assays carried out on a routine basis on large numbers of biological samples. A first class of DNA probes for the identification of species correspond to cloned DNA fragments highly specific to particular organisms, such as genes involved in toxin production (4), or some repetitive DNA families. An alternative, more general approach is to choose a gene represented in a large spectrum of organisms but exhib iting sequence variation among closely related species or groups of species. In this respect, rRNA genes represent a particularly attrac tive system. Although frequently viewed as a paradigm of sequence conservation, rRNA molecules have in fact accumulated a very sub stantial degree of structural diversity during evolution (5,6). Riboso mal RNAs possess two other essential features for species identification: the multiplicity of their genes (7), and their outstand ing sequence homogeneity within a genome and a species (8) which allow for easy detection without the limitations inherent to extensive polymorphisms among multigene family members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matthews, J. A. and Kricka, L. J. (1988) Analytical strategy for the use of DNA probes. Anal. Biochem. 169, 1–25.

    Article  PubMed  CAS  Google Scholar 

  2. Sayler, G. S. and Layton, A. C. (1990) Environmental applications of nucleic acid hybridization. Ann. Rev. Microbiol 44, 625–648.

    Article  CAS  Google Scholar 

  3. Morotomi, M., Ohno, T., and Mutai, M. (1988) Rapid and correct identification of intestinal Bacteroides spp. with chromosomal DNA probes by whole-cell dot blot hybridization. Appl. Environ. Microbiol. 54, 1158–1162.

    PubMed  CAS  Google Scholar 

  4. Seriwantana, J., Echeverria, P., Taylor, D. N., Sakuldaipeara, T., Chang-Chawalit, C, and Chivoratanond, O. (1987) Identification of enterotoxigenic Escherichia coli with synthetic alkaline phosphatase-conjugated oligonucleotide DNA probes. J. Clin. Microbiol. 25, 1438–1441

    Google Scholar 

  5. Clark, C. G. (1987) On the evolution of ribosomal RNA. J. Mol. Evol. 25, 343–350.

    Article  PubMed  CAS  Google Scholar 

  6. Raué, H. A., Klootwijk, J., and Musters, W. (1988) Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Prog. Biophys. Molec. Biol. 51, 77–129.

    Article  Google Scholar 

  7. Long, E. O. and Dawid, I. B (1980) Repeated genes in eukaryotes. Ann. Rev. Biochem. 49, 727–764.

    Article  PubMed  CAS  Google Scholar 

  8. Dover, G. and Coen, E. (1981) Springcleaning ribosomal DNA: a model for multigene evolution. Nature 290, 731–732.

    Article  PubMed  CAS  Google Scholar 

  9. Gobel, U. B., Geiser, A., and Stanbridge, E. J. (1987) Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate between Mycoplasma species. J. Gen. Microbiol. 133, 1969–1974.

    PubMed  CAS  Google Scholar 

  10. Giovannoni, S. J, DeLong, E. F, Olsen, G. J., and Pace, N. R. (1988) Phylo-genetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bad. 170, 720–726.

    Google Scholar 

  11. Qu, L. H., Michot, B., and Bachellerie, J. P. (1983) Improved methods for structure probing in large RNAs: a rapid “heterologous” sequencing approach coupled to the direct mapping of nuclease accessible sites. Application to the 5′ terminal domain of eukaryotic 28S rRNA. Nucl. Acids Res. 11, 5903–5920.

    Article  PubMed  CAS  Google Scholar 

  12. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace, N. R. (1985) Rapid determination of 16S ribosomal RNA sequences for phyloge-netic analyses. Proc. Natl. Acad. Sci. USA 82, 6955–6959.

    Article  PubMed  CAS  Google Scholar 

  13. Woese, C. R. (1987) Bacterial evolution. Microbiol. Rev. 51, 221–271.

    PubMed  CAS  Google Scholar 

  14. Pace, N. R., Olsen, G. J, and Woese, C. R. (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45, 325–326.

    Article  PubMed  CAS  Google Scholar 

  15. Qu, L. H, Nicoloso, M., and Bachellerie, J. P. (1988) Phylogenetic calibration of the 5′ terminal domain of large rRNA achieved by determining twenty eukaryotic sequences. J. Mol Evol. 28, 113–124.

    Article  PubMed  CAS  Google Scholar 

  16. Perasso, R., Baroin, A., Qu, L. H., Bachellerie, J. P., and Adoutte, A. (1989) Origin of the algae. Nature 339, 142–144.

    Article  PubMed  CAS  Google Scholar 

  17. Hassouna, N, Michot, B., and Bachellerie, J P. (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl. Acids Res 12, 3563–3583.

    Article  PubMed  CAS  Google Scholar 

  18. Michot B., Hassouna N, and Bachellerie J P. (1984) Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucl Acids Res. 12, 4259–4279.

    Article  PubMed  CAS  Google Scholar 

  19. Michot, B. and Bachellerie, J. P. (1987) Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure Biochimie 69, 11–23

    Article  PubMed  CAS  Google Scholar 

  20. Guadet, J, Mien, J, Lafay, J. F, and Brygoo, Y. (1989) Phylogeny of some Fusarium species, as determined by large-subunit rRNA sequence comparison. Mo I. Biol Evol 6, 227–242.

    CAS  Google Scholar 

  21. Larson, A. and Wilson, A C (1989) Patterns of ribosomal RNA evolution in salamanders. Mol Biol Evol. 6, 131–154

    PubMed  Google Scholar 

  22. Vossbrink, C. R. and Friedman, S. (1990) A 28S ribosomal RNA phylogeny of certain cyclorrhaphous Diptera based upon a hypervanable region. System. Entomol 14,417–431

    Article  Google Scholar 

  23. Erdman, V. A, Wolters, J., Huysmans, E, and De Wachter, R (1985) Collection of published 5S, 5 8S and 4 5S ribosomal RNA sequences. Nucl. Acids Res 13, r105–r153.

    Google Scholar 

  24. Sambrook, J, Fritsch, E F, and Maniatis, T (1990) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  25. Mullis, K B and Faloona, F A (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction Meth Enzym 155, 335–350

    Article  PubMed  CAS  Google Scholar 

  26. Innis, M. A. and Gelfand, D H (1990) Optimization of PCRs, in PCR Protocols (Innis, M A., Gelfand, D. H., Sninsky, J J., and White, T. J., eds), Academic, New York, pp 3–12

    Google Scholar 

  27. Sogin, M. L. (1990) Amplification of ribosomal RNA genes for molecular evolution studies, in PCR Protocols (Innis, M. A., Gelfand, D. H., Sninsky, J J., and White, T J, eds.), Academic, New York, pp 307–314.

    Google Scholar 

  28. White, T. J, Bruns, T, Lee, S, and Taylor, J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols (Innis, M A, Gelfand, D. H, Sninsky, J J., and White, T J, eds), Academic, New York, pp, 315–322

    Google Scholar 

  29. Casanova, J L, Pannetier, C, Jauhn, C, and Kounlsky, P (1990) Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucl Acids Res 18, 4028

    Article  PubMed  CAS  Google Scholar 

  30. Rychlik, W., Spencer, W J, and Rhoads, R E (1990) Optimization of the annealing temperature for DNA amplification in vitro Nucl Acids Res. 18, 6409–6412

    Article  CAS  Google Scholar 

  31. Neefs, J M., Van de Peer, Y, Hendricks, L, and De Wachter, R. (1990) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res 18, 2237–2318

    Article  PubMed  CAS  Google Scholar 

  32. Ellis, R. E., Sulston, J. E., and Coulson, A. R. (1986) The rDNA of C. elegans. sequence and structure. Nucl Acids Res. 14, 2345–2364.

    Article  PubMed  CAS  Google Scholar 

  33. Gill, L. L., Hardman, N, Chappell, L., Qu, L. H., Nicoloso, M., and Bachellerie, J. P. (1988) Phylogeny of Onchocerca volvulus and related species deduced from rRNA sequence comparisons. Mol. Biochem. Parasitol. 28, 69–76.

    Article  PubMed  CAS  Google Scholar 

  34. Schnare, M. N., Cook, J. R., and Gray, M. W (1990) Fourteen internal transcribed spacers in the circular ribosomal DNA of Euglena gracilis. J. Mol Biol. 215, 85–91.

    Article  PubMed  CAS  Google Scholar 

  35. Torres, R. A., Ganal, M., and Hemleben, V. (1990) GC balance in the internal transcribed spacers ITS 1 and ITS2 of nuclear ribosomal genes. J. Mol. Evol. 30, 170–181.

    Article  PubMed  CAS  Google Scholar 

  36. Yokota, Y., Kawata, T., Iida, Y., Kato, A., and Tanifuji, S. (1989) Nucleotide sequences of the 5.8S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Mol. Evol. 29, 294–301

    Article  PubMed  CAS  Google Scholar 

  37. Michot, B, Bachellerie, J. P., and Raynal, F. (1983) Structure of mouse rRNA precursors. Complete sequence and potential folding of the spacer regions between 18S and 28S rRNA Nucl. Acids Res. 11, 3375–3391.

    Article  PubMed  CAS  Google Scholar 

  38. Gonzalez, I. L., Chambers, C, Gorski, J. L., Stambolian, D., Schmickel, R. D., and Sylvester, J E. (1990) Sequence and structure correlation of human ribosomal transcribed spacers. J. Mol. Biol. 212, 27–35.

    Article  PubMed  CAS  Google Scholar 

  39. Vossbrink, C R., Maddox, J. V., Friedman, S., Debrunner-Vossbrinck, B. A., and Woese, C. R. (1987) Ribosomal RNA sequence suggests microporidia are extremely ancient eukaryotes. Nature 326, 411–414.

    Article  Google Scholar 

  40. Edlind, T. D., Sharetzsky, C, and Cha, M. E. (1990) Ribosomal RNA of the primitive eukaryote Giardia lamblia: large subunit domain I and potential processing signals. Gene 96, 289–293.

    Article  PubMed  CAS  Google Scholar 

  41. Degnan, B M., Yan, J, Hawkins, C J., and Lavin, M. F (1990) rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes Nucl Acids Res. 18, 7063–7070.

    Article  PubMed  CAS  Google Scholar 

  42. Waters, A. P., Syin, C and McCutchan, T. F (1989) Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature 342,438–440.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Baehellerie, JP., Qu, LH. (1993). Ribosomal RNA Probes for Detection and Identification of Species. In: Hyde, J.E. (eds) Protocols in Molecular Parasitology. Methods in Molecular Biology™, vol 21. Humana Press. https://doi.org/10.1385/0-89603-239-6:249

Download citation

  • DOI: https://doi.org/10.1385/0-89603-239-6:249

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-239-2

  • Online ISBN: 978-1-59259-508-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics