Skip to main content

Aminopeptidases

Aminopeptidase M (EC 3.4.11.2), Pyroglutamate Aminopeptidase (EC 3.4.19.3), and Prolidase (EC 3.4.13.9)

  • Protocol
Enzymes of Molecular Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 16))

Abstract

Aminopeptidases are proteolytic enzymes that remove L-amino acids sequentially from the amino termini of polypeptide chains. A number of aminopeptidases have been isolated, including leucine aminopeptidase from serine kidney cytosol (1), aminopeptidase P from E. coli (2), proline iminopeptidase from E. coli, and swine kidney (3), aminopeptidase B from rat liver (4), and aminopeptidase A from rat kidney (5). However, three aminopeptidases in particular have found routine use in protein chemistry. The first is pyroglutamate aminopeptidase, a thiol exoprotease that cleaves N-terminal pyroglutamyl residues (pyrrolidone carboxylic acid) from peptides and proteins (610). N-terminal glutamine residues can readily cyclize to the pyroglutamyl derivative (Fig. 1). This can occur during peptide and protein purification (it is uncertain whether the N-terminal pyroglutamyl residues of a number of naturally occurring peptides and proteins are genuine posttranslational modifications, or were introduced by cyclization of N-terminal glutamine during purification) or during sequence determination when glutamine was the newly liberated N-terminal amino acid. This cyclized derivative does not have a free amino group, and therefore, the peptide or protein is not amenable to sequence determination, unless the pyroglutamyl derivative is removed by pyroglutamate aminopeptrdase (11,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himmelhoch, S. R. (1970) Leucine aminopeptidase from swine kidney. Methods Enzymol. 19, 508–513.

    Article  Google Scholar 

  2. Yaron, A. and Mlynr, D. (1968) Aminopeptidase P. Biochem. Biophys. Res. Commun. 32(4), 658–663.

    Article  PubMed  CAS  Google Scholar 

  3. Sarid, S., Berger, A., and Katchalski, E. (1962) Proline iminopeptidase: purification and comparison with iminodipeptidase (Prolinase). J. Bioi. Chem. 237(7), 2207–2212.

    CAS  Google Scholar 

  4. Hopsu, V. K., Makinen, K. K., and Glenner, G. G. (1966) Characterization of aminopeptidase B. Substrate specificity and affector studies. Arch. Biochem. Biophys. 114, 567–575.

    Article  PubMed  CAS  Google Scholar 

  5. Glenner, G. G., McMillan, P. J., and Folk, J. E. (1962) A mammalian peptidase specific for the hydrolysis of N-terminal α-L-glutamyl and aspartyl residues. Nature 194, 867.

    Article  PubMed  CAS  Google Scholar 

  6. Doolittle, R. F. (1970) Pyrrolidone carboxyl peptidase. Methods Enzymol. 19, 555–569.

    Article  Google Scholar 

  7. Szewczuk, A. and Kwiatkowska, J. (1970) Pyrrolidonyl peptidase in animal, plant and human tissues. Occurrence and some properties of the enzyme. Eur. J. Biochem. 15, 92–96.

    Article  PubMed  CAS  Google Scholar 

  8. Mudge, A. W. and Fellows, R. E. (1973) Bovine pituitary pyrrolidone carboxyl peptidase. Endocrinology 93, 1428–1434.

    Article  PubMed  CAS  Google Scholar 

  9. Browne, P. and O’Cuinn, G. (1983) An evaluation of the role of a pyroglutamyl peptidase, a post-proline cleaving enzyme and a post-proline dipeptidyl aminopeptidase, each purified from the soluble fraction of a guinea-pig brain, in the degradation of thyroliberin in vitro. Eur. J. Biochem. 137, 75–87.

    Article  PubMed  CAS  Google Scholar 

  10. O’Connor, B. and O’Cuinn, G. (1985) Purification and kinetic studies on narrow specificity synaptosomal membrane pyroglutamate aminopeptidase from guinea pig brain. Eur. J. Biochem. 150, 47–52.

    Article  PubMed  Google Scholar 

  11. Brandt, A., Glanville, R. W., Hörlein, D., Bruckner, P., Timpl, R., Fietzek, P. P., and Kühn, K. (1984) Complete amino acid sequence of the N-terminal extension of calf-skin type III procollagen. Biochem. J. 219, 625–634.

    PubMed  CAS  Google Scholar 

  12. Doolittle, R. F. and Armentrout, R. W. (1968) Pyrrlidonyl peptidase. An enzyme for selective removal of pyrrolidonecarboxylic acid residues from polypeptides. Biochemistry 7, 516–521.

    Article  PubMed  CAS  Google Scholar 

  13. Pfleiderer, G., Celliers, P. G., Stanulovic, M., Wachsmuth, E. D., Determann, H., and Braunitzer, G. (1964) Eizenschaften und analytische anwendung der aminopeptidase aus nierenpartikceln. Biochem. Z. 340, 552–564.

    PubMed  CAS  Google Scholar 

  14. Pfleiderer, G. and Celliers, P. G. (1963) Isolation of an aminopeptidase in kidney tissue. Biochem. Z. 339, 186–189.

    PubMed  CAS  Google Scholar 

  15. Wachsmuth, E. D., Fritze, I., and Pleiderer, G. (1966) An aminopeptidase occurring in pig kidney. An improved method of preparation. Physical and enzymic properties. Biochemistry 5(1), 169–174.

    Article  PubMed  CAS  Google Scholar 

  16. Pfleiderer, G. (1970) Particle bound aminopeptidase from pig kidney. Methods Enzymol. 19, 514–521.

    Article  CAS  Google Scholar 

  17. Light, A. (1972) Leucine aminopeptidase in sequence determination of pep-tides. Methods Enzymol. 25B, 253–262.

    Article  Google Scholar 

  18. Sjöstrom, H., Noren, O., and Jossefsson, L. (1973) Purification and specificity of pig intestinal prolidase. Biochim. Biophys. Acta 327, 457–470.

    PubMed  Google Scholar 

  19. Endo, F., Tanoue, A., Nakai, H., Hata, A., Indo, Y., Titani, K., and Matsuela, I. (1989) Primary structure and gene localization of human prolidase. J. Biol. Chem. 264(8), 4476–4481.

    PubMed  CAS  Google Scholar 

  20. King, G. F., Crossley, M. J., and Kuchel, P. W. (1989) Inhibition and active-site modelling of prolidase. Eur. J. Biochem. 180, 377–384.

    Article  PubMed  CAS  Google Scholar 

  21. Keesey, J. (ed.) (1989) Biochemica Information: A Revised Biochemical Reference Source. Boehringer Mannheim Biochemicals, Indianapolis, IN.

    Google Scholar 

  22. Personal communication. Boehringer Mannheim.

    Google Scholar 

  23. Capecchi, J. T. and Loudon, G. M. (1985) Substrate specificity of pyrogluta-mylaminopeptidase. J. Med. Chem. 28, 40–143.

    Article  Google Scholar 

  24. O’Connor, B. and O’Cuinn, G. (1984) Localization of a narrow-specificity thyroliberin hydrolyzing pyroglutamate aminopeptidase in synaptosomal membranes of guinea-pig brain. Eur. J. Biochem. 144, 271–278.

    Article  PubMed  Google Scholar 

  25. Martini, F., Bossa, F., and Barra, D. (1985) Assay of pyroglutamyl aminopeptidase by high-performance liquid chromatoraphy and its use in peptide sequencing. Peptides 6, 103–105.

    Article  PubMed  CAS  Google Scholar 

  26. Podell, D. N. and Abraham, G. N. (1978) A technique for the removal of pyroglutamic acid from the amino terminus of proteins using calf liver pyroglutamate amino peptidase. Biochem. Biophys. Res. Commun. 81, 176–185.

    Article  PubMed  CAS  Google Scholar 

  27. Wachsmuth, E. D. (1967) Untersuchungen zur struktur der aminopeptidase aus partikeln von Schweinenieren. Biochem. Z. 346, 467–473.

    PubMed  CAS  Google Scholar 

  28. Malfroy, B., Kado-Fong, H., Gros, C., Giros, B., Schwartz, J. C., and Hellmiss, R. (1989) Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: a member of a super family of zinc-metallohydrolases. Biochem. Biophys. Res. Commun. 161(1), 236–241.

    Article  PubMed  CAS  Google Scholar 

  29. Hwang, S. Y., Kingsbury, W. D., Hall, N. M., Jakas, D. R., Dunn, G. L., and Gilvarg, C. (1986) Determination of leucine aminopeptidase using phenylalanyl-3-thia-phenylalanine as substrate. Anal. Biochem. 154, 552–558.

    Article  PubMed  CAS  Google Scholar 

  30. Manao, G., Nassi, P., Cappugi, G., Camici, G., and Ramponi, G. (1972) Swine kidney prolidase: assay, isolation procedure, and molecular properties. Physiol. Chem. Phys. 4, 75–87.

    PubMed  CAS  Google Scholar 

  31. Myara, I., Charpentier, C., and Lemonnier, A. (1984) Minireview: Prolidase and prolidase deficiency. Life Sci. 34, 1985–1998.

    Article  PubMed  CAS  Google Scholar 

  32. Sjöström, H. and Norén, O. (1974) Structural properties of pig intestinal pro-line dipeptidase. Biochim. Biophys. Acta 359, 177–185.

    PubMed  Google Scholar 

  33. Myara, I., Charpentier, C., and Lemonnier, A. (1982) Optimal conditions for prolidase assay by proline colourimetric determination: application to iminodipeptiduria. Clin. Chim. Acta 125, 193–205.

    Article  PubMed  CAS  Google Scholar 

  34. Chinard, F. P. (1952) Photometric estimation of proline and ornithine. J. Biol. Chem. 199, 91–95.

    PubMed  CAS  Google Scholar 

  35. Richter, A. M., Lancaster, G. L., Choy, F. Y. M., and Hechtman, P. (1989) Purification and characterization of activated human erythrocyte prolidase. Biochem. Cell Biol. 67, 34–41.

    Article  PubMed  CAS  Google Scholar 

  36. Mikasa, H. (1984) Measurement of prolidase activity in erythrocytes using isotachophoresis. J. Chromat. 310, 401–406.

    Article  CAS  Google Scholar 

  37. Yoshimoto, T., Matsubara, F., Kawano, E., and Tsuru, D. (1983) Prolidase from bovine intestine: purification and characterization. J. Biochem. 94, 1889–1896.

    PubMed  CAS  Google Scholar 

  38. Hill, R. L. and Schmidt, W. R. (1962) The complete enzymic hydrolysis of proteins. J. Bioi. Chem. 237, 389–396.

    CAS  Google Scholar 

  39. Jones, B. N. (1986) Microsequence analysis by enzymatic methods, in Methods of Protein Microcharacterization (Shively, J. E., ed.), Humana, Clifton, NJ, p. 347.

    Google Scholar 

  40. Jones, B. N. (1986) Amino acld analysis by o-phthaldialdehyde precolumn derivitization and reverse-phase HPLC, in Methods of Protein Microcharacterization (Shively, J. E., ed.), Humana, Clifton, NJ, pp. 127,145.

    Google Scholar 

  41. Garner, M. H., Garner, W. H., and Gurd, F. R. N. (1974) Recognition of primary sequence variations among sperm whale myoglobin components with successive proteolysis procedures. J. Biol. Chem. 249, 1513–1518.

    PubMed  CAS  Google Scholar 

  42. Rothgeb, T. M., Jones, B. N., Hayes, D. F., and Gurd, R. S. (1977) Methylation of glucagon, characterization of the sulfonium derivative, and regeneration of the native covalent structure. Biochemistry 16, 5813–5818.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc.

About this protocol

Cite this protocol

Sweeney, P.J., Walker, J.M. (1993). Aminopeptidases. In: Burrell, M.M. (eds) Enzymes of Molecular Biology. Methods in Molecular Biology™, vol 16. Humana Press. https://doi.org/10.1385/0-89603-234-5:319

Download citation

  • DOI: https://doi.org/10.1385/0-89603-234-5:319

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-322-1

  • Online ISBN: 978-1-59259-503-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics