Proteolytic Enzymes for Peptide Production

  • Patricia J. Sweeney
  • John M. Walker
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 16)

Abstract

There are three main reasons why a protein chemist might wish to cleave a protein of interest into peptide fragments. The first reason is to generate, by extensive proteolysis, a large number of relatively small (5–20 residues) peptides either for peptide mapping (see vol. 1,  Chapter 5) or for purification and subsequent manual sequence determination by the dansyl-Edman method (see vol. 1, Chapter 24). The second reason is to generate relatively large peptides (50–150 residues) by limited proteolysis for automated sequence analysis, such as with the gas-phase sequencer. The third reason is to prepare, again by limited proteolysis, specific fragments for studies relating structure to function, In each case, the specificity of the enzyme used to generate the peptides is a prime consideration, since the aim is to provide high yields of discrete fragments. It can be appreciated that significantly <100% cleavage at some or all of the cleavage sites on the protein being digested will generate a far more complex mixture of a larger number of polypeptides, each in relatively low yield. It is for this reason that enzymes of high specificity, such as trypsin, which cleaves at the C-terminal side of arginine and lysine residues, are mainly used for peptide production.

Keywords

Urea Cobalt Disulfide Thiol Oxalate 

References

  1. 1.
    Miller, D. D., Horbett, T. A., and Teller, D. C. (1971) Reevaluation of the activation of bovine chymoytrypsinogen A. Biochemistry 10, 4641–4648.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilcox, P. E. (1970) Chymotrypsinogens—Chymotrypsins. Methods Enzymol. 19, 64–80.CrossRefGoogle Scholar
  3. 3.
    Desnuelle, P. (1960) Chymotrypsin. Enzymes 4, 93–120.Google Scholar
  4. 4.
    Hess, G. P. (1971) Chymotrypsin—Chemical properties and catalysis. Enzymes 4, 213–250.Google Scholar
  5. 5.
    Tomlinson, G., Shaw, M. C., and Viswanatha, T. (1976) Chymotrypsin (S). Methods Enzymol. 34, 415–420.Google Scholar
  6. 6.
    Baumann, W. K., Bizzozero, S. A., and Dutler, H. (1970) Specificity of α-chymotrypsin. Dipeptide substrates. FEBS Lett. 8, 257–260.PubMedCrossRefGoogle Scholar
  7. 7.
    Hartley, B. S. and Kaffman, B. J. (1966) Corrections to the amino acid sequence of bovine chymotrypsinogen A. Biochem. J. 10, 229–231.Google Scholar
  8. 8.
    Schwert, G. W. and Takenaka, Y. (1955) A spectrophotometric determination of trypsin and chymotrypsin. Biochim. Biophys. Acta. 16, 570–575.PubMedCrossRefGoogle Scholar
  9. 9.
    Kumar, S. and Hein, G. E. (1969) A rapid kinetic assay method for a-chymo-trypsin and its application. Anal. Biochem. 30, 203–211.PubMedCrossRefGoogle Scholar
  10. 10.
    Spackman, D. H., Stein, W. H., and Moore, S. (1960) The disulfide bonds of ribonuclease. J. Biol. Chem. 235, 648–659.PubMedGoogle Scholar
  11. 11.
    Umezawa, H. (1976) Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 45, 678–700.PubMedCrossRefGoogle Scholar
  12. 12.
    Jansen, E. F. and Balls, A. K. (1952) The inhibition of β-and γ-chymotrypsin and trypsin by diisopropyl fluorophosphate. J. Biol. Chem. 194, 721–727.PubMedGoogle Scholar
  13. 13.
    Green, M. M., Gladner, J. A., Cunningham, L. W., and Neurath, H. (1952) The effects of divalent cations on the enzymic activities of trypsin and of α-chymotrypsin. J. Am. Chem. Soc. 74, 2122,2123.CrossRefGoogle Scholar
  14. 14.
    Mitchell, W. M. and Harrington, W. F. (1968) Purification and properties of clostridiopeptidase B (Clostripain). J. Biol. Chem. 243, 4683–4692.PubMedGoogle Scholar
  15. 15.
    Mitchell, W. M. and Harrington, W. F. (1971) Clostripain. Enzymes 3, 699–719.CrossRefGoogle Scholar
  16. 16.
    Cole, P. W., Murakami, K., and Inagami, T. (1971) Specificity and mechanism of Clostripain catalysis. Biochemistry 10, 4246–4252.PubMedCrossRefGoogle Scholar
  17. 17.
    Mitchell, W. M. (1977) Cleavage at arginine residues by Clostripain. Methods Enzymol. 47, 165–176.PubMedCrossRefGoogle Scholar
  18. 18.
    Mitchell, W. M. and Harrington, W. F. (1970) Clostripain. Methods Enzymol. 19, 635–642.CrossRefGoogle Scholar
  19. 19.
    Shih, J. W. and Hash, J. H. (1971) The N,O-Diacetylmuramidase of Chalaropsis species. Amino acid composition and partial structure formula. J. Biol. Chem. 246, 994–1006.PubMedGoogle Scholar
  20. 20.
    Labouesse, B. and Gros, P. (1960) Laclostripaine, protéase de Clostridium histolyticum Purification et activation par les thiols. Bull. Soc. Chim. Biol. 42, 543–558.PubMedGoogle Scholar
  21. 21.
    Porter, W. H., Cunningham, L. W., and Mitchell, W. M. (1971) Studies on the active site of Clostripain. The specific inactivation by the chloromethyl ketone derived from α-N-Tosyl-L-Lysine. J. Biol. Chem. 246, 7675–7682.PubMedGoogle Scholar
  22. 22.
    Mandl, I. (1961) Collagenases and elastases. Adv. Enzymol. 23, 163–264.Google Scholar
  23. 23.
    Hartley, B. S. and Shotton, D. M. (1971) Pancreatic elastase. Enzymes 3, 323–373.CrossRefGoogle Scholar
  24. 24.
    Shotton, D. M. (1970) Elastase. Methods Enzymol. 19, 113–140.CrossRefGoogle Scholar
  25. 25.
    Vered, M., Gertler, A., and Burnstein, Y. (1986) Partial amino acid sequence of porcine elastase II. Active site and the activation peptide regions. Int. J. Peptide Prot. Res. 27, 183–190.CrossRefGoogle Scholar
  26. 26.
    Atlas, D. (1975) The mapping of the active site of porcine elastase: size specificity, stereospecificity and the CPK model. “PEPTIDES 1974. Proceedings of the 13th European Peptide Symposium Kiryat Anauim, Israel” (Wolman, Y., ed.), pp. 361–376.Google Scholar
  27. 27.
    Naughton, M. A. and Sanger, F. (1961) Purification and specificity of pancreatic elastase. Biochem. J. 78, 156–163.PubMedGoogle Scholar
  28. 28.
    Narayanon, A. S. and Anwar, R. A. (1969) The specificity of purified porcine elastase. Biochem. J. 114, 11–17.Google Scholar
  29. 29.
    Shotton, D. M. and Hartley, B. S. (1970) Amino acid sequence of porcine pancreatic elastase and its homologies with other serine proteinases. Nature 225, 802–806.PubMedCrossRefGoogle Scholar
  30. 30.
    Shirasu, Y. Yoshida, H., Mikayama, T., Matsuki, S., Tanaka, J. and Ikenaga, H. (1986) Isolation and expression in E. coli of a cDNA clone encoding porcine pancreatic elastase. J. Biochem. 99, 1707–1712.PubMedGoogle Scholar
  31. 31.
    Mandl, I. (1962) Pancreatic elastase. Methods Enzymol. 5, 665–673.CrossRefGoogle Scholar
  32. 32.
    Favre-Bonvin, G., Bostancioglu, K., and Wallach, J. M. (1986) Ca2+ and Mg2+ protection against thermal denaturation of pancreatic elastase. Biochem. Internatl. 13, 983–989.Google Scholar
  33. 33.
    Shotton, D. M. and Watson, H. C. (1970) Three-dimensional structure of tosylelastase. Nature 225, 811–816.PubMedCrossRefGoogle Scholar
  34. 34.
    Lewis, U. J., Williams, D. E., and Brine, N. G. (1956) Pancreatic elastase: purification, properties and function. J. Biol. Chem. 222, 705–720.PubMedGoogle Scholar
  35. 35.
    Lamy, F., Craig, C. P., and Tauber, S. (1961) Studies on elastase and elastin. Assay and properties of elastase. J. Biol. Chem. 236, 86–91.PubMedGoogle Scholar
  36. 36.
    Gertler, A. and Birk, Y. (1970) Isolation and characterization of porcine proelastase. Eur. J. Biochem. 12, 170–176.PubMedCrossRefGoogle Scholar
  37. 37.
    Walford, R. L. and Kickhöffen, B. (1962) Selective inhibition of elastolytic and proteolytic properties of elastae. Arch. Biochem. Biophys. 98, 191–196.PubMedCrossRefGoogle Scholar
  38. 38.
    Schenkein, I., Boesman, M., Takarsky, E., Fishman, L., and Levy, M. (1969) Proteases from mouse submaxillary gland. Biochem. Biophys. Res. Commun. 36, 156–165.PubMedCrossRefGoogle Scholar
  39. 39.
    Schenkein, I., Franklin, E. C., and Frangione, B. (1981) Proteolytic enzymes from the mouse submaxillary gland. A partial sequence and demonstration of spontaneous cleavages. Arch. Biochem. Biophys. 209, 57–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Schenkein, I., Levy, M., Franklin, E. C., and Frangione, B. (1977) Proteolytic enzymes from the mouse submaxillary gland. Specificity restricted to arginine residues. Arch. Biochem. Biophys. 182, 64–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Wasserman, R. L. and Capra, J. D. (1978) The amino acid sequence of the light chain variable region of a canine myeloma immunoglobulin; Evidence that the Vk subgroups predated mammalian speciation. Immunochemistry 15, 303–305.PubMedCrossRefGoogle Scholar
  42. 42.
    Boesman, M., Levy, M., and Schenkein, I. (1976) Esteroproteolytic enzymes from the submaxillary gland. Kinetics and other physicochemical properties. Arch. Biochem. Biophys. 175, 463–476.PubMedCrossRefGoogle Scholar
  43. 43.
    Levy, M., Fishman, L., and Scheinkein, I. (1970) Mouse submaxillary gland proteases. Methods Enzymol. 19, 672–681.CrossRefGoogle Scholar
  44. 44.
    Keesey, J. (ed.) (1989) Biochemica Information: A Revised Biochemical Reference Source. Boehringer Mannheim Biochemicals, Indianapolis, IA.Google Scholar
  45. 45.
    Schenkein, I., Gabor, M., Franklin, E. C., and Frangione, B. (1979) Structural studies of a male mouse submaxillary gland protease. Fed. Proc. Fed. Amer. Chem. Soc. Exp. Biol. 38, 326.Google Scholar
  46. 46.
    Porzio, M. A. and Pearson, A. M. (1975) Isolation of an extracellular neutral proteinase from Pseudomonas fragi. Biochim. Biophys. Acta. 384, 235–241.PubMedGoogle Scholar
  47. 47.
    Noreaau, J. and Drapeau G. R. (1979) Isolation and properties of the protease from the wild-type and mutant tralns of Pseudomonas fragi. J. Bacteriol. 140, 911–916.Google Scholar
  48. 48.
    Drapeau, G. R. (1980) Substrate specficity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. J. Biol. Chem. 255, 839–840.PubMedGoogle Scholar
  49. 49.
    Ingrosso, D., Fowler, A. V., Bleibaum, J., and Clarke, S. (1989) Specificity of Endoproteinase Asp-N (Pseudomonas fragi): Cleavage at glutamyl residues in two proteins. Biochem. Biophys. Res. Commun. 162, 1528–1534.PubMedCrossRefGoogle Scholar
  50. 50.
    Drapeau, G. R., Boily, Y., and Houmard, J. (1972) Purification and properties of an extracellular protease of Staphlococcus aureus. J. Biol. Chem. 247, 6720–6726.PubMedGoogle Scholar
  51. 51.
    Houmard, D. and Drapeau, G. R. (1972) Staphlococcal protease: A proteolytic enzyme specific for glutamoyl bonds. Proc. Natl. Acad. Sci. 69, 3506–3509.PubMedCrossRefGoogle Scholar
  52. 52.
    Austen, B. M. and Smith, E. L. (1976) Action of staphlococcal proteinase on peptides of varying chain length and composition. Biochem. Biophys. Res. Commun. 72, 411–417.PubMedCrossRefGoogle Scholar
  53. 53.
    Wooton, J. C., Baron, A. J., and Fincham, R. S. (1975) The amino acid sequence of Nemospora NADP-specific glutamate dehydrogenase. Biochem. J. 149, 749–755.Google Scholar
  54. 54.
    Walker, J. M., Hastings, J. R., and Johns, E. W. (1977) The primary structure of a non-histone chromosomal protein. Eur. J. Biochem. 76, 461–468.PubMedCrossRefGoogle Scholar
  55. 55.
    Drapeau, G. R. (1976) Protease from Staphlococcus aureus. Methods Enzymol. 45, 469–475.PubMedCrossRefGoogle Scholar
  56. 56.
    Drapeau, G. R. (1977) Cleavage at glutamic acid with staphlococcal protease. Methods Enzymol. 47, 189–191.PubMedCrossRefGoogle Scholar
  57. 57.
    Jekel, P. A., Weijer, W. J., and Beintema, J. J. (1983) Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. Anal. Biochem. 134, 347–354.PubMedCrossRefGoogle Scholar
  58. 58.
    Fruton, J. S. (1971) Pepsin. Enzymes 4, 120–164.Google Scholar
  59. 59.
    Tang, J. (1970) Gastricsin and pepsin. Methods Enzymol. 19, 406–421.CrossRefGoogle Scholar
  60. 60.
    Rajagopalan, T. G., Moore, S., and Stein, W. H. (1966) Pepsin from pepsinogen. Purification and properties. J. Biol. Chem. 241, 4940–4950.PubMedGoogle Scholar
  61. 61.
    Perimann, G. E. (1959) Effect of solvents and of temperature on the optical rotary properties of pepsin. Proc. Natl. Acad. Sci. USA 45, 915–922.CrossRefGoogle Scholar
  62. 62.
    Matsubara, H. (1970) Purification and assay of thermolysin. Methods Enzymol. 19, 642–651.CrossRefGoogle Scholar
  63. 63.
    Heinrikson, R. L. (1977) Applications of thermolysin in protein structural analysis. Methods Enzymol. 47, 75–189.Google Scholar
  64. 64.
    Matsubara, H., Sasaki, R., Singer, A., and Jukes, T. H. (1966) Specific nature of hydrolysis of insulin and tobacco mosaic virus protein by thermolysin. Arch. Biochem. Biophys. 115, 324–331.PubMedCrossRefGoogle Scholar
  65. 65.
    Titani, K., Hermodson, M. A., Ericson, L. H., Walsh, K. A., and Neurath, H. (1972) Amino acid sequence of thermolysin. Nature 238, 35–37.Google Scholar
  66. 66.
    Latt, S. A., Holmquist, B., and Vallee, B. L. (1969) Thermolysin: A zinc metalloenzyme. Biochem. Biophys. Res. Commun. 37, 333–339.PubMedCrossRefGoogle Scholar
  67. 67.
    Walsh, K. A. (1970) Trypsinogens and trypsins of various species. Methods Enzymol. 19, 41–63.CrossRefGoogle Scholar
  68. 68.
    Mares-Guia, M. and Shaw, E. (1965) Studies on the active center of trypsin. J. Biol. Chem. 240, 1579–1585.PubMedGoogle Scholar
  69. 69.
    Harris, J. I. (1956) Effect of urea on trypsin and α-chymotrypsin. Nature 177, 471–473.PubMedCrossRefGoogle Scholar
  70. 70.
    Anson, M. L. (1938) Estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. J. Gen. Physiol. 22, 79–89.PubMedCrossRefGoogle Scholar
  71. 71.
    Schwert, G. W. and Eisenberg, M. A (1949) Kinetics of the amidase and esterase activities of trypsin. J. Biol. Chem. 179, 665–672.PubMedGoogle Scholar
  72. 72.
    Nord, F. F. and Bier, M. (1953) Mechanism of enzyme action. LV. Interaction between calcium and trypsin. Biochem. Biophys. Acta 12, 56–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Birk, Y. (1961) Purification and some properties of a highly active inhibitor of trypsin and α-chymotrypsin from soybeans. Biochim. Biophys. Acta 54, 378–381.PubMedCrossRefGoogle Scholar
  74. 74.
    Shaw, E. and Springhorn, S. (1967) Identification of the histidine residue at the active center of trypsin labeled by TLCK. Biochem. Biophys. Res. Commun. 27, 391–397.PubMedCrossRefGoogle Scholar
  75. 75.
    Carrey, E. A. and Epand, R. M. (1983) Conformational and biological properties of glucagon fragments containing residues 1–17 and 19–29. J. Peptide Protein Res. 22, 362–370.CrossRefGoogle Scholar
  76. 76.
    Grunnet, I. and Knudsen, J. (1983) Medium-chain fatty acid synthesis by goat mammary-gland fatty acid synthetase. The effect of limited proteolysis. Biochem. J. 209, 215–222.PubMedGoogle Scholar
  77. 77.
    Poncz, L. and Dearborn, D. G. (1983) The resistance to tryptic hydrolysis of peptide bonds adjacent to N,N-dimethyllysyl residues. J. Biol. Chem. 258, 1844–1850.PubMedGoogle Scholar
  78. 78.
    Bentz, H., Chang, R-J., Thompson, A. Y., Glaser, C. B., and Rosen, D. M. (1990) Amino acid sequence of bovine osteoinductive factor. J. Biol. Chem. 265, 5024–5029.PubMedGoogle Scholar
  79. 79.
    Tomasselli, A. G., Frank, R., and Schiltz, E. (1986) The complete primary structure of GTP:AMP phosphotransferase from beef heart mitochondria. FEBS Lett. 202, 303–307.PubMedCrossRefGoogle Scholar
  80. 80.
    Perides, G., Kuhn, S., Scherbarth, A., and Traub, P. (1987) Probing of the structural stability of vimentin and desmin-type intermediate filaments with Ca2+-activated proteinase, thrombin and lysine-specific endoproteinase Lys-C. Eur. J. Cell Biol. 43, 450–458.PubMedGoogle Scholar
  81. 81.
    Steffens, G. J, Gunzler, W. A., Ötting, F., Frankus, E., and Flohé, L. (1982) The complete amino acid sequence of low molecular weight urokinase from human urine. Hoppe-Seyler’s Z. Physiol. Chem. 363, 1043–1058.PubMedCrossRefGoogle Scholar
  82. 82.
    Konigsberg, W., Goldstein, J., and Hill, R. J. (1963) The structure of human haemoglobin VII. The digestion of the β chain of human haemoglobin with pepsin. J. Biol. Chem. 238, 2028–2033.PubMedGoogle Scholar
  83. 83.
    Price, N. C., Duncan, D., and McAlister, J. W. (1985) Inactivation of rabbit muscle phosphoglycerate mutase by limited proteolysis with thermolysin. Biochem.J. 229, 167–171.PubMedGoogle Scholar
  84. 84.
    Eggerer, H. (1984) Hysteretic behaviour of citrate synthase. Site-directed limited proteolysis. Eur. J. Biochem. 143, 205–212.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Patricia J. Sweeney
    • 1
  • John M. Walker
    • 1
  1. 1.Division of Biological SciencesThe University of HertfordshireHatfieldUK

Personalised recommendations