DNA Polymerases (EC

  • Martin J. Maunders
Part of the Methods in Molecular Biology™ book series (MIMB, volume 16)


DNA polymerases catalyze the synthesis of DNA molecules from monomeric deoxynucleotide triphosphate units. This definition encompasses those enzymes classed as DNA-dependent DNA polymerases (EC, which require both a DNA template strand and a DNA primer to which the monomeric units can be added), reverse transcriptases (EC, RNA-dependent DNA polymerases that utilize an RNA template), and terminal deoxynucleotidyl transferases (EC, which require no template). This chapter will consider only DNA-dependent DNA polymerases (EC, DNA nucleotidyltransferases, DNA-directed).


Polymerase Activity Nick Translation Exonuclease Activity Klenow Fragment Label Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McHenry, C. S. (1988) DNA Polymerase III holoenzyme of Escherichia coli. Ann. Rev. Biochem. 57, 519–550.PubMedCrossRefGoogle Scholar
  2. 2.
    Loeb, L. A., Liu P. K., and Fry M. (1986) DNA polymerase ex: Enzymology, function, fidelity and mutagenesis, in Progress in Nucleic Acid Research and Molecular Biology, vol. 33 (Cohn, W. E., ed.), Academic, New York, pp. 57–110.Google Scholar
  3. 3.
    Tsang-Lee, M. Y. W., Tan, C.-K., Downey, K. M., and So, A. G. (1981) Structure and functional properties of calf thymus DNA polymerase °, in Progress in Nucleic Acid Research and Molecular Biology, vol. 26 (Cohn, W. E., ed.), Academic, New York, pp. 83–96.Google Scholar
  4. 4.
    Richardson, C. C., Schildkraut, C. L., Aposhian, H. V., and Kornberg, A. (1964) Enzymatic synthesis of deoxyribonucleic acid. XIV. Further purification and properties of deoxyribonucleic acid polymerase of Escherichia coli. J. Biol. Chem. 239, 222–232PubMedGoogle Scholar
  5. 5.
    Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P. (1977) Labeling DNA to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113, 237–251.PubMedCrossRefGoogle Scholar
  6. 6.
    Klenow, H., Overgaard-Hansen, K., and Patkar, S. A (1971) Proteolytic cleavage of DNA polymerase into two different catalytic fragments. Eur. J. Biochem. 22, 371–381.PubMedCrossRefGoogle Scholar
  7. 7.
    Sanger, E, Nicklen, S., and Coulson, A R. (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.PubMedCrossRefGoogle Scholar
  8. 8.
    Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Telford, J. L., Kressman, A, Koski, R. A., Grosschedl, R., Muller, F., Clarkson, S. G., and Birnstiel, M. L. (1979) Delimitation of a promoter for RNA polymerase III by means of a functional test. Proc. Natl. Acad. Sci. USA 76, 2590–2594.PubMedCrossRefGoogle Scholar
  10. 10.
    Cobianchi, E and Wilson, S. H. (1987) Enzymes for modifying and labeling DNA and RNA. Methods Enzymol. 152, 94–110.PubMedCrossRefGoogle Scholar
  11. 11.
    Rougeon, E, Kourilsky, P., and Mach, B. (1975) Insertion of a rabbit β-globin gene sequence into an E.coli plasmid. Nucleic Acids Res. 2, 2365–2378PubMedCrossRefGoogle Scholar
  12. 12.
    Gubler, U. (1987) Second strand cDNA synthesis: classical method. Methods Enzymol. 152, 325–329.PubMedCrossRefGoogle Scholar
  13. 13.
    Englund, P. (1971) Analysis of nucleotide sequences at 3′ termini of duplex deoxyribonucleic acid with the use of the T4 deoxyribonucleic acid polymerase. J. Biol. Chem. 246, 3269–3276.PubMedGoogle Scholar
  14. 14.
    Craik, C. S., Largman, C., Fletchet, T., Roczniak, S., Barr, P. J., Fletterick, R., and Rutter, W. J. (1985) Redesigning trypsin: alteration of substrate specificity. Science 228, 291–297.PubMedCrossRefGoogle Scholar
  15. 15.
    Biochemicals for Molecular Biology (1990/1991) T4 DNA polymerase. Boehringer Mannheim GmbH, Mannheim, Germany, p. 67.Google Scholar
  16. 16.
    Tabor, S., Huber, H. E., and Richardson, C. C. (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262, 16,212–16,223.PubMedGoogle Scholar
  17. 17.
    Tabor, S. and Richardson, C. C. (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84, 4767–4771.PubMedCrossRefGoogle Scholar
  18. 18.
    Molecular and Cell Biology Catalogue (1992/1993) FPLC pure 17 DNA Polymerase, cloned. Pharmacia P-L Biochemicals Inc., Milwaukee, WI. p. 172.Google Scholar
  19. 19.
    Chien, A., Edgar, D. B., and Trela, J. M. (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127, 1550–1557.PubMedGoogle Scholar
  20. 20.
    New England Biolabs Catalogue (1990/1991) Vent™ DNA polymerase. New England Biolabs Inc., Beverly, MA. p. 47.Google Scholar
  21. 21.
    Bergseid, M., Scott, B., Mathur, S., Nielson, K., Shoemaker, D., and Mathur, E. (1991) A high fidelity thermostable DNA polymerase isolated from Pyrococcus furiosus. Strategies in Molecular Biology 4. Stratagene Cloning Systems Inc., La Jolla, CA, pp. 34–35Google Scholar
  22. 22.
    Clark, J. M. (1988) Novel non-templated nucleotide addition reactions catalysed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 16, 9677–9686.PubMedCrossRefGoogle Scholar
  23. 23.
    Mead, D. A., Pey, N. K., Herrnstadt, c., Marcil, R. A., and Smith, L. M. (1991) A universal method for the direct cloning of PCR amplified nucleic acid. Biotechnology 9, 657–663.PubMedCrossRefGoogle Scholar
  24. 24.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science 230, 1350–1354.PubMedCrossRefGoogle Scholar
  25. 25.
    Ehrlich, H. A., Gelfand, D., and Sninsky, J. (1991) Recent advances in the polymerase chain reaction. Science 252, 1643–1651.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Martin J. Maunders
    • 1
  1. 1.Advanced Technologies (Cambridge) Ltd.CambridgeUK

Personalised recommendations