Skip to main content

High-Flux X-Ray and Neutron Solution Scattering

  • Protocol
  • 1234 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 22))

Abstract

Solution scattering is a diffraction technique that is used to study the overall structure of biological macromolecules in the solution state (13). Although X-rays are diffracted by electrons and neutrons are diffracted by nuclei, the physical principles are the same. Scattering views structures in random orientations to a nominal structural resolution of about 2–4 nm in a Q* range (Q = 4 π sin /g3/γ; 2/g3 = scattering angle; γ = wavelength) between about 0.05 and 3 nm-1 (Fig. 1.). In comparison, the use of diffraction to study single crystals of macromolecules will lead to electron or nuclear density maps at atomic resolution (0.15 nm) as the result of crystalline order. Analyses of the scattering curve I(Q) measured over a range of Q lead to the mol wt and the degree of oligomerization, the overall radius of gyration R G (and in certain cases, those of the cross-section and the thickness), and the maximum dimension of the macromolecule. Scattering can be used to monitor conformational changes. The scattering analyses can be quantitatively compared with other physical data in order to check and refine the results. These other methods include electron microscopy (Chapters 1 and 2), determinations of sedimentation or diffusioncoefficients (Chapters 5 and 6) crystallography (Methods in Molecular Biology: Crystallographic Methods and Techniques [in press]), and molecular graphics modeling.

General features of a solution scattering curve I(Q) measured over a Q range (2) The neutron scattering curve of complement component Clq in 100% D2O buffers is analyzed in two regions, that at low Q, which gives the Guinier plot from which the overall radius of gyration R G and the forward scattered intensity I(0) values are calculated, and that at larger Q, from which more structural information is obtained. At low Q, the scattering curve is truncated for reason of the beamstop. The scattering curve was measured using two sample-detector distances of 2.7 and 10.7 m on instrument Dll at the ILL Grenoble; the shorter distance defines the maximum Q measured.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Glatter, O. and Kratky, O (eds.) (1982) Small Angie X-ray Scattering. Academic, New York

    Google Scholar 

  2. Perkins, S J (1988) Structural studies of protems by high-flux X-ray and neutron solution scattering Biochem. J 254, 3 13–327.

    CAS  Google Scholar 

  3. Perkins, S. J. (1988) X-ray and neutron solution scattering. New Compr.Biochem. 18B (Part II) 143–264.

    Google Scholar 

  4. Bellamy, M. F., Nealis, A. S., Aitken, J., Bruckdorfer, K. R., and Perkins, S. J (1989) Structural changes m oxidised low density lipoproteins and the effect of the antiatherosclerotic drug probucol by synchrotron X-ray and neutron solution scattering. Eur. J. Biochem. 183, 321–329.

    Article  CAS  Google Scholar 

  5. Nave, C., Helliwell, J. R., Moore, P. R., Thompson, A. W., Worgan, J. S., Greenall, R. J, Miller, A., Burley, S. K., Bradshaw, J., Pigram, W. J., Fuller, W., Siddons, D. P., Deutsch, M., and Tregear, R. T (1985) Facilities for solutionscattering and fibre diffraction at the Daresbury SRS. J. Appl. Crystallogr. 18, 396–403

    Article  CAS  Google Scholar 

  6. Towns-Andrews, E., Berry, A., Bordas, J., Mant, G. R., Murray, P. K., Roberts, K, Sumner, I., Worgan, J. S., Lewis, R., and Gabriel, A. (1989) A time-resolved X-ray diffraction station: X-ray optics, detectors and data acquisition Rev. Scient. Instrum. 60, 2346–2349.

    Article  CAS  Google Scholar 

  7. Ibel, K. (1976) The neutron small-angle camera Dl 1 at the high-flux reactor,Grenoble.J. Appl Crystallogr. 9, 269–309.

    Article  Google Scholar 

  8. Ghosh, R. E. (1989) A Computing Guide for Small Angle Scattering Experiments.Institut Laue Langevin Internal Publication 89GH02T.

    Google Scholar 

  9. Heenan, R. K., Osborn, R., Stanley, H. B, Mildner, D. F. R., Furusaka, M., and King, S. M. (1992) The small-angle diffractometer LOQ at the ISIS pulsed neutron source. J. Appl. Crystallogr. in preparation.

    Google Scholar 

  10. Perkins, S. J. (1986) Protein volumes and hydration effects: the calculation of partial specific volumes, neutron scattering matchpoints and 280 nm absorption coefficients for proteins and glycoproteins from amino acid sequences, Eur J. Biochem. 157, 169–180

    Article  CAS  Google Scholar 

  11. Jacrot, B. and Zaccai, G. (1981) Determination of molecular weight by neutron scattering.Biopolymers 20, 2413–2426.

    Article  CAS  Google Scholar 

  12. Zipper, P., Wilfing, R., Kriechbaum, M., and Durchschlag, H. (1985) A smallangle X-ray scattering study on pre-irradiated malate synthase. The influence of formate, superoxide dismutase and catalase on the X-ray induced aggregation of the enzyme.Z. Naturforsch. 4Oc, 364–372.

    Google Scholar 

  13. Durchschlag, H and Zipper, P. (1988) Primary and post-irradiation inactivation of the sulfhydryl enzyme malate synthase: correlation of protective effects of additives. FEBS Lett. 237, 208–212.

    Article  CAS  Google Scholar 

  14. Kratky, O. (1963) X-ray small angle scattering with substances of biological interest in diluted solutions. Progr. Biophys. Chem. 13, 105–173

    Article  CAS  Google Scholar 

  15. Ibel, K. and Stuhrmann, H. B. (1975) Comparison of neutron and X-ray scattering of dilute myoglobin solutions J. Mol. Biol 93, 255–266.

    Article  CAS  Google Scholar 

  16. Rol′bm, Yu. A., Kayushma, R. L., Felgin, L. A., and Shchredm, B. M. (1973) Calculation of the small-angle X-ray scattering intensity on a computer using a macromolecule model Kristullogrujiya 18, 701–705.

    Google Scholar 

  17. Cusack, S. (1981) Instrumental effects on the scattering curves (Appendix). J Mol. Biol. 145, 539–541

    Article  CAS  Google Scholar 

  18. Perkins, S. J. and Weiss, H. (1983) Low resolution structural studies of mrtochondrial ubiqumol-cytochrome c reductase in detergent solutions by neutron scattering. J. Mol. Biol. 168, 847–866.

    Article  CAS  Google Scholar 

  19. Chothia, C. (1975) Structural invariants in protein folding. Nature 254, 304–308.

    Article  CAS  Google Scholar 

  20. Smith, K. F., Harrison, R. A., and Perkins, S. J. (1990) Structural comparisons of the native and reaction centre cleaved forms of at-antitrypsm by neutron and X-ray solution scattering.Biochem. J. 267, 203–212.

    CAS  Google Scholar 

  21. Perkins, S. J., Smith, K. F, Amatayakul, S., Ashford, D., Rademacher, T. W., Dwek, R. A., Lachmann, P. J., and Harrison, R. A. (1990) The two-domain structure of the native and reaction centre cleaved forms of Cl inhibitor of human complement by neutron scattering. J. Mol. Biol. 214751–763.

    Article  CAS  Google Scholar 

  22. Perkins, S. J., Nealis, A. S., Sutton, B. J., and Feinstein, A. (1991) The solution structure of human and mouse immunoglobulin IgM by synchrotron X-ray scattering and molecular graphics modelling: a possible mechanism for complement activation. J. Mol. Biol. 221, 1345–1366.

    Article  CAS  Google Scholar 

  23. Perkins, S. J., Chung, L. P., and Reid, K. B. M. (1986) Unusual ultrastructure of complement component C4b-binding protein of human complement by synchrotron X-ray scattering and hydrodynamic analysis. Biochem J. 233, 799–807.

    CAS  Google Scholar 

  24. Luzzati, V. and Tardieu, A. (1980) Recent developments in solution X-ray scattering. Annu. Rev. Biophys. Bioeng. 1, 529–552.

    Google Scholar 

  25. Perkins, S. J. (1989) Hydrodynamic modeling of complement, in Dynamic Properties of Biomolecular Assemblies (Hardmg, S. E. and Rowe, A..J., eds.), Royal Society of Chemistry, London, pp.226–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Perkins, S.J. (1994). High-Flux X-Ray and Neutron Solution Scattering. In: Jones, C., Mulloy, B., Thomas, A.H. (eds) Microscopy, Optical Spectroscopy, and Macroscopic Techniques. Methods in Molecular Biology, vol 22. Humana Press. https://doi.org/10.1385/0-89603-232-9:39

Download citation

  • DOI: https://doi.org/10.1385/0-89603-232-9:39

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-232-3

  • Online ISBN: 978-1-59259-509-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics