Skip to main content

Analysis of Polypeptide and Protein Structures Using Fourier Transform Infrared Spectroscopy

  • Protocol
Microscopy, Optical Spectroscopy, and Macroscopic Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 22))

Abstract

Infrared spectroscopy was one of the earliest techniques to be used for the structural studies of polypeptides and proteins (1,2). However, a major difficulty that limited earlier studies of such biological molecules was the absorption of liquid H2O, which shows strong absorption over much of the fundamental region of the infrared spectrum. This severely limited the analysis of biological molecules in their native state, and necessitated the use of dry films, KBr disks, or D22O as a solvent. There is no strong absorption from D2O, in the region 1700–1500 cm-1and this spectral region is one which is particularly important for the study of polypeptides and proteins. The infrared spectra of liquid H2O and for comparison liquid D2O are shown in Fig. 1. The recent development of computerized FT-IR (Fourier transform infrared) instrumentation now permits the subtraction of background water absorptions from dilute samples (3,4) and, hence, enables the study of biomolecules in their more natural environment, e.g., H2O, buffer solutions, and so on. This approach has revolutionized the application of infrared spectroscopy for the study of biological molecules.

FT-IR transmittance spectrum of H2O (continuous line) and of D2O (broken line) recorded in a calcium fluoride cell fitted with a 6µm tin spacer. The spectra were recorded at 20°C. The peaks shift to lower wave numbers in D2O.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliot, A. and Ambrose, E. J. (1950) Structure of synthetic polypeptides. Nature 165, 921–922.

    Article  Google Scholar 

  2. Susi, H.(1969)Infrared spectra of biological macromolecules and related systems, in Structure and Stab&y of Biological Macromolecules (Timasheff, S. N.and Fasman, G. D, eds.), Marcel Dekker, New York, pp. 575–663.

    Google Scholar 

  3. Cameron, D. G, Casal, H L., and Mantsch, H. H. (1979) Application of Fourier transform infrared transmission spectroscopy to the study of model and natural membranes. J. Biochem. Biophys. Meth 1, 21–36.

    Article  CAS  Google Scholar 

  4. Chapman, D., Gomez-Femandez, J. C, Goni, F M., and Barnard, M. (1980)Difference infrared spectroscopy of aqueous model and biological membranes using an infrared data station. J. Biochem. Biophys. Meth. 2, 315–323

    Article  CAS  Google Scholar 

  5. Jackson, M., Haris, P. I, and Chapman, D (1989) Fourier transform infrared spectroscopic studies of lipids, polypeptides and proteins. J. Mol. Strut. 204, 329–355

    Article  Google Scholar 

  6. Braiman, M. S. and Rothschild, K J. (1988) Fourier transform infrared techmques for probing membrane protein structure Ann. Rev. Biophys. Chem. 17, 541–570.

    Article  CAS  Google Scholar 

  7. SUSI, H.(1972) Infrared spectroscopy-conformation. Methods Enzymol 26, 455–472.

    Google Scholar 

  8. Miyazawa, T., Shimanouchi, T., and Mizushima, S. I (1956) Characteristic infrared bands of mono-substituted anudes J. Chem. Phys. 24, 408–418.

    Article  CAS  Google Scholar 

  9. Anderle, G. and Mendelshon, R (1987) Thermal denaturation of globular proterns-Fourier transform infrared studies of the amide III spectral region. Biophys.J. 52, 69–74.

    Article  CAS  Google Scholar 

  10. Chirgadze, Y. N., Brazhnikov, E. V., and Nevskaya, N. A. (1976) Intramolecular distortion of a-helical structure of polypeptides. J. Mol. Biol 102, 781–792.

    Article  CAS  Google Scholar 

  11. SUSI, H., Timasheff, S N., and Stevens, L (1967) Infrared spectra and protein conformations in aqueous solutions. J. Biol. Chem. 242, 5460–5466.

    CAS  Google Scholar 

  12. Timasheff, S N., Susi, H., and Stevens, L (1967) Infrared spectra and protein conformations in aqueous solutions. J. Biol. Chem 242, 5467–5473.

    CAS  Google Scholar 

  13. Krimm, S. and Bandekar, J. (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins Adv. Protein Chem. 38, 18l–364.

    Google Scholar 

  14. Byler, D. M. and Susi, H (1986) Exammahon of the secondary structure of proteins by deconvoluted FTIR spectra. Biopolymers 25, 469–487.

    Article  CAS  Google Scholar 

  15. Susi, H. and Byler, D. M. (1986) Resolution-enhanced Fourier transform mfrared spectroscopy of enzymes. Methods Enzymol. 130, 290–311.

    Article  CAS  Google Scholar 

  16. Surewicz, W. K. and Mantsch, H. H (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochem. Biophys. Acta 952, 115–130

    Article  CAS  Google Scholar 

  17. Kauppinen, J. K., Moffatt, D. J., Mantsch, H. H., and Cameron, D. G. (1981)Fourier self deconvolution-a method for resolving mtrinsically overlapped bands. 271–276.

    Google Scholar 

  18. Mantsch, H. H., Casal, H. L., and Jones, R. N. (1986) Resolution enhancement of infrared spectra of biological systems, in Spectroscopy of Biological Systems Appl. Spectrosc. 35, 271–276.(Clark, R. J. H. and Hester, R. E eds.), Wiley, New York, pp. 146.

    Google Scholar 

  19. Griffiths, P. R. and de Haseth, J. A. (1986) Fourier Transform Znfrared Spectrometry, Wiley, New York.

    Google Scholar 

  20. Dev, S. B., Keller, J. T, and Rha, C. K. (1988) Secondary structure of 11 S globulin in aqueous solution investigated by Frl?-IR derivative spectroscopy. Biochem. Blophys. Acta 957, 272–280.

    Article  CAS  Google Scholar 

  21. Barksdale, A. D. and Rosenberg, A. (1982) Acquisition and interpretation of hydrogen exchange data from peptrdes, polymers, and proteins. Meth. Biochem. Anal. 28 1–113.

    Article  CAS  Google Scholar 

  22. Haris, P. I., Lee, D C., and Chapman, D. (1986) A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S. Biochem. Biophys. Acta 874, 255–265.

    Article  CAS  Google Scholar 

  23. Olinger, J. M., Hill, D M., Jakobsen, R. J., and Brody. R. S. (1986) Founer transform infrared studies of ribonuclease in H2O and H2O solutrons. Biochem. Biophys.Acta 869, 89–98.

    Article  CAS  Google Scholar 

  24. Alvarez, J., Haris, P. I., Lee, D. C., and Chapman, D. (1987) Conformational changes in concanavalin A associated with demetallization and αmethylmannose binding studied by Fourier transform infrared spectroscopy. Biochem. Blophys. Acta 916, 5–12.

    Article  CAS  Google Scholar 

  25. Hans, P. I., Chapman, D., Harrison, R. A., Smith, K. F., and Perkms, S. J. (1990) Conformational transrtion between native and reactive center cleaved forms of α1-antitrypsin by Fourier transform infrared spectroscopy and small-angle neu-tron scattering. Biochemistry 29, 1377–1380.

    Article  Google Scholar 

  26. Haris, P. I. and Chapman, D. (1988) Fourier transform infrared spectra of the polypeptide alamethicin and a possible structural similarity with bacteriorhodopsin Biochem. Biophys. Acta 943, 375–380.

    Article  CAS  Google Scholar 

  27. Wlodawer, A., Bott, R., and Sjolin, L. (1982) The refined crystal structure of ribonuclease A at 2.0 A resolution. J. Biol. Chem. 257, 1325–1332.

    CAS  Google Scholar 

  28. Carell, R. and Travis, J. (1985) α1-antitrypsin and the serpins-variation and conservation. Trends Blochem. Sci. 10, 20–24.

    Article  Google Scholar 

  29. Holloway, P. W. and Mantsch, H. H. (1988) Infrared spectroscopic analysis of salt bridge formation between cytochrome b1 and cytochrome c. Biochemistry 27, 799l–7993.

    Article  Google Scholar 

  30. Susi, H. and Byler, D. M. (1983) Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem. Biophys. Res. Commun. 115, 391–397.

    Article  CAS  Google Scholar 

  31. Lobermann, H., Tokuoka, R, Deisenhofer, J., and Huber, R. (1984) Human α1Proteinase inhibitor-crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. Mol. Biol. 177, 53l–556

    Article  Google Scholar 

  32. Chirgadze, Yu. N., Fedorov, 0. V., and Trushina, N. P (1975) Estimation of amino acid residue side-chain absorption in infrared spectra of protein solutrons in heavy water. Biopolymers 14, 679–694.

    Article  CAS  Google Scholar 

  33. Lee, D. C., Haris, P. I, Chapman, D., and Mitchell, R. C (1990) Determination of protein secondary structure usmg factor analysis of infrared spectra. Blochemistry 29, 9185–9193.

    Article  CAS  Google Scholar 

  34. Malinowski, E. R. and Howery, D G. (1980) FactorAnalysis in Chemistry, Wiley, New York.

    Google Scholar 

  35. Jackson, M., Haris, P. I., and Chapman, D. (1989) Conformational transrtions in poly(L-lysine). studies using Fourier transform infrared spectroscopy. Biochem. Biophys. Acta 998, 75–79.

    Article  CAS  Google Scholar 

  36. Haris, P. I., Robillard, G. T., van DiJk, A. A., and Chapman, D. (1992) Potentral of 13C and lsN labeling for studying protein-protein interactions using Fourier transform infrared spectroscopy. Biochemistry 31, 6279–6284.

    Article  CAS  Google Scholar 

  37. Surewicz, W. K., Mantsch, H. H., and Chapman, D. (1993) Determmation of protein secondary structure by Fourrer transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389–394.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Haris, P.I., Chapman, D. (1994). Analysis of Polypeptide and Protein Structures Using Fourier Transform Infrared Spectroscopy. In: Jones, C., Mulloy, B., Thomas, A.H. (eds) Microscopy, Optical Spectroscopy, and Macroscopic Techniques. Methods in Molecular Biology, vol 22. Humana Press. https://doi.org/10.1385/0-89603-232-9:183

Download citation

  • DOI: https://doi.org/10.1385/0-89603-232-9:183

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-232-3

  • Online ISBN: 978-1-59259-509-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics