Skip to main content

Electron Microscopy of Protein-Nucleic Acid Complexes

Enhanced High-Resolution Shadowing

  • Protocol
Microscopy, Optical Spectroscopy, and Macroscopic Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 22))

  • 1231 Accesses

Abstract

I describe herein a method in which pretreatment with low concentrations of uranyl acetate is used to increase the structural rigidity of protein-nucleic acid complexes, thereby substantially enhancing the information content of images obtained by high-resolution shadow-casting with tungsten, The visualization of three-dimensional objects by heavy-metal shadowcasting is along-established technique in electron microscopy (1), and it has long been realized that the highest resolution could be achieved by using carbon-metal mixtures or high-melting-point metals for the evaporation (2,3). Double-stranded DNAs, 2 nm in diameter, are readily visualized by high-resolution shadowing with tungsten (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, R. C and Wycoff, R. W. G. (1946) Applications of metallic shadow-casting to microscopy. J. Appl. Phys. 17, 23.

    Article  CAS  Google Scholar 

  2. Bradley, D. E.(1959) High-resolution shadow-casting technique for the electron microscope using the simultaneous evaporation of Pt and carbon. Br. J. Appl. Phys. 10, 198.

    Article  CAS  Google Scholar 

  3. Abermann, R., Salpeter, M. M., and Bachmann, L.(1972) High resolution shadowing, in Principles and Techniques of Electron Microscopy, vol. 2 (Hayat, M. A., ed.), Van Nostrand Reinhold, New York, pp. 197–217.

    Google Scholar 

  4. Griffith, J., Huberman, J. A., and Kornberg, A. (1971) Electron microscopy of DNA polymerase bound to DNA. J. Mol. Biol. 55, 209–214.

    Article  CAS  Google Scholar 

  5. Alberts, B., Frey, L., and Delius, H. (1972) Isolation and characterization of gene 5 protein of filamentous bacterial viruses. J. Mol. Biol. 68, 139–152.

    Article  CAS  Google Scholar 

  6. Pratt, D., Laws, P., and Griffith, J. (1974) Complex of bacteriophage Ml3 single stranded DNA and gene 5 protein. J. Mol. Biol. 82 425–439.

    Article  CAS  Google Scholar 

  7. Gray, C. W., Kneale, G. G., Leonard, K. R., Siegrist, H., and Marvin, D. A. (1982) A nucleoprotem complex in bacteria infected with Pfl filamentous virus: identification and electron microscopic analysis. Virology 116, 40–52.

    Article  CAS  Google Scholar 

  8. Gray, C. W. (1989) Three-dimensional structure of complexes of single-stranded DNA-binding protems with DNA. IKe and fd gene 5 proteins form left-handed helices with single-stranded DNA. J. Mol. Biol. 208, 57–64.

    Article  CAS  Google Scholar 

  9. Haschemeyer, R. H. and Myers, R. J.(1972) Negative staining, in Principles and Techniques of Electron Microscopy, vol 2 Hayat, M A., ed.), Van Nostrand Remhold, New York, pp. 101–147.

    Google Scholar 

  10. Akey, C. W. and Edelstein, S. J. (1983) Equivalence of the projected structure of thin catalase crystals preserved for electron microscopy by negative stain, glucose, or embedding in the presence of tannic acid. J Mol. Biol. 163, 575–612.

    Article  CAS  Google Scholar 

  11. Vollenwerder, J J., Sogo, J. M., and Keller, Th. (1975) A routine method for protein-free spreading of double-and single-stranded nucleic acid molecules. Proc. Natl. Acad. Sci USA 72, 83–87

    Article  Google Scholar 

  12. Williams, R. C. (1977) Use of polylysine for adsorption of nucleic actds and enzymes to electron microscope specimen films. Proc Natl Acad. Sci. USA 74, 2311–2315

    Article  CAS  Google Scholar 

  13. Valentine, R C, Shapiro, B M, and Stadtman, E. R (1968) Regulation of glutamine synthetase, XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7, 2143–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Gray, C.W. (1994). Electron Microscopy of Protein-Nucleic Acid Complexes. In: Jones, C., Mulloy, B., Thomas, A.H. (eds) Microscopy, Optical Spectroscopy, and Macroscopic Techniques. Methods in Molecular Biology, vol 22. Humana Press. https://doi.org/10.1385/0-89603-232-9:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-232-9:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-232-3

  • Online ISBN: 978-1-59259-509-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics