Theories of Pulsed-Field Gel Electrophoresis

  • Stephen D. Levene
Part of the Methods in Molecular Biology™ book series (MIMB, volume 12)


Pulsed-field gel electrophoresis (PFGE) is one of the key technological advances of the past ten years that has made the mapping of genomes of whole organisms possible. In conventional electrophoreis, the mobility of DNA at almost any practical value of the field strength is essentially independent of mol wt above approx 30 kbp. Therefore, large (≥250 kbp) fragments of DNA required for mapping the genomes of entire organisms could not be separated prior to the introduction of these new electrophoresis techniques.


Field Direction Pulse Time Chain Segment Contour Length Tube Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schwartz, D. C., Safran, W., Welch, J., Haas, J., Goldenberg, R. M., and Cantor, C. R. (1983) New techniques for purifying large DNAs and studying their properties and packagmg. Cold Spring Harbor Symposium 47, 189–195.Google Scholar
  2. 2.
    Schwartz, D. C. and Cantor, C. R. (1984) Separation of yeast chromosome sized DNAs by pulsed field gradlent electrophoresrs. Cell 37, 67–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Chu, G., Vollrath, D., and Davis, R. W. (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Snence 232, 1582–1585.Google Scholar
  4. 4.
    Carle, G. F., Frank, M., and Olson, M. V. (1986) Electrophoretrc separations of large DNA molecules by periodic inversion of the electrrc field. Science 232, 65–68.PubMedCrossRefGoogle Scholar
  5. 5.
    de Gennes, P.-C. (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem. Phys. 55, 572–579.CrossRefGoogle Scholar
  6. 6.
    Doi, M. and Edwards, S. F. (1978) Dynamics of concentrated polymer soluhons. J. Gem. Sot.Farady Trans. 274, 1789–1801.CrossRefGoogle Scholar
  7. 7.
    Doi, M. and Edwards, S. F. (1986) The Theq of Polymer Dynamics. Oxford University Press, New York, pp. 205,206.Google Scholar
  8. 8.
    Lumpkin, O. J. and Zunm, B. H. (1982) Mobihty of DNA in gel electrophoresis. Biopolymers 21, 2315,2316.PubMedCrossRefGoogle Scholar
  9. 9.
    Lerman, L. S. and Frisch, H. L. (1982) Why does the mobihty of DNA in gels vary with the length of the molecule? BzopoZymers 21, 995–997.Google Scholar
  10. 10.
    Lumpkin, O. J., Dejardin, P., and Zimm, B. H. (1985) Theoxy of gel electrophoresis of DNA. Biopolymers 24, 1573–1593.PubMedCrossRefGoogle Scholar
  11. 11.
    Slater, G. W. and Noolandi, J. (1985) Prediction of cham elongation in the reptation theory of gel electrophoresis. Biopolymers 24, 2181–2184.CrossRefGoogle Scholar
  12. 12.
    Slater, G. W. and Noolandi, J. (1986) On the reptation theory of gel electrophoresis. Biopolymers 25, 431–454.CrossRefGoogle Scholar
  13. 13.
    Southern, E. M., Anand, R., Brown, W. R. A., and Fletcher, D. S. (1987) A Model for the separation of large DNA molecules by crossed field electrophoresis. Nucleic Acids Res. 15, 5925–5943.PubMedCrossRefGoogle Scholar
  14. 14.
    Cantor, C. R., Gaal, A., and Smith, C. L. (1988) High-resolution and accurate size determination in pulsed-field gel electrophoresis of DNA. 3. Effect of electrical field shape. Biochemistry 27, 9216–9221.PubMedCrossRefGoogle Scholar
  15. 15.
    Kobayashi, T., Doi, M., Makmo, Y., and Ogawa, M. (1990) Mobility minima in field-inversion gel electrophoresis. Macromolecules 23, 4480–4481.CrossRefGoogle Scholar
  16. 16.
    Deutsch, J. M. (1986) Theoretical studies of DNA dunng gel electrophoresis. Science 240, 922–924.CrossRefGoogle Scholar
  17. 17.
    Deutsch, J. M. and Madden, T. L. (1989) Theoretical studies of DNA during gel electrophoresis.j Cb. Phys. 90, 2476–2485.Google Scholar
  18. 18.
    Deutsch, J. M. (1989) Explananon of the anomalous mobility and birefringence measurements found in pulsed field electrophoresis. J Cti. Phys. 90, 7436–7441.Google Scholar
  19. 19.
    Zimm, B. H. (1988) Size fluctuahons can explain anomalous mobihty in field-inversion electrophoresis. Phys. Reu. L&t. 61, 2965–2968.CrossRefGoogle Scholar
  20. 20.
    Zimm, B.H. (1991) “Lakes-Straits” model of field-mversion electrophoresis of DNA. J. Chem. Phys. 94, 2187–2206.CrossRefGoogle Scholar
  21. 21.
    Duke, T. A. J. (1989) Tube model of field-inversion gel electrophoresis. Phys. Rev. Lett. 62, 2877–2880.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith, S. B., Aldndge, P. K., and Calhs, J. B. (1989) Observanon of individual DNA molecules undergoing gel electrophoresls. Science 243, 203–206.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwartz, D. C. and Koval, M. (1989) Conformational dynamics of mdivldual DNA molecules during gel electrophoresis. Nature 338, 520–522.PubMedCrossRefGoogle Scholar
  24. 24.
    Gurrieri, S., Rizzarelli, E., Beach, D., and Bustamante, C. (1990) Imagmg of kinked configurations of DNA molecules undergoing OFAGE using flue rescence microscopy. Beochemzstly 29, 3396–3401.CrossRefGoogle Scholar
  25. 25.
    Olvera de la Cruz, M., Gersappe, D., and Shaffer, E. 0. (1990) Dynamics of DNA durmg pulsed-field electrophoresis. Phys. Rev. Lett. 64, 2324–2327.CrossRefGoogle Scholar
  26. 26.
    Shaffer, E. O. II and Olvera de la Cruz, M. (1989) Dynamics of gel electrophoresis. Macromolecules 22, 1351–1355.CrossRefGoogle Scholar
  27. 27.
    Matthew M. K. Smith C. L. and Cantor C. R. 1988 High-resolution and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and the effect of agarose and temperature. Biochemistry 27 9204–9210CrossRefGoogle Scholar
  28. 28.
    Matthew, M. K., Smith, C. L., and Cantor, C. R. (1988) High-resolution and accurate size determination in pulsed-field gel electrophoresis of DNA. 2. Effect of pulse time and electric field strength and implications for models of the separation process. Bzochemistly 27, 9210–9216.CrossRefGoogle Scholar
  29. 29.
    Levene, S. D. and Zimm, B. H. (1987) Separations of open-circular DNA using pulsed-field electrophoresis. Proc. Natl. Acad. Sci. USA 84, 4054–4057.PubMedCrossRefGoogle Scholar
  30. 30.
    Orbach, M. J., Vollrath, D., Davis, R. W., and Yanofsky, C. (1988) An electrophoreuc karyotype of Neurospora crassa. Mol. CellBiol. 8, 1469–1473.Google Scholar
  31. 31.
    Attwood, T. K., Nelmes, B. J., and Sellen, D. B. (1988) Electron microscopy of beaded agarose gels. Biofolymm 27, 201–212.Google Scholar
  32. 32.
    Mickel, S., Arena, V., and Bauer, W. (1977) Physical properties and gel electrophoresis behavior of RlZdenved plasmid DNAs. Nuchc Acids Res. 4, 1465–1482.CrossRefGoogle Scholar
  33. 33.
    Serwer, P. and Hayes, S. J. (1989) Atypica1 sieving of open-circular DNA during pulsed-field electrophoresis. Biochmistly 28, 5827–5832.CrossRefGoogle Scholar
  34. 34.
    Hervet, H. and Bean, C. P (1987) Electrophoretic mobility of lambda phage Hind III and Hae III DNA fragments in agarose gels: A detailed study. Baopolymers 26, 727–742.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1992

Authors and Affiliations

  • Stephen D. Levene
    • 1
  1. 1.Division of Biochemistry and Molecu1ar Biology, Department of Molecu1ar and Cell BiologyUniversity of California, BerkeleyBerkeley

Personalised recommendations