Advertisement

Glycosyltransferases as Tools in Cell Biological Studies

  • Robert S. Haltiwanger
  • Gerald W. Hart
Part of the Methods in Molecular Biology book series (MIMB, volume 14)

Abstract

Complex carbohydrates consist of an amazingly diverse array of highly branched structures (1,2). This branching structure precludes the use of a linear template for assembly, as in the case of protein and nucleic acid biosynthesis. In contrast, the biosynthesis of these molecules is dependent on a series of highly specific enzymes, glycosyltransferases, which elongate growing saccharide chains sequentially (1,2). The product of each reaction becomes the substrate for the next. Thus, these enzymes must specifically recognize the structure of the acceptor carbohydrate and add a monosaccharide in a particular linkage at a precise location. In most cases, one enzyme exists for each glycosidic bond that is formed (3). The high level of specificity displayed by glycosyltransferases allows them to synthesize complex structures with a high degree of fidelity. Regulating this fidelity appears to be crucial for the biological functions of complex carbohydrates in vivo (4).

Keywords

Sialic Acid Cyanogen Bromide Sugar Nucleotide Saturated Ammonium Sulfate Column Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beyer, T. A., Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill, R. L. (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv. Enzymol. 52, 23–175.PubMedGoogle Scholar
  2. 2.
    Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.PubMedCrossRefGoogle Scholar
  3. 3.
    Roseman, S. (1970) The synthesis of complex carbohydrates by multiglyco-syltransferase systems and their potential function in intercellular adhesion. Chem. Phys. Lipids. 5, 270–297.PubMedCrossRefGoogle Scholar
  4. 4.
    Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.PubMedCrossRefGoogle Scholar
  5. 5.
    Whiteheart, S. W. and Hart, G. W. (1987) Sialyltransferases as specific cell surface probes of terminal and penultimate saccharide structures on living cells. Anal. Biochem. 163, 123–135.PubMedCrossRefGoogle Scholar
  6. 6.
    Passaniti, A. and Hart, G. W. (1988) Cell surface sialylation and tumor metastasis. Metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. J. Biol. Chem. 263, 7591–7603.PubMedGoogle Scholar
  7. 7.
    Powell, L. D., Whiteheart, S. W., and Hart, G. W. (1987) Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction. J. Immunol. 139, 262–270.PubMedGoogle Scholar
  8. 8.
    Sadler, J. E., Paulson, J. C., and Hill, R. L. (1979) The role of sialic acid in the expression of human MN blood group antigens. J. Biol. Chem. 254, 2112–2119.PubMedGoogle Scholar
  9. 9.
    Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, H. D. (1986) Influenza C virus uses 9-O-acetykl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261, 5947–5951.PubMedGoogle Scholar
  10. 10.
    Torres, C-R. and Hart, G. W. (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. J. Biol. Chem. 259,5, 3308–3317.PubMedGoogle Scholar
  11. 11.
    Viitala, J. and Finne, J. (1984) Specific cell-surface labeling of polyglycosyl chains in human erythrocytes and HL-60 cells using endo-beta-galactosi-dase and galactosyltransferase. Eur. J. Biochem. 138, 393–397.PubMedCrossRefGoogle Scholar
  12. 12.
    Passaniti, A. and Hart, G. W. (1990) Metastasis-associated murine melanoma cell surface galactosyltransferase: Characterization of enzyme activity and identification of the major surface substrates. Cancer Res. 50, 7261–7271.PubMedGoogle Scholar
  13. 13.
    Reichner, J. S., Whiteheart, S. W., and Hart, G. W. (1988) Intracellular trafficking of cell surface sialoglycoconjugates. J. Biol. Chem. 263, 16,316–16,326.PubMedGoogle Scholar
  14. 14.
    Benko, D. M., Haltiwanger, R. S., Hart, G. W., and Gibson, W. (1988) Virion basic phosphoprotein from human cytomegalovirus contains O-linked N-acetylglucosamine. Proc. Natl. Acad. Sd. USA 85, 2573–2577.CrossRefGoogle Scholar
  15. 15.
    Holt, G. D. and Hart, G. W. (1986) The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049–8057.PubMedGoogle Scholar
  16. 16.
    Holt, G. D., Haltiwanger, R. S., Torres, C. R., and Hart, G. W. (1987) Erythrocytes contain cytoplasmic glycoproteins. O-linked GlcNAc on Band 4.1. J. Biol. Chem. 262, 14,847–14,850.PubMedGoogle Scholar
  17. 17.
    Machamer, C. E. and Cresswell, P. (1984) Monensin prevents terminal gly-cosylation of the N-and O-linked oligosaccharides of the HLA-DR-associ-ated invariant chain and inhibits its dissociation from the α-βchain complex. Proc. Natl. Acad. Sd. USA 81, 1287–1291.CrossRefGoogle Scholar
  18. 18.
    Duncan, J. R. and Kornfeld, S. (1988) Intracellular movement of two man-nose 6-phosphate receptors: return to the Golgi apparatus. J. Cell Biol. 106, 617–628.PubMedCrossRefGoogle Scholar
  19. 19.
    Thilo, L. (1983) Labeling of plasma membrane glycoconjugates by terminal glycosylation (galactosyltransferase and glycosidase). Methods Enzymol 98, 415–420.PubMedCrossRefGoogle Scholar
  20. 20.
    Paulson, J. C., Sadler, J. E., and Hill, R. L. (1979) Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases. J. Biol. Chem. 254, 2120–2124.PubMedGoogle Scholar
  21. 21.
    Paulson, J. C. and Rogers, G. N. (1987) Resialylated erythrocytes for assessment of the specificity of sialyloligosaccharide binding proteins. Methods Enzymol. 138, 162–168.PubMedCrossRefGoogle Scholar
  22. 22.
    Hill, R. L., Beyer, T. A., Paulson, J. C., Prieels, J. P., Rearick, J. I., and Sadler, J. E. (1980) Glycosyl transferases in oligosaccharide biosynthesis and their use in structure-function analysis of glycoproteins, in Frontiers of Bioorganic Chemistry and Molecular Biology (Ananchenko, S. N., ed.), Pergamon, Oxford and New York, pp. 63–71.Google Scholar
  23. 23.
    Whiteheart, S. W., Passaniti, A., Reichner, J. S., Holt, G. D., Haltiwanger, R. S., and Hart, G. W. (1989) Glycosyltransferase probes. Methods Enzymol. 179, 82–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Sadler, J. E., Beyer, T. A., Oppenheimer, C. L., Paulson, J. C., Prieels, J. P., Rearick, J. I., and Hill, R. L. (1982) Purification of mammalian glycosyltransferases. Methods Enzymol. 83, 458–514.PubMedCrossRefGoogle Scholar
  25. 25.
    Sadler, J. E., Beyer, T. A., and Hill, R. L. (1981) Affinity chromatography of glycosyltransferases. J. Chromatogr. 215, 181–194.PubMedCrossRefGoogle Scholar
  26. 26.
    Paulson, J. C. and Colley, K. J. (1989) Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17,615–17,618.PubMedGoogle Scholar
  27. 27.
    Colley, K. J., Lee, E. U., Adler, B., Browne, J. K., and Paulson, J. C. (1989) Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J. Biol. Chem. 264, 17,619–17,622.PubMedGoogle Scholar
  28. 28.
    Larsen, R. D., Rajan, V. P., Ruff, M. M., Kukowska-Latallo, J., Cummings, R. D., and Lowe, J. B. (1989) Isolation of a cDNA encoding a murine UDPgalactose: β-D-galactosyl-1,4-N-acetyl-D-glucosaminide α-1,3-galactosyltransferase: Expression cloning by gene transfer. Proc. Natl. Acad. Sci. USA 86, 8227–8231.PubMedCrossRefGoogle Scholar
  29. 29.
    Weinstein, J., de Souza-e-Silva, U., and Paulson, J. C. (1982) Purification of a Gal βl,4GlcNAc α2,6 sialyltransferase and a Gal β1,,3(4)GlcNAc α2,3 sialyltransferase to homogeneity from rat liver.J. Biol. Chem. 257,13,835–13,844.PubMedGoogle Scholar
  30. 30.
    Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill, R. L. (1979) Purification to homogeneity of a β-galactoside α2,3 sialytransferase and partial purification of an α-N-acetygalactosaminide α2,6 sialytransferase from porcine submaxillary glands. J. Biol. Chem. 254, 4434–4443.PubMedGoogle Scholar
  31. 31.
    Trayer, I. P. and Hill, R. L. (1971) The purification and properties of the A protein of lactose synthetase. J. Biol. Chem. 246, 6666–6675.PubMedGoogle Scholar
  32. 32.
    Oppenheimer, C. L. and Hill, R. L. (1981) Purification and characterization of a rabbit liver α1,3 mannoside β1,2 N-acetylglucosaminyltransferase. J. Biol. Chem. 256, 799–804.PubMedGoogle Scholar
  33. 33.
    Nishikawa, Y., Pegg, W., Paulsen, H., and Schachter, H. (1988) Control of glycoprotein synthesis: Purification and characterization of rabbit liver UDP-N-acetylglucosamine: α-3-D-mannoside β-l,2-N-acetylglucosaminyltransferase I. J. Biol. Chem. 263, 8270–8281.PubMedGoogle Scholar
  34. 34.
    Powell, L. D. and Hart, G. W. (1986) Quantitation of picomole levels of N-acetyl-and N-glycolylneuraminic acids by a HPLC-adaptation of the thiobarbituric acid assay. Anal. Biochem. 157, 179–185.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamashita, K., Mizuochi, T., and Kobata, A. (1982) Analysis of oligosaccharides by gel filtration. Methods Enzymol. 83, 105–126.PubMedCrossRefGoogle Scholar
  36. 36.
    Van Pelt, J., Damm, J. B., Kamerling, J. P., and Vliegenthart, J. F. (1987) Separation of sialyl-oligosaccharides by medium pressure anion-exchange chromatography on Mono Q. Carbohydr. Res. 169, 43–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Hardy, M. R. and Townsend, R. R. (1988) Separation of positional isomers of oligosaccharides and glycopeptides by high-performance anion-exchange chromatography with pulsed amperometric detection. Proc. Natl. Acad. Sci. USA 85, 3289–3293.PubMedCrossRefGoogle Scholar
  38. 38.
    Porzig, E. F. (1978) Galactosyltransferase activity of intact neural retinal cells from the embryonic chicken. Dev. Biol. 67, 114–126.PubMedCrossRefGoogle Scholar
  39. 39.
    Kearse, K. P. and Hart, G. W. (1991) Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc. Natl. Acad. Sci. USA 88, 1701–1705.PubMedCrossRefGoogle Scholar
  40. 40.
    Lau, J. T. Y. and Carlson, D. M. (1981) Galactosyltransferase activities in rat intestinal mucosa: Inhibition of nucleotide pyrophosphatase. J. Biol. Chem. 256, 7142–7145.PubMedGoogle Scholar
  41. 41.
    Faltynek, C. R., Silbert, J. E., and Hof, L. (1981) Inhibition of the action of pyrophosphatase and phosphatase on sugar nucleotides. J. Biol. Chem. 256, 7139–7141.PubMedGoogle Scholar
  42. 42.
    Tarentino, A. L., Gomez, C. M., and Plummer, T. H., Jr. (1985) Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F. Biochemistry 24, 4665–4671.PubMedCrossRefGoogle Scholar
  43. 43.
    Spiro, R. G. (1972) Study of the carbohydrates of glycoproteins. Methods Enzymol. 28, 3–43.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1993

Authors and Affiliations

  • Robert S. Haltiwanger
    • 1
  • Gerald W. Hart
    • 1
  1. 1.Department of Biological ChemistryJohns Hopkins University School of MedicineBaltimore

Personalised recommendations