Skip to main content

Animal Models for Caffeine Exposure in the Perinatal Period

  • Protocol
Animal Models of Drug Addiction

Part of the book series: Neuromethods ((NM,volume 24))

Abstract

Caffeine is a widely used compound found both in drug preparations and in commonly consumed foods and beverages. Most human exposure occurs primarily through consumption of caffeinated beverages (e.g., coffee, tea, and soft drinks) such that, across all age groups, the average daily dose of caffeine ranges from <1 mg/kg in infants to approx 3 mg/kg in adults, including pregnant women (Lachance, 1982; Neims and von Borstel, 1983; Sobotka, 1989; Benowitz, 1990). Because caffeine is a pharmacologically and behaviorally active chemical, exposure of the developing organism to caffeine may have far-reaching, long-term consequences. Such developmental exposure may occur in utero as the result of consumption of caffeine by the pregnant woman or postnatally as the result of therapeutically administered caffeine to premature infants with apnea of prematurity. This chapter will deal with animal models for such perinatal caffeine exposure. In order to facilitate extrapolation of results from experimental animals to humans, the factors that must be taken into account in the design and interpretation of these studies will be presented. The neurochemical mechanisms whereby caffeine exposure may affect subsequent neural development and behavior/function will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranda J. V. and Turmen T. (1979) Methylxanthines in apnea of prematurity. Clin. Perinatol. 6, 87–108.

    PubMed  CAS  Google Scholar 

  • Aranda J. V., Cook C. E., Gorman W., Collinge J. M., Loughnan P. M., Outerbridge E. W., Aldridge A., and Neims A. H. (1979) Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J. Pediatr. 94, 663–668.

    Article  PubMed  CAS  Google Scholar 

  • Barrington W. W., Jacobson K. A., Hutchison A. J., Williams M., and Stiles G. L. (1989) Identification of the A2 adenosine receptor binding sub-unit by photoaffinity crosslinking. Proc. Natl. Acad. Sci. 86, 6572–6576.

    Article  PubMed  CAS  Google Scholar 

  • Benowitz N. L. (1990) Clinical pharmacology of caffeine. Ann. Reu. Med. 41, 277–288.

    Article  CAS  Google Scholar 

  • Boer G. J., Feenstra M. G. P., Mirmiran M., Swaab D. F., VanHaanen F., Chen-Pelt W., and Eikelboom T. (1988) Neurochemistry of Functional Neuroteratology: Permanent Effects of Chemicals on the Developing Brain. Elsevier, Amsterdam.

    Google Scholar 

  • Bonati M., Latini R., Galletti F., Young J. F., Tognoni G., and Garattini S. (1982) Caffeine disposition after oral doses. Clin. Phamacol. Ther. 32, 98–106.

    Article  CAS  Google Scholar 

  • Boulenger J. P., Patel R. M., Parma A. M., and Marangos P. J. (1983) Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 32, 1135–1142.

    Article  PubMed  CAS  Google Scholar 

  • Bruns R. F. (1988) Adenosine receptor assays, in Adenosine Receptors (Dermot M. F. and Cooper C. L., eds.), A. R. Liss, New York, pp. 41–62.

    Google Scholar 

  • Bruns R. F., Daly J. W., and Snyder S. H. (1980) Adenosine receptors in brain membranes: Binding of N6-cyclohexyl[3H]adenosien and 1,3-diethyl-8-[3H]phenylxanthine. Pm. Nutl. Acad. Sci. USA 77, 5547–5551.

    Article  CAS  Google Scholar 

  • Bruns R. F., Katims J. J., Annau Z., Snyder S. H., and Daly J. W. (1983) Adenosine receptor interactions and anxiolytics. NeuropharrnacoIogy 22, 1523–1529.

    Article  CAS  Google Scholar 

  • Bruns R. F., Lu G. H. and Pugsley T. A. (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol. Pharmacol 29, 331–346.

    PubMed  CAS  Google Scholar 

  • Burg A. W. and Werner E. (1972) Tissue distribution of caffeine and its metabolites in the mouse. Biochem. Phamcol. 21, 923–936.

    Article  CAS  Google Scholar 

  • Butcher R. E., Vorhees C. V., and Wootten V. (1984) Behavioral and physical development of rats chronically exposed to caffeinated fluids. Fund. Appl. Toxicol. 4, 1–13.

    Article  CAS  Google Scholar 

  • Chasnoff I. J. (1991) Cocaine and pregnancy: Clinical and methodologic issues. Clin. Perinatol. 18, 113–124.

    PubMed  CAS  Google Scholar 

  • Choi 0. H., Shamim M. T., Padgett W. L., and Daly J. W. (1988) Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci. 43, 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Concannon J. T., Braughler J. M., and Schechter M. D. (1983) Pre-and post-natal effects of caffeine on brain biogenic amines, cyclic nucleotides and behavior in developing rats. J. PhmnacoZ. Exp. Ther. 226, 673–679.

    CAS  Google Scholar 

  • Coyle J. T. (1977) Biochemical aspects of neurotransmission in the developing brain. Int. Rev. Neurobiol. 20, 65–103.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T. and Henry D. (1973) Catecholamines in fetal and newborn rat brain. J. Neurochem. 18, 2061–2075.

    Article  Google Scholar 

  • Daly J. W. (1985) Adenosine receptors, in Advunces in CycZic Nucleotide and Protein Phosphorylation Research vol. 19 (Cooper D. M. F. and Seamon K. B., eds.) Raven Press, New York, pp. 29–46.

    Google Scholar 

  • Daly J. W., Bruns R. F., and Snyder S. H. (1981) Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Sci. 28, 2083–2097.

    Article  PubMed  CAS  Google Scholar 

  • Deckert J., Morgan P. F., and Marangos P. J. (1988) Adenosine uptake site heterogeneity in the mammalian CNS? Uptake inhibitors as probes and potential neuropharmaceuticals. Life Sci. 42, 1331–1345.

    Article  PubMed  CAS  Google Scholar 

  • Dobbing J. (1979) Prenatal nutrition and neurological development, in Early Malnutrition and Mental Development (Cravido J., Hambraeus L., and Vahlquist B., eds.) Almquist and Wiksell, Stockholm, pp. 96–110.

    Google Scholar 

  • Driscoll P. G., Joseph F., Jr., and Nakamoto T. (1990) Prenatal effects of maternal caffeine intake and dietary high protein on mandibular development in fetal rats. Br.J. Nutrition 63, 285–292.

    Article  CAS  Google Scholar 

  • Dunlop M. and Court J. M. (1981) Effects of maternal caffeine ingestion on neonatal growth in rats. Biol. Neonate 39, 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie T. V. (1985) The physiological role of adenosine in the central nervous system. lnt. Rev. Neurobiol. 27, 63–139.

    Article  CAS  Google Scholar 

  • Enslen M., Milon H., and Wurzner H. P. (1980) Brain catecholamines and sleep states in offspring of caffeine-treated rats. Experientia 36, 1105–1106.

    Article  PubMed  CAS  Google Scholar 

  • Etzel B. A. and Guillet R. (1990) The ontogeny of adenosine A1 receptors in rat brain using receptor autoradiography. Sot. Neurosci. Abstr. 16, 697.

    Google Scholar 

  • Fredholm B. B. (1982) Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol. Scund. 115, 283–286.

    Article  CAS  Google Scholar 

  • Fuglsang G., Nielsen K., Nielsen L. K., Sennes F., Jakobsen P., and Thelle T. (1989) The effects of caffeine compared with theophylline in the treatment of idiopathic apnea in premature infants. Actu Paediatr. Scand. 78, 786–788.

    Article  CAS  Google Scholar 

  • Fuller G. N. and Wiggins R. C. (1981) A possible effect of the methybcanthines caffeine, theophylline and aminophylline on postnatal myelination of the rat brain. Brain Res. 213, 476–480.

    Article  PubMed  CAS  Google Scholar 

  • Fuller G. N., Divakaran P., and Wiggins R. C. (1982) The effect of postnatal caffeine administration on brain myelination. Bruin Res. 249, 189–191.

    Article  CAS  Google Scholar 

  • Gilbert E. F. and Pistey W. R. (1973) Effect on the offspring of repeated caffeine administration to pregnant rats. J. Reprod. Fert. 34, 495–499.

    Article  CAS  Google Scholar 

  • Gilbert S. G., Stavric B., Klassen R. D., and Rice D. C. (1985) The fate of chronically consumed caffeine in the monkey (Macaca fascicularis). Fund. Appl. Toxicol. 5, 578–587.

    Article  CAS  Google Scholar 

  • Goldberg M. R., Curatolo P. W., Tung C.-S., and Robertson D. (1982) Caffeine down-regulates β adrenoreceptors in rat forebrain. Neurosci. Left. 31, 47–52.

    Article  CAS  Google Scholar 

  • Green R. M. and Stiles G. L.(1986) Chronic caffeine ingestion sensitizes the A1 adenosine receptor-adenylate cyclase system in rat cerebral cortex. J. Clin. Invest. 77, 222–227.

    Article  PubMed  CAS  Google Scholar 

  • Guillet R. (1990a) Neonatal caffeine exposure alters adenosine A1 receptor kinetics during a critical developmental period. Sot. Neurosci. Abstr. 16, 66.

    Google Scholar 

  • Guillet R. (1990b) Neonatal caffeine exposure alters adenosine receptor control of locomotor activity in the developing rat. Dev. Phurmacol. Ther. 15, 94–100.

    CAS  Google Scholar 

  • Guillet R. and Kellogg C. K. (1991) Neonatal exposure to therapeutic caffeine alters the ontogeny of adenosine A1 receptors in brain of rats. Neuropharmacol. 30, 489–496.

    Article  CAS  Google Scholar 

  • Guillet R. and Kellogg C. K. (1991) Neonatal caffeine exposure alters develpmental sensitivity to adenosine receptor ligands. Pharmacol.Biochem. Behav. 40, 811–817.

    Article  PubMed  CAS  Google Scholar 

  • Gunn T. R., Metrakos K., Riley P., Willis D., and Aranda J. V. (1979) Sequelae of caffeine treatment in preterm infants with apnea. J. Pediatr. 94, 106–109.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins M., Dugich M. M., Porter N. M., Urbanic M., and Radulovacke M.(1988) Effects of chronic administration of caffeine on adenosine A1 and A2 receptors in rat brain. Brain Res. Bull. 21, 479–482.

    Article  PubMed  CAS  Google Scholar 

  • Holloway W. R. (1982) Caffeine: Effects of acute and chronic exposure on the behavior of neonatal rats. Neurobehuv. ToxicoI Teratol. 4, 21–32.

    CAS  Google Scholar 

  • Holloway W. R., Jr. and Thor D. H. (1982) Caffeine sensitivity in the neonatal rat. Neurobehav. Toxicol. Teratol. 4, 331–333.

    PubMed  CAS  Google Scholar 

  • Hughes R. N. and Beveridge I. J. (1990) Sex-and age-dependent effects of prenatal exposure to caffeine on open-field behavior,emergence latency and adrenal weights in rats. Life Sci. 47, 2075–2088.

    Article  PubMed  CAS  Google Scholar 

  • Italian Collaborative Group on Preterm Delivery (1988) Early neonatal drug utilization in preterm newborns in neonatal intensive care units. Dev. Pharmacol. Ther. 11, 1–7.

    Google Scholar 

  • Jarvis M. F. (1988) Autoradiographic localization and characterization of brain adenosine receptor subtypes, in Receptor Localization: Ligand Autoradiography, Alan R. Liss, Inc., New York, pp. 95–111.

    Google Scholar 

  • Jarvis M. F. and Williams M. (1988) Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice. Phmcol. Biochem. Behav. 30, 707–714.

    Article  CAS  Google Scholar 

  • Jarvis M. F., Schulz R., Hutchison A. J., Do U. H., Sills M. A. and Williams M. (1989) [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J. Pharmacol. Exp. Ther. 251, 888–893.

    PubMed  CAS  Google Scholar 

  • Kaplan G. B., Tai N. T., Greenblatt D. J., and Shader R. I. (1990) Caffeine-induced behavioural stimulation is dose-and concentration-dependent. Br.1. Pharmacol. 100, 435–440.

    CAS  Google Scholar 

  • Kaplan G. B., Greenblatt D. J., Leduc B. W., Thompson M. L. and Shader R. I. (1989) Relationship of plasma and brain concentrations of caffeine and metabolites to benzodiazepine receptor binding and locomotor activity. J. Phartnacol. Exp. Ther. 248, 1078–1083.

    CAS  Google Scholar 

  • Kellogg C. K., Primus R. J., and Bitran D. (1991) Sexually dimorphic influence of prenatal exposure to diazepam on behavioral responses to environmental challenge and on γ-aminobutyric acid (GABA)-stimulated uptake in the brain. J. Pharmacol. Exp. Ther. 256, 259–265.

    PubMed  CAS  Google Scholar 

  • Khanna K. L., Rao G. S., and Comish H. H. (1972) Metabolism of caffeine-3H in the rat. Toxicol. Appl. Pharmacol. 23, 720–730.

    Article  PubMed  CAS  Google Scholar 

  • Kirch D. G., Taylor T. R., Gerhardt G. A., Benowitz N. L., Stephen C., and Wyatt R. J. (1990) Effect of chronic caffeine administration on monoamine and monoamine metabolite concentrations in rat brain. Neuropharmacology 29, 599–602.

    Article  PubMed  CAS  Google Scholar 

  • Lachance M. P. (1982) The pharmacology and toxicology of caffeine. J. Food Safety 4, 71–112.

    Article  CAS  Google Scholar 

  • Langley J. N. (1906) On nerve-endings and on special excitable substances in cells. Proc. R. Sot. Lond. (Biol.) 78, 170–194.

    Article  CAS  Google Scholar 

  • Latini R., Bonati M., Marzi E., Tacconi M. T., Sadurska B., and Bizzi A. (1980) Caffeine disposition and effects in young and one-year-old rats. J.Pharm. Pharmacol. 32, 596–599.

    PubMed  CAS  Google Scholar 

  • Latini R., Bonati M., Castelli D., and Garattini S. (1978) Dose-dependent kinetics of caffeine in rats. Toxicol. Lett. 2, 267–270.

    Article  CAS  Google Scholar 

  • Lauder J. M. and Krebs H. (1986) Do neurotransmitters, neurohumors, and hormones specify critical periods? in Developmental Neuropsychobiology(Greenough W. T. and Junaska J. M., eds.), Academic Press, New York, pp. 119–174.

    Google Scholar 

  • Lawrence R. A. (1980) Breastfeeding: A Guide for the Medical Profession. Mosby,St. Louis.

    Google Scholar 

  • Lee K. S. and Reddington M. (1986) Autoradiographic evidence for multiple CNS binding sites for adenosine derivatives. Neurosci. 19, 535–549.

    Article  CAS  Google Scholar 

  • Le Guennec J. C., Sitruk F., Breault G., and Black R. (1990) Somatic growth in infants receiving prolonged caffeine therapy. Acta Pediatr Scand 79, 52–56.

    Article  CAS  Google Scholar 

  • Lupica C. R., Jarvis M. F., and Berman R.F. Chronic theophylline treatment in vivo increases high affinity adenosine A1 receptor binding and sensitivity to exogenous adenosine in the in vitro hippocampal slice. Brain Res. (in press).

    Google Scholar 

  • Lupica C. R., Cass W. A., Zahniser N. R., and Dunwiddie T. V. (1990) Effects of the selective adensoine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum. J. Phmnacol. Exp. Ther. 252, 1134–1141.

    CAS  Google Scholar 

  • Marangos P. J., Boulenger J.-P. and Patel J. (1984) Effects of chronic caffeine on brain adenosine receptors: Regional and ontogenetic studies. LifeSci. 34, 899–907.

    CAS  Google Scholar 

  • Marangos P. J., Patel J., and Stivers J. (1982) Ontogeny of adenosine binding sites in rat forebrain and cerebellum. J. Nezmchem. 39, 267–270.

    CAS  Google Scholar 

  • Marangos P. J., Patel J., Martino A. M., Dilli M., and Boulenger J. P. (1983) Differential binding properties of adenosine receptor agonists and antagonists in brain. J. Neurochem. 41, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Miller R. K., Kellogg C. K., and Saltzman R. A. (1987) Reproductive and perinatal toxicology, in Fundamentals of Toxicology (Bemdt W. 0. and Haley W., eds.), Hemisphere Pub. Corp., Washington, DC, pp. 159–309.

    Google Scholar 

  • Miranda R., Ceckler T., Guillet R., and Kellogg C. K. (1990a) Early developmental exposure to benzodiazepine ligands alters brain 31P NMR spectra in young adult rats. Brain Res. 506, 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Miranda R., Ceckler T., Guillet R., and Kellogg C. K. (1990b) Aging-related changes in brain metabolism are altered by early developmental exposure to diazepam. Neurobiol. Aging 11, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Mori M., Wilber J. F., and Nakamoto T. (1983) Influences of maternal caffeine on the neonatal rat brains vary with the nutritional states. Life Sci. 33, 2091–2095.

    Article  PubMed  CAS  Google Scholar 

  • Mori M., Wilber J. F., and Nakamoto T. (1984) Protein-energy malnutrition during pregnancy alters caffeine’s effect on brain tissue of neonate rats. Life Sci. 35, 2553–2560.

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto T. and Shaye R. (1986) Protein-energy malnutrition in rats during pregnancy modifies the effects of caffeine in fetal bones. J. Nutr. 116, 633–640.

    PubMed  CAS  Google Scholar 

  • Nakamoto T., Hartman A.D., and Joseph F., Jr. (1989) Interaction between caffeine intake and nutritional status on growing brains in newborn rats. Ann. Nutrition Metab. 33, 92–99.

    Article  CAS  Google Scholar 

  • Nakazawa K., Tanaka H., and Arima M. (1985) The effect of caffeine ingestion on pharmacokinetics of caffeine and its metabolites after a single administration in pregnant rats. J Pharmacobio.-Dyn. 8, 151–160.

    PubMed  CAS  Google Scholar 

  • Nau H. (1986) Species differences in pharmacokinetics and drug teratogenesis. Env. Health Perspectives 70, 113–129.

    Article  CAS  Google Scholar 

  • Neims A. H. and von Borstel R. W. (1983) Caffeine: Metabolism and biochemical mechanisms of action, in Nutrition and the Bruin, vol. 6 (Wurtman R. J. and Wurtman J. J., eds.), Raven, New York, pp. 1–30.

    Google Scholar 

  • Parkinson F. E. and Fredholm B. B. (1990) Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn-Schmiedeberg’s Arch. Pharmacol. 342, 85–89.

    Article  CAS  Google Scholar 

  • Quinby G. E. Jr. and Nakamoto T. (1984) Theophylline effects on cellular response in proteinenergy malnourished neonatal rat brain. Pediatr.Res. 18, 546–549.

    Article  PubMed  CAS  Google Scholar 

  • Quinby G. E., Batirbaygil Y., Hartman, A. D., and Nakamoto T. (1985)Effects of orally administered caffeine on cellular response in protein energy-malnourished neonatal rat brain. Pediatr. Res. 19, 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Ramkumar V., Bumgarner J. R., Jacobson K. A., and Stiles G. L. (1988) Multiple components of the A1 adenosine receptor-adenylate cyclase system are regulated in rat cerebral cortex by chronic caffeine ingestion. J.Clin. Invest. 82, 242–247.

    Article  PubMed  CAS  Google Scholar 

  • Resnick O. and Morgan P. J. (1983) Animal models for small-for-gestational-age (SGA) neonates and infants-at-risk. Devel. Bruin Res. 10, 221–225.

    Article  Google Scholar 

  • Schneider P. E., Miller H. I., and Nakamoto T. (1990) Effects of caffeine intake during gestation and lactation on bones of young growing rats. Res. Exp. Med. 190, 131–136.

    Article  CAS  Google Scholar 

  • Simmons R. D., Kellogg C. K., and Miller R. K. (1984a) Prenatal diazepam exposure in rats: long-lasting, receptor-mediated effects on hypothalamic norepinephrine-containing neurons. Brain Res. 293, 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Simmons R. D., Miller R. K., and Kellogg C. K. (1984b) Prenatal exposure to diazepam alters central and peripheral responses to stress in adult rat offspring. Brain Res. 307, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Siiton C. M. (1989) Preliminary indications that functional effects of fetal caffeine exposure can be expressed in a second generation. Neurotoxicol.Teratol. 11, 357–362.

    Article  Google Scholar 

  • Slob A. K., Snow C. E., and de Natris-Mathot E. (1973) Absence of behavioral deficits following undernutrition in the rat. Dev. Psychobiol. 6, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Smart J. L., Billing A. E., Duggan J. P., and Massey R. F. (1989) Effects of early life undernutrition in artificially-reared rats: 3. Further studies of growth and behavior. Physiol. Behav. 45, 1153–1160.

    Article  PubMed  CAS  Google Scholar 

  • Smart J. L. (1990) Vulnerability of developing brain to undernutrition. Upsala Med. Sci. Suppl. 48, 21–41.

    CAS  Google Scholar 

  • Snyder S. H. and Sklar P. (1984) Behavioral and molecular actions of caffeine:Focus on adenosine. J. Psychiatr. Res. 18, 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Snyder S. H., Katims J. J., Annau Z., Bruns R. F., and Daly J. W. (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc.Natl. Acad. Sci. USA 78, 3260–3264.

    Article  PubMed  CAS  Google Scholar 

  • Sobotka T. J. (1989) Neurobehavioral effects of prenatal caffeine, in Prenatal Abuse of Licit and Illicit Drugs (Hutchings D. E., ed.), Ann. NY Acad.Sci. vol. 562, NY Acad. Sci., New York, pp. 327–339.

    Google Scholar 

  • Sobotka T. J., Spaid S. L., and Brodie R. E. (1979) Neurobehavioral teratology of caffeine exposure in rats. Neurotoxicol. 1, 403–416.

    CAS  Google Scholar 

  • Soyka L. F. (1979) Effects of methylxanthines on the fetus. Clin. Perinutol. 6, 37–51.

    CAS  Google Scholar 

  • Stavric B. and Gilbert S. G. (1990) Caffeine metabolism: A problem in extrapolating results from animal studies to humans. Acta Pharm. Jugosl. 40, 475–489.

    CAS  Google Scholar 

  • Swenson R. R., Beckwith B. E., Lamberty K. J., and Krebs S. J. (1990) Prenatal exposure to AVP or caffeine but not oxytocin alters learning in female rats. Peptides 11, 927–932.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H., Nakazawa K., and Arima M. (1987) Effects of maternal caffeine ingestion on the perinatal cerebrum. Biol. Neonate 51, 332–339.

    Article  PubMed  CAS  Google Scholar 

  • vanCalker D., Muller M., and Hamprecht B. (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J, Neurochem. 33, 999–1005.

    Article  Google Scholar 

  • Wan W., Sutherland G. R., and Geiger J. D. (1990) Binding of the adenosine A2 receptor ligand [3H]CGS 21680 to human and rat brain: Evidence for multiple affiity sites. J. Newochem. 55, 1763–1771.

    Article  CAS  Google Scholar 

  • West G. L., Sobotka T. J., Brodie R. E., Beier J. M., and O’Donnell M. W., Jr.(1986) Postnatal neurobehavioral development in rats exposed in utero to caffeine. Neurobehav. Toxicol. Teratol. 8, 29–43.

    PubMed  CAS  Google Scholar 

  • Yazdani M., Hartman A. D., Miller H. I., Temples T. E., and Nakamoto T.(1988) Chronic caffeine intake alters the composition of various parts of the brain in young growing rats. Dev. Pharmacol. Ther. 11, 102–108.

    PubMed  CAS  Google Scholar 

  • Zielke C. L. and Zielke H. R. (1987) Chronic exposure to subcutaneously implanted methylxanthines: Differential elevation of A1-adenosine receptors in mouse cerebellar and cerebral cortical membranes. Biochem.Pharmacol. 36, 2533–2538.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press Inc.

About this protocol

Cite this protocol

Guillet, R. (1992). Animal Models for Caffeine Exposure in the Perinatal Period. In: Boulton, A.A., Baker, G.B., Wu, P.H. (eds) Animal Models of Drug Addiction. Neuromethods, vol 24. Humana Press. https://doi.org/10.1385/0-89603-217-5:383

Download citation

  • DOI: https://doi.org/10.1385/0-89603-217-5:383

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-217-0

  • Online ISBN: 978-1-59259-629-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics