Skip to main content

A Rodent Model for Nicotine Self-Administration

  • Protocol
Animal Models of Drug Addiction

Part of the book series: Neuromethods ((NM,volume 24))

Abstract

An obvious preliminary to the discussion of models of “drug addiction” is to consider what we mean by that term. Over the past several decades, a number of definitions of drug addiction have been used. Although some of the historically earliest definitions of addiction or drug dependence relied in part on the consequences of protracted drug exposure as defining characteristics, contemporary definitions generally recognize that use of a psychoactive drug itself is the central element in the process of addiction (see review in Clarke et al., 1989). For example, the recent report of the US Surgeon General on Nicotine Addiction used three primary criteria in defining addiction (US DHHS, 1988):

  1. 1.

    Drug-seeking and drug-taking behavior is driven by strong, often irresistable urges and can persist despite a desire to quit or even repeated attempts to quit;

  2. 2.

    The drug has psychoactive or mood-altering effects in the brain; and

  3. 3.

    The drug is capable of functioning as a reinforcing agent that directly strengthens behavior leading to further drug-taking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ator N. A. and Griffiths R. R. (1983) Nicotine self-administration in baboons. Pharmacol. Biochem. Behav. 19, 993–1003.

    Article  PubMed  CAS  Google Scholar 

  • Benowitz N. L. and Jacob P. III (1987) Metabolism, pharmacokinetics, and pharmacodynamics of nicotine in man, in Advances in Behavioral Biology, vol. 31, Tobacco Smoking and Nicotine (Martin W. R., Van Loon G.R., Iwamoto E.T., and Davis L., eds), Plenum, New York, pp. 81–99.

    Google Scholar 

  • Carroll M. E., Lac S. T., Walker M. J., Kragh R., and Newman T. (1986) Effects of naltrexone on intravenous cocaine self-administration in rats during food satiation and deprivation. J. Pharmacol. Exp. Ther. 238, 1–7.

    PubMed  CAS  Google Scholar 

  • CCAC (1980) Guide to the Care and Use of Experimental Animals. Canadian Council on Animal Care, Ottawa, Ontario.

    Google Scholar 

  • Chance W. T., Murfin D., Krynock G. M., and Rosecrans J. A. (1977) A description of the nicotine stimulus and tests of its generalization to amphetamine. Psychopharmacology 55, 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Clarke P. B. S. (1987) Nicotine and smoking: a perspective from animal studies. Psychopharmacology 92, 135–143.

    PubMed  CAS  Google Scholar 

  • Clarke P. B. S. and Kumar R. (1983a) The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br. J. Pharmacol. 78, 329–337.

    PubMed  CAS  Google Scholar 

  • Clarke P. B. S. and Kumar R. (1983b) Characterization of the locomotor stimulant action of nicotine in tolerant rats. Br. J. Pharmacol. 80, 587–594.

    PubMed  CAS  Google Scholar 

  • Clarke P. B. S., Fu D. S., Jakubovic A., and Fibiger H. C. (1988) Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J. Pharmacol. Exp. Ther. 246, 701-708.

    Google Scholar 

  • Clarke P. B. S., Corrigall W. A., Ferrence R. G., Friedland M. L., Kalant H., and Kozlowski L. T. (1989) Tobacco, Nicotine and Addiction, A Committe Report prepared at the request of the Royal Society of Canada, Health and Welfare Canada, Ottawa, Ontario.

    Google Scholar 

  • Collins R. J., Weeks J. R., Cooper M. M., Good P. I., and Russell R. R. (1984) Prediction of abuse liability of drugs using IV self-administration by rats. Psychopharmacology 82, 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall W. A. (1987) Heroin self-administration: effects of antagonist treatment in lateral hypothalamus. Pharmcol. Biochem. Behav. 27, 693–700.

    Article  CAS  Google Scholar 

  • Corrigall W. A. and Coen K. M. (1989a) Fixed-interval schedules for drug self-administration in the rat. Psychopharmacology 99, 136–139.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall W. A. and Coen K. M. (1989b) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall W. A. and Coen K. M. (1991a) Opiate antagonists reduce cocaine but not nicotine self-administration. Psychopharmacology 104, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall W. A. and Coen K. M. (1991b) Selective dopamine antagonists reduce cocaine but not nicotine self-administration. Psychopharmacology 104, 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall W. A. and Vaccarino F. J. (1988) Antagonist treatment in nucleus accumbens or periaqueductal grey affects heroin self-administration. Pharmacol. Biochem. Behav. 30, 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall W. A., Franklin K. B. J., Coen K. M., and Clarke P. B. S. (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107, 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall W. A., Herling S., and Coen K. M. (1988a) Evidence for opioid mechanisms in the behavioral effects of nicotine. Psychopharmacolosy 96, 29–35.

    Article  CAS  Google Scholar 

  • Corrigall W. A., Herling S., and Coen K. M. (1988b) Evidence for a behavioral deficit during withdrawal from chronic nicotine treatment. Pharmacol. Biochem. Behav. 33, 559–562.

    Article  Google Scholar 

  • Cox B. M., Goldstein A., and Nelson W. T. (1984) Nicotine self-administration in rats. Br. J. Pharmacol. 83, 49–55.

    PubMed  CAS  Google Scholar 

  • Dai S., Corrigall W. A., Coen K. M., and Kalant H. (1989) Heroin self-administration by rats: influence of dose and physical dependence. Pharmacol. Biochem. Behav. 32, 1009–1015.

    Article  PubMed  CAS  Google Scholar 

  • De Vry J., Donselaar I., and Van Ree J. M. (1989) Food deprivation and acquisition of intravenous cocaine self-administration in rats: effect of naltrexone and haloperidol. J. Pharmacol. Exp. Ther. 251, 735–740.

    PubMed  Google Scholar 

  • Dougherty J. and Pickens R. (1973) Fixed-interval schedules of intravenous cocaine presentation in rats. J. Exp. Anal. Behav. 20, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty J., Miller D., Todd G., and Kostenbauder H. B. (1981) Reinforcing and other behavioral effects of nicotine. Naurosci. & Biobehav. Rev. 5, 487–495.

    Article  CAS  Google Scholar 

  • Goldberg S. R. and Henningfield J. E. (1988) Reinforcing effects of nicotine in humans and experimental animals responding under intermittent schedules of iv drug injection. Pharmacol. Biochem. Behav. 30, 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg S. R. and Spealman R. D. (1982) Maintenance and suppression of behavior by intravenous nicotine injections in squirrel monkeys. Fed. Proc. 41, 216–220.

    PubMed  CAS  Google Scholar 

  • Goldberg S. R., Spealman R. D., and Goldberg D. M. (1981) Persistent behavior at high rates maintained by intravenous self administration of nicotine. Science 214, 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg S. R., Spealman R. D., Risner M. E., and Henningfield J. E. (1983) Control of behavior by intravenous nicotine injections in laboratory animals. Pharmacol. Biochem. Behav. 19, 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths R. R., Bigelow G. E., and Henningfield J. E. (1980) Similarities in animal and human drug-taking behavior, in Advances in Substance Abuse, vol. 1 (Mello N. K., ed.), JAI Press, Greenwich CT, pp. 1–90.

    Google Scholar 

  • Hanson H. M., Ivester C. A., and Morton B. R. (1979) Nicotine self-administration in rats, in NIDA Research Monograph 23, Cigarette Smoking as a Dependence Process (Krasnegor N. A., ed.), U.S. Department of Health and Human Services, Rockville, MD, pp. 70–90.

    Google Scholar 

  • Health and Welfare Canada, Statistics Canada, Canada Health Survey, Ottawa, Supply and Services Canada, 1981.

    Google Scholar 

  • Hendry J. S. and Rosecrans J. A. (1982) The development of pharmacological tolerance to the effect of nicotine on schedule-controlled responding in mice. Psychopharmacology 77, 339–343.

    Article  PubMed  CAS  Google Scholar 

  • Henningfield J. E. and Goldberg S. R. (1983a) Nicotine as a reinforcer in human subjects and laboratory animals. Phamacol Biochem. Behav. 19, 989–992.

    Article  CAS  Google Scholar 

  • Henningfield J. E. and Goldberg S. R. (1983b) Control of behavior by intravenous nicotine injections in human subjects. Pharmacol. Biochem. Behav. 19, 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  • Henningfield J. E. and Goldberg S. R. (1988) Pharmacologic determinants of tobacco self-administration by humans. Pharmacol. Biochem. Behav. 30, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Henningfield J. E., Goldberg S. R., and Jasinski D. R. (1987) Nicotine: Abuse liability, dependence potential and pharmacologic treatment of dependence, in Advances in Behavioral Biology, vol. 31: Tobacco Smoking and Nicotine (Martin W. R., Van Loon G. R., Iwamoto E. T., and Davis L., eds.), Plenum, New York, pp. 81–99.

    Google Scholar 

  • Henningfield J. E., Miyasato K, and Jasinski D. R. (1983) Cigarette smokers self-administer intravenous nicotine. Pharmacol. Biochem. Behav. 19, 887–890.

    Article  PubMed  CAS  Google Scholar 

  • Henningfield J. E., Miyasato K., and Jasinski D. R. (1985) Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J. Pharmacol. Exp. Ther. 234, 1–12.

    PubMed  CAS  Google Scholar 

  • Jasinski D. R., Johnson R. E., and Henningfield J. E. (1984) Abuse liability assessment in human subjects. Trends Pharmacol. Sci. 5, 196–200.

    Article  CAS  Google Scholar 

  • Johanson C. E. and Schuster C. R. (1981) Animal models of drug self-administration, in Advances in Substance Abuse, vol. 2 (Mello N. K., ed.), JAI Press, Greenwich, CT, pp. 219–297.

    Google Scholar 

  • Kozlowski L. T. and Herman C. P. (1984) The interaction of psychosocial and biological determinants of tobacco use: more on the boundary model. J. App. Soc. Psychol. 14, 244–256.

    Article  Google Scholar 

  • Kozlowski L. T., Wilkinson D. A., Skinner W., Kent C., Franklin T., and Pope M. (1989) Comparing tobacco cigarette dependence with other drug dependencies: Greater or equal “difficulty quitting” and “urges to use,” but less pleasure from cigarettes. J. Am. Med. Assoc. 261, 898–901.

    Article  CAS  Google Scholar 

  • Lang W. J., Latiff A. A., McQueen A., and Singer G. (1977) Self administration of nicotine with and without a food delivery schedule. Pharmacol. Biochem. Behav. 7, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Latiff A. A., Smith L. A., and Lang W. J. (1980) Effects of changing dosage and urinary pH in rats self-administering nicotine on a food delivery schedule. Pharmacol. Biochem. Behav. 13, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Levin E. D., Morgan M. M., Galvez C., and Ellison G. D. (1987) Chronic nicotine and withdrawal effects on body weight and food and water consumption in female rats. Physiol. Behav. 39, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • Pratt J. A., Stolerman I. P., Garcha H. S., Giardini V., and Feyerabend C. (1983) Discriminative stimulus properties of nicotine: further evidence for mediation at a cholinergic receptor. Psychopharmacology 81, 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Risner M. E. and Goldberg S. R. (1983) A comparison of nicotine and cocaine self-administration in the dog: Fixed-ratio and progressive-ratio schedules of intravenous drug infusion. J. Pharmacol. Exp. Ther. 224, 319–326.

    PubMed  CAS  Google Scholar 

  • Roberts D. C. S. and Goeders N. (1987) Drug self-administration: experimental methods and determinants, in Neuromethods, vol. 13 (Boulton A. A., Baker G. B., and Greenshaw A. J., eds.), Humana Press, Clifton, NJ, pp. 349–398.

    Google Scholar 

  • Roberts D. C. S., Loh E. A., and Vickers G. (1989) Self-administration of cocaine on a progressive ratio schedule in rats: Dose-response relationships and effect of haloperidol pretreatment. Psychopharmacology 97, 535–538.

    Article  PubMed  CAS  Google Scholar 

  • Roberts D. C. S., Koob G. F., Klonoff P., and Fibiger H. C. (1980) Extinction and recovery of cocaine self-administration following 6-hydroxy-dopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 12, 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Russell M. A. H. (1987) Nicotine intake and its regulation by smokers, in Advances in Behavioral Biology, vol.31, Tobacco Smoking and Nicotine (Martin W. R., Van Loon G. R., Iwamoto E. T., and Davis L., eds.), Plenum, New York, pp. 25–50.

    Google Scholar 

  • Schacter S., Kozlowski L. T., and Silverstein B. (1977) Effects of urinary pH on cigarette smoking. J. Exp. Psychol. (Gen.) 106, 13–19.

    Article  Google Scholar 

  • Singer G., Simpson F., and Lang W. J. (1978) Schedule induced self injections of nicotine with recovered body weight. Pharmacol. Biochem. Behav. 9, 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Slifer B. L. (1983) Schedule-induction of nicotine self-administration. Pharmacol. Biochem. Behav. 19, 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  • Smith L. A. and Lang W. J. (1980) Changes occurring in self administration of nicotine by rats over a 28-day period. Pharmacol. Biochem. Behav. 13, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Spealman R. D. and Goldberg S. R. (1982) Maintenance of schedule-controlled behavior by intravenous injections of nicotine in squirrel monkeys. J. Pharmacol. Exp. Ther. 223, 402–408.

    PubMed  CAS  Google Scholar 

  • Stolerman I. P., Garcha H. S., Pratt J. A., and Kumar R. (1984) Role of training dose in discrimination of nicotine and related compounds by rats. Psychopharmacology 84, 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Stolerman I. P, Goklfarb T., Fink R., and Jarvik M. E. (1973) Influencing cigarette smoking with nicotine antagonists. Psychopharmacologia 28, 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Stolerman I. P., Kumar R. K., Pratt J. A., and Reavill C. (1987) Discriminative stimulus effects of nicotine: correlation with binding studies, in Advances in Behavioral Biology, vol. 31, Tobacco Smoking and Nicotine (Martin W. R., Van Loon G. R., Iwamoto E. T., and Davis L., eds.), Plenum, New York, pp. 113–124.

    Google Scholar 

  • US DHHS (1988) The Health Consequences of Smoking: Nicotine Addiction. A Report of the Surgeon General, US Department of Health and Human Services, Rockville, MD.

    Google Scholar 

  • Weeks J. R. (1981) An improved pneumatic syringe for self-administration of drugs by rats. Pharmacol. Biochern. Behav. 14, 573,574.

    Article  CAS  Google Scholar 

  • Weeks J. R. (1983) Cardiovascular techniques using unanesthetized and freely moving rats, unpublished documentation available from J. R. Weeks, Kalamazoo, MI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press Inc.

About this protocol

Cite this protocol

Corrigall, W.A. (1992). A Rodent Model for Nicotine Self-Administration. In: Boulton, A.A., Baker, G.B., Wu, P.H. (eds) Animal Models of Drug Addiction. Neuromethods, vol 24. Humana Press. https://doi.org/10.1385/0-89603-217-5:315

Download citation

  • DOI: https://doi.org/10.1385/0-89603-217-5:315

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-217-0

  • Online ISBN: 978-1-59259-629-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics