Animal Models for Caffeine Exposure in the Perinatal Period

  • Ronnie Guillet
Part of the Neuromethods book series (NM, volume 24)


Caffeine is a widely used compound found both in drug preparations and in commonly consumed foods and beverages. Most human exposure occurs primarily through consumption of caffeinated beverages (e.g., coffee, tea, and soft drinks) such that, across all age groups, the average daily dose of caffeine ranges from <1 mg/kg in infants to approx 3 mg/kg in adults, including pregnant women (Lachance, 1982; Neims and von Borstel, 1983; Sobotka, 1989; Benowitz, 1990). Because caffeine is a pharmacologically and behaviorally active chemical, exposure of the developing organism to caffeine may have far-reaching, long-term consequences. Such developmental exposure may occur in utero as the result of consumption of caffeine by the pregnant woman or postnatally as the result of therapeutically administered caffeine to premature infants with apnea of prematurity. This chapter will deal with animal models for such perinatal caffeine exposure. In order to facilitate extrapolation of results from experimental animals to humans, the factors that must be taken into account in the design and interpretation of these studies will be presented. The neurochemical mechanisms whereby caffeine exposure may affect subsequent neural development and behavior/function will also be discussed.


Fatigue Dopamine Adenosine Cocaine Caffeine 


  1. Aranda J. V. and Turmen T. (1979) Methylxanthines in apnea of prematurity. Clin. Perinatol. 6, 87–108.PubMedGoogle Scholar
  2. Aranda J. V., Cook C. E., Gorman W., Collinge J. M., Loughnan P. M., Outerbridge E. W., Aldridge A., and Neims A. H. (1979) Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J. Pediatr. 94, 663–668.PubMedCrossRefGoogle Scholar
  3. Barrington W. W., Jacobson K. A., Hutchison A. J., Williams M., and Stiles G. L. (1989) Identification of the A2 adenosine receptor binding sub-unit by photoaffinity crosslinking. Proc. Natl. Acad. Sci. 86, 6572–6576.PubMedCrossRefGoogle Scholar
  4. Benowitz N. L. (1990) Clinical pharmacology of caffeine. Ann. Reu. Med. 41, 277–288.CrossRefGoogle Scholar
  5. Boer G. J., Feenstra M. G. P., Mirmiran M., Swaab D. F., VanHaanen F., Chen-Pelt W., and Eikelboom T. (1988) Neurochemistry of Functional Neuroteratology: Permanent Effects of Chemicals on the Developing Brain. Elsevier, Amsterdam.Google Scholar
  6. Bonati M., Latini R., Galletti F., Young J. F., Tognoni G., and Garattini S. (1982) Caffeine disposition after oral doses. Clin. Phamacol. Ther. 32, 98–106.CrossRefGoogle Scholar
  7. Boulenger J. P., Patel R. M., Parma A. M., and Marangos P. J. (1983) Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 32, 1135–1142.PubMedCrossRefGoogle Scholar
  8. Bruns R. F. (1988) Adenosine receptor assays, in Adenosine Receptors (Dermot M. F. and Cooper C. L., eds.), A. R. Liss, New York, pp. 41–62.Google Scholar
  9. Bruns R. F., Daly J. W., and Snyder S. H. (1980) Adenosine receptors in brain membranes: Binding of N6-cyclohexyl[3H]adenosien and 1,3-diethyl-8-[3H]phenylxanthine. Pm. Nutl. Acad. Sci. USA 77, 5547–5551.CrossRefGoogle Scholar
  10. Bruns R. F., Katims J. J., Annau Z., Snyder S. H., and Daly J. W. (1983) Adenosine receptor interactions and anxiolytics. NeuropharrnacoIogy 22, 1523–1529.CrossRefGoogle Scholar
  11. Bruns R. F., Lu G. H. and Pugsley T. A. (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol. Pharmacol 29, 331–346.PubMedGoogle Scholar
  12. Burg A. W. and Werner E. (1972) Tissue distribution of caffeine and its metabolites in the mouse. Biochem. Phamcol. 21, 923–936.CrossRefGoogle Scholar
  13. Butcher R. E., Vorhees C. V., and Wootten V. (1984) Behavioral and physical development of rats chronically exposed to caffeinated fluids. Fund. Appl. Toxicol. 4, 1–13.CrossRefGoogle Scholar
  14. Chasnoff I. J. (1991) Cocaine and pregnancy: Clinical and methodologic issues. Clin. Perinatol. 18, 113–124.PubMedGoogle Scholar
  15. Choi 0. H., Shamim M. T., Padgett W. L., and Daly J. W. (1988) Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci. 43, 387–398.PubMedCrossRefGoogle Scholar
  16. Concannon J. T., Braughler J. M., and Schechter M. D. (1983) Pre-and post-natal effects of caffeine on brain biogenic amines, cyclic nucleotides and behavior in developing rats. J. PhmnacoZ. Exp. Ther. 226, 673–679.Google Scholar
  17. Coyle J. T. (1977) Biochemical aspects of neurotransmission in the developing brain. Int. Rev. Neurobiol. 20, 65–103.PubMedCrossRefGoogle Scholar
  18. Coyle J. T. and Henry D. (1973) Catecholamines in fetal and newborn rat brain. J. Neurochem. 18, 2061–2075.CrossRefGoogle Scholar
  19. Daly J. W. (1985) Adenosine receptors, in Advunces in CycZic Nucleotide and Protein Phosphorylation Research vol. 19 (Cooper D. M. F. and Seamon K. B., eds.) Raven Press, New York, pp. 29–46.Google Scholar
  20. Daly J. W., Bruns R. F., and Snyder S. H. (1981) Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Sci. 28, 2083–2097.PubMedCrossRefGoogle Scholar
  21. Deckert J., Morgan P. F., and Marangos P. J. (1988) Adenosine uptake site heterogeneity in the mammalian CNS? Uptake inhibitors as probes and potential neuropharmaceuticals. Life Sci. 42, 1331–1345.PubMedCrossRefGoogle Scholar
  22. Dobbing J. (1979) Prenatal nutrition and neurological development, in Early Malnutrition and Mental Development (Cravido J., Hambraeus L., and Vahlquist B., eds.) Almquist and Wiksell, Stockholm, pp. 96–110.Google Scholar
  23. Driscoll P. G., Joseph F., Jr., and Nakamoto T. (1990) Prenatal effects of maternal caffeine intake and dietary high protein on mandibular development in fetal rats. Br.J. Nutrition 63, 285–292.CrossRefGoogle Scholar
  24. Dunlop M. and Court J. M. (1981) Effects of maternal caffeine ingestion on neonatal growth in rats. Biol. Neonate 39, 178–184.PubMedCrossRefGoogle Scholar
  25. Dunwiddie T. V. (1985) The physiological role of adenosine in the central nervous system. lnt. Rev. Neurobiol. 27, 63–139.CrossRefGoogle Scholar
  26. Enslen M., Milon H., and Wurzner H. P. (1980) Brain catecholamines and sleep states in offspring of caffeine-treated rats. Experientia 36, 1105–1106.PubMedCrossRefGoogle Scholar
  27. Etzel B. A. and Guillet R. (1990) The ontogeny of adenosine A1 receptors in rat brain using receptor autoradiography. Sot. Neurosci. Abstr. 16, 697.Google Scholar
  28. Fredholm B. B. (1982) Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol. Scund. 115, 283–286.CrossRefGoogle Scholar
  29. Fuglsang G., Nielsen K., Nielsen L. K., Sennes F., Jakobsen P., and Thelle T. (1989) The effects of caffeine compared with theophylline in the treatment of idiopathic apnea in premature infants. Actu Paediatr. Scand. 78, 786–788.CrossRefGoogle Scholar
  30. Fuller G. N. and Wiggins R. C. (1981) A possible effect of the methybcanthines caffeine, theophylline and aminophylline on postnatal myelination of the rat brain. Brain Res. 213, 476–480.PubMedCrossRefGoogle Scholar
  31. Fuller G. N., Divakaran P., and Wiggins R. C. (1982) The effect of postnatal caffeine administration on brain myelination. Bruin Res. 249, 189–191.CrossRefGoogle Scholar
  32. Gilbert E. F. and Pistey W. R. (1973) Effect on the offspring of repeated caffeine administration to pregnant rats. J. Reprod. Fert. 34, 495–499.CrossRefGoogle Scholar
  33. Gilbert S. G., Stavric B., Klassen R. D., and Rice D. C. (1985) The fate of chronically consumed caffeine in the monkey (Macaca fascicularis). Fund. Appl. Toxicol. 5, 578–587.CrossRefGoogle Scholar
  34. Goldberg M. R., Curatolo P. W., Tung C.-S., and Robertson D. (1982) Caffeine down-regulates β adrenoreceptors in rat forebrain. Neurosci. Left. 31, 47–52.CrossRefGoogle Scholar
  35. Green R. M. and Stiles G. L.(1986) Chronic caffeine ingestion sensitizes the A1 adenosine receptor-adenylate cyclase system in rat cerebral cortex. J. Clin. Invest. 77, 222–227.PubMedCrossRefGoogle Scholar
  36. Guillet R. (1990a) Neonatal caffeine exposure alters adenosine A1 receptor kinetics during a critical developmental period. Sot. Neurosci. Abstr. 16, 66.Google Scholar
  37. Guillet R. (1990b) Neonatal caffeine exposure alters adenosine receptor control of locomotor activity in the developing rat. Dev. Phurmacol. Ther. 15, 94–100.Google Scholar
  38. Guillet R. and Kellogg C. K. (1991) Neonatal exposure to therapeutic caffeine alters the ontogeny of adenosine A1 receptors in brain of rats. Neuropharmacol. 30, 489–496.CrossRefGoogle Scholar
  39. Guillet R. and Kellogg C. K. (1991) Neonatal caffeine exposure alters develpmental sensitivity to adenosine receptor ligands. Pharmacol.Biochem. Behav. 40, 811–817.PubMedCrossRefGoogle Scholar
  40. Gunn T. R., Metrakos K., Riley P., Willis D., and Aranda J. V. (1979) Sequelae of caffeine treatment in preterm infants with apnea. J. Pediatr. 94, 106–109.PubMedCrossRefGoogle Scholar
  41. Hawkins M., Dugich M. M., Porter N. M., Urbanic M., and Radulovacke M.(1988) Effects of chronic administration of caffeine on adenosine A1 and A2 receptors in rat brain. Brain Res. Bull. 21, 479–482.PubMedCrossRefGoogle Scholar
  42. Holloway W. R. (1982) Caffeine: Effects of acute and chronic exposure on the behavior of neonatal rats. Neurobehuv. ToxicoI Teratol. 4, 21–32.Google Scholar
  43. Holloway W. R., Jr. and Thor D. H. (1982) Caffeine sensitivity in the neonatal rat. Neurobehav. Toxicol. Teratol. 4, 331–333.PubMedGoogle Scholar
  44. Hughes R. N. and Beveridge I. J. (1990) Sex-and age-dependent effects of prenatal exposure to caffeine on open-field behavior,emergence latency and adrenal weights in rats. Life Sci. 47, 2075–2088.PubMedCrossRefGoogle Scholar
  45. Italian Collaborative Group on Preterm Delivery (1988) Early neonatal drug utilization in preterm newborns in neonatal intensive care units. Dev. Pharmacol. Ther. 11, 1–7.Google Scholar
  46. Jarvis M. F. (1988) Autoradiographic localization and characterization of brain adenosine receptor subtypes, in Receptor Localization: Ligand Autoradiography, Alan R. Liss, Inc., New York, pp. 95–111.Google Scholar
  47. Jarvis M. F. and Williams M. (1988) Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice. Phmcol. Biochem. Behav. 30, 707–714.CrossRefGoogle Scholar
  48. Jarvis M. F., Schulz R., Hutchison A. J., Do U. H., Sills M. A. and Williams M. (1989) [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J. Pharmacol. Exp. Ther. 251, 888–893.PubMedGoogle Scholar
  49. Kaplan G. B., Tai N. T., Greenblatt D. J., and Shader R. I. (1990) Caffeine-induced behavioural stimulation is dose-and concentration-dependent. Br.1. Pharmacol. 100, 435–440.Google Scholar
  50. Kaplan G. B., Greenblatt D. J., Leduc B. W., Thompson M. L. and Shader R. I. (1989) Relationship of plasma and brain concentrations of caffeine and metabolites to benzodiazepine receptor binding and locomotor activity. J. Phartnacol. Exp. Ther. 248, 1078–1083.Google Scholar
  51. Kellogg C. K., Primus R. J., and Bitran D. (1991) Sexually dimorphic influence of prenatal exposure to diazepam on behavioral responses to environmental challenge and on γ-aminobutyric acid (GABA)-stimulated uptake in the brain. J. Pharmacol. Exp. Ther. 256, 259–265.PubMedGoogle Scholar
  52. Khanna K. L., Rao G. S., and Comish H. H. (1972) Metabolism of caffeine-3H in the rat. Toxicol. Appl. Pharmacol. 23, 720–730.PubMedCrossRefGoogle Scholar
  53. Kirch D. G., Taylor T. R., Gerhardt G. A., Benowitz N. L., Stephen C., and Wyatt R. J. (1990) Effect of chronic caffeine administration on monoamine and monoamine metabolite concentrations in rat brain. Neuropharmacology 29, 599–602.PubMedCrossRefGoogle Scholar
  54. Lachance M. P. (1982) The pharmacology and toxicology of caffeine. J. Food Safety 4, 71–112.CrossRefGoogle Scholar
  55. Langley J. N. (1906) On nerve-endings and on special excitable substances in cells. Proc. R. Sot. Lond. (Biol.) 78, 170–194.CrossRefGoogle Scholar
  56. Latini R., Bonati M., Marzi E., Tacconi M. T., Sadurska B., and Bizzi A. (1980) Caffeine disposition and effects in young and one-year-old rats. J.Pharm. Pharmacol. 32, 596–599.PubMedGoogle Scholar
  57. Latini R., Bonati M., Castelli D., and Garattini S. (1978) Dose-dependent kinetics of caffeine in rats. Toxicol. Lett. 2, 267–270.CrossRefGoogle Scholar
  58. Lauder J. M. and Krebs H. (1986) Do neurotransmitters, neurohumors, and hormones specify critical periods? in Developmental Neuropsychobiology(Greenough W. T. and Junaska J. M., eds.), Academic Press, New York, pp. 119–174.Google Scholar
  59. Lawrence R. A. (1980) Breastfeeding: A Guide for the Medical Profession. Mosby,St. Louis.Google Scholar
  60. Lee K. S. and Reddington M. (1986) Autoradiographic evidence for multiple CNS binding sites for adenosine derivatives. Neurosci. 19, 535–549.CrossRefGoogle Scholar
  61. Le Guennec J. C., Sitruk F., Breault G., and Black R. (1990) Somatic growth in infants receiving prolonged caffeine therapy. Acta Pediatr Scand 79, 52–56.CrossRefGoogle Scholar
  62. Lupica C. R., Jarvis M. F., and Berman R.F. Chronic theophylline treatment in vivo increases high affinity adenosine A1 receptor binding and sensitivity to exogenous adenosine in the in vitro hippocampal slice. Brain Res. (in press).Google Scholar
  63. Lupica C. R., Cass W. A., Zahniser N. R., and Dunwiddie T. V. (1990) Effects of the selective adensoine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum. J. Phmnacol. Exp. Ther. 252, 1134–1141.Google Scholar
  64. Marangos P. J., Boulenger J.-P. and Patel J. (1984) Effects of chronic caffeine on brain adenosine receptors: Regional and ontogenetic studies. LifeSci. 34, 899–907.Google Scholar
  65. Marangos P. J., Patel J., and Stivers J. (1982) Ontogeny of adenosine binding sites in rat forebrain and cerebellum. J. Nezmchem. 39, 267–270.Google Scholar
  66. Marangos P. J., Patel J., Martino A. M., Dilli M., and Boulenger J. P. (1983) Differential binding properties of adenosine receptor agonists and antagonists in brain. J. Neurochem. 41, 367–374.PubMedCrossRefGoogle Scholar
  67. Miller R. K., Kellogg C. K., and Saltzman R. A. (1987) Reproductive and perinatal toxicology, in Fundamentals of Toxicology (Bemdt W. 0. and Haley W., eds.), Hemisphere Pub. Corp., Washington, DC, pp. 159–309.Google Scholar
  68. Miranda R., Ceckler T., Guillet R., and Kellogg C. K. (1990a) Early developmental exposure to benzodiazepine ligands alters brain 31P NMR spectra in young adult rats. Brain Res. 506, 85–92.PubMedCrossRefGoogle Scholar
  69. Miranda R., Ceckler T., Guillet R., and Kellogg C. K. (1990b) Aging-related changes in brain metabolism are altered by early developmental exposure to diazepam. Neurobiol. Aging 11, 117–122.PubMedCrossRefGoogle Scholar
  70. Mori M., Wilber J. F., and Nakamoto T. (1983) Influences of maternal caffeine on the neonatal rat brains vary with the nutritional states. Life Sci. 33, 2091–2095.PubMedCrossRefGoogle Scholar
  71. Mori M., Wilber J. F., and Nakamoto T. (1984) Protein-energy malnutrition during pregnancy alters caffeine’s effect on brain tissue of neonate rats. Life Sci. 35, 2553–2560.PubMedCrossRefGoogle Scholar
  72. Nakamoto T. and Shaye R. (1986) Protein-energy malnutrition in rats during pregnancy modifies the effects of caffeine in fetal bones. J. Nutr. 116, 633–640.PubMedGoogle Scholar
  73. Nakamoto T., Hartman A.D., and Joseph F., Jr. (1989) Interaction between caffeine intake and nutritional status on growing brains in newborn rats. Ann. Nutrition Metab. 33, 92–99.CrossRefGoogle Scholar
  74. Nakazawa K., Tanaka H., and Arima M. (1985) The effect of caffeine ingestion on pharmacokinetics of caffeine and its metabolites after a single administration in pregnant rats. J Pharmacobio.-Dyn. 8, 151–160.PubMedGoogle Scholar
  75. Nau H. (1986) Species differences in pharmacokinetics and drug teratogenesis. Env. Health Perspectives 70, 113–129.CrossRefGoogle Scholar
  76. Neims A. H. and von Borstel R. W. (1983) Caffeine: Metabolism and biochemical mechanisms of action, in Nutrition and the Bruin, vol. 6 (Wurtman R. J. and Wurtman J. J., eds.), Raven, New York, pp. 1–30.Google Scholar
  77. Parkinson F. E. and Fredholm B. B. (1990) Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn-Schmiedeberg’s Arch. Pharmacol. 342, 85–89.CrossRefGoogle Scholar
  78. Quinby G. E. Jr. and Nakamoto T. (1984) Theophylline effects on cellular response in proteinenergy malnourished neonatal rat brain. Pediatr.Res. 18, 546–549.PubMedCrossRefGoogle Scholar
  79. Quinby G. E., Batirbaygil Y., Hartman, A. D., and Nakamoto T. (1985)Effects of orally administered caffeine on cellular response in protein energy-malnourished neonatal rat brain. Pediatr. Res. 19, 71–74.PubMedCrossRefGoogle Scholar
  80. Ramkumar V., Bumgarner J. R., Jacobson K. A., and Stiles G. L. (1988) Multiple components of the A1 adenosine receptor-adenylate cyclase system are regulated in rat cerebral cortex by chronic caffeine ingestion. J.Clin. Invest. 82, 242–247.PubMedCrossRefGoogle Scholar
  81. Resnick O. and Morgan P. J. (1983) Animal models for small-for-gestational-age (SGA) neonates and infants-at-risk. Devel. Bruin Res. 10, 221–225.CrossRefGoogle Scholar
  82. Schneider P. E., Miller H. I., and Nakamoto T. (1990) Effects of caffeine intake during gestation and lactation on bones of young growing rats. Res. Exp. Med. 190, 131–136.CrossRefGoogle Scholar
  83. Simmons R. D., Kellogg C. K., and Miller R. K. (1984a) Prenatal diazepam exposure in rats: long-lasting, receptor-mediated effects on hypothalamic norepinephrine-containing neurons. Brain Res. 293, 73–83.PubMedCrossRefGoogle Scholar
  84. Simmons R. D., Miller R. K., and Kellogg C. K. (1984b) Prenatal exposure to diazepam alters central and peripheral responses to stress in adult rat offspring. Brain Res. 307, 39–46.PubMedCrossRefGoogle Scholar
  85. Siiton C. M. (1989) Preliminary indications that functional effects of fetal caffeine exposure can be expressed in a second generation. Neurotoxicol.Teratol. 11, 357–362.CrossRefGoogle Scholar
  86. Slob A. K., Snow C. E., and de Natris-Mathot E. (1973) Absence of behavioral deficits following undernutrition in the rat. Dev. Psychobiol. 6, 177–186.PubMedCrossRefGoogle Scholar
  87. Smart J. L., Billing A. E., Duggan J. P., and Massey R. F. (1989) Effects of early life undernutrition in artificially-reared rats: 3. Further studies of growth and behavior. Physiol. Behav. 45, 1153–1160.PubMedCrossRefGoogle Scholar
  88. Smart J. L. (1990) Vulnerability of developing brain to undernutrition. Upsala Med. Sci. Suppl. 48, 21–41.Google Scholar
  89. Snyder S. H. and Sklar P. (1984) Behavioral and molecular actions of caffeine:Focus on adenosine. J. Psychiatr. Res. 18, 91–106.PubMedCrossRefGoogle Scholar
  90. Snyder S. H., Katims J. J., Annau Z., Bruns R. F., and Daly J. W. (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc.Natl. Acad. Sci. USA 78, 3260–3264.PubMedCrossRefGoogle Scholar
  91. Sobotka T. J. (1989) Neurobehavioral effects of prenatal caffeine, in Prenatal Abuse of Licit and Illicit Drugs (Hutchings D. E., ed.), Ann. NY Acad.Sci. vol. 562, NY Acad. Sci., New York, pp. 327–339.Google Scholar
  92. Sobotka T. J., Spaid S. L., and Brodie R. E. (1979) Neurobehavioral teratology of caffeine exposure in rats. Neurotoxicol. 1, 403–416.Google Scholar
  93. Soyka L. F. (1979) Effects of methylxanthines on the fetus. Clin. Perinutol. 6, 37–51.Google Scholar
  94. Stavric B. and Gilbert S. G. (1990) Caffeine metabolism: A problem in extrapolating results from animal studies to humans. Acta Pharm. Jugosl. 40, 475–489.Google Scholar
  95. Swenson R. R., Beckwith B. E., Lamberty K. J., and Krebs S. J. (1990) Prenatal exposure to AVP or caffeine but not oxytocin alters learning in female rats. Peptides 11, 927–932.PubMedCrossRefGoogle Scholar
  96. Tanaka H., Nakazawa K., and Arima M. (1987) Effects of maternal caffeine ingestion on the perinatal cerebrum. Biol. Neonate 51, 332–339.PubMedCrossRefGoogle Scholar
  97. vanCalker D., Muller M., and Hamprecht B. (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J, Neurochem. 33, 999–1005.CrossRefGoogle Scholar
  98. Wan W., Sutherland G. R., and Geiger J. D. (1990) Binding of the adenosine A2 receptor ligand [3H]CGS 21680 to human and rat brain: Evidence for multiple affiity sites. J. Newochem. 55, 1763–1771.CrossRefGoogle Scholar
  99. West G. L., Sobotka T. J., Brodie R. E., Beier J. M., and O’Donnell M. W., Jr.(1986) Postnatal neurobehavioral development in rats exposed in utero to caffeine. Neurobehav. Toxicol. Teratol. 8, 29–43.PubMedGoogle Scholar
  100. Yazdani M., Hartman A. D., Miller H. I., Temples T. E., and Nakamoto T.(1988) Chronic caffeine intake alters the composition of various parts of the brain in young growing rats. Dev. Pharmacol. Ther. 11, 102–108.PubMedGoogle Scholar
  101. Zielke C. L. and Zielke H. R. (1987) Chronic exposure to subcutaneously implanted methylxanthines: Differential elevation of A1-adenosine receptors in mouse cerebellar and cerebral cortical membranes. Biochem.Pharmacol. 36, 2533–2538.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1992

Authors and Affiliations

  • Ronnie Guillet
    • 1
  1. 1.Departments of Pediatrics and PsychologyUniversity of RochesterRochester

Personalised recommendations