Skip to main content

Fast Atom Bombardment Mass Spectrometry of Peptides

  • Protocol
Spectroscopic Methods and Analyses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 17))

  • 1621 Accesses

Abstract

The contribution of mass spectrometry to the solution of problems in protein biochemistry was limited until the development of methods of ionization that do not require derivatization or prior vaporization of the sample. Fast atom bombardment (FAB), introduced by Barber et al. in 1981 (1), is one of the most important of these methods, and has been widely applied in the peptide and protein field. In the FAB experiment (Fig. 1), the sample is dissolved in a liquid of low vapor pressure, often glycerol or thioglycerol (“the matrix”), and is bombarded by a beam of energetic particles, such as xenon atoms that sputter sample molecules from the surface layers of the matrix into the mass spectrometer vacuum. Proton or other cation attachment produces abundant (positive) ions characteristic of the sample's molecular mass. A proportion of these molecular ions dissociate, producing structurally informative fragments that are generally less intense than the molecular ions, since the ionization process imparts relatively little excess energy. Negatively charged ions are also generated, and spectra may be recorded in either mode by appropriate selection of the polarity of the ion extraction voltages. At low-mass FAB, spectra are generally dominated by signals attributable to ionization of the matrix. The background of “chemical noise” extending to high mass, which gives FAB spectra their characteristic peak-at-every-mass appearance, is probably attributable to direct hits on sample and matrix molecules by the bombarding species. Figure 2 shows a typical FAB spectrum of the cyclic heptapeptide microcystin-LR, obtained from the cyanobacterium Microcystis aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber, M., Bordoli, R. S., Sedgwick, R. D, and Tyler, A. N. (1981) Fast atom bombardment of solids as an ion source in mass spectrometry Nature 293, 270–275

    Article  CAS  Google Scholar 

  2. Eckart, K., Schwartz, H., Tomer, K B., and Gross, M L. (1985) Tandem mass spectrometry methodology for the sequence determination of cyclic peptides J Am. Chem. Sot. 107, 6765–6769.

    Article  CAS  Google Scholar 

  3. Carr, S. A. and Biemann, K. (1984) Identification of posttranslationally modified amino acids in proteins by mass spectrometry. Methods Enzymol. 106, 29–58.

    Article  CAS  Google Scholar 

  4. Carr, S. A. and Roberts, G D (1986) Carbohydrate mapping by mass spectrometry* A novel method for identifying attachment sites of Asn-linked sugars in glycoproteins Anal Biochem 157, 396–406.

    Article  CAS  Google Scholar 

  5. Poulter, L., Ang, S.-G., Gibson, B W, Holmes, C F B, Caudwell, F. B, Pitcher, J., and Cohen, P (1988) Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry. Eur J. Biochem 175, 497–510.

    Article  CAS  Google Scholar 

  6. Arlandini, E., Gioia, B, Perseo, G., and Vigevam, A (1984) Fast atom bombardment mass spectrometry of ceruletide and [Tyr4] ceruletide. Int. J. Peptlde Protein Res. 24, 386–391.

    Article  CAS  Google Scholar 

  7. Gibson, B. W. and Btemann, K (1984) Strategy for the mass spectrometric verification and correction of the primary structures of proteins deduced from their DNA sequences Proc Natl. Acad. Sci. USA 81, 1956–1960

    Article  CAS  Google Scholar 

  8. Morris, H. R., Panico, M., and Taylor, G W (1983) FAB-mapping of recombinant-DNA protein products. Biochem Biophys Res Commun. 117, 299–305

    Article  CAS  Google Scholar 

  9. Canova-Davts, E., Chloupek, R C, Baldonado, I. P., Battersby, J E, Spellman, M. W., Basa, L. J., O'Connor, B., Pearlman, R., Quan, C., Chakel, J. A., Stults, J. T., and Hancock, W S (1988) Analysis by FAB-MS and LC of proteins produced by either biosynthetic or chemical techniques. Am. Biotechnol. Lab 6, 8–17.

    Google Scholar 

  10. Wada, Y., Matsuo, T., and Sakurai, T. (1989) Structure elucidation of hemoglobin varients and other proteins by digit-printing method Mass Spectrom. Rev 8,379–434.

    Article  CAS  Google Scholar 

  11. Morris, H. R. and Pucci, P. (1985) A new standard method for rapid assignment of —S bridges in proteins Biochem Biophys. Res. Commun. 126, 1122–1128.

    Article  CAS  Google Scholar 

  12. Yasdanparast, R, Andrews, P. C, Smith, D. L, and Dixon, J E (1987) Asugnment of disulfide bonds in proteins by fast atom bombardment mass spectrometry. J. Biol. Chem. 262, 2507–2513.

    Google Scholar 

  13. Btemann, K. and Martin, S. A. (1987) Mass spectrometnc determination of the amino acid sequence of peptides and proteins. Mass Spectrom Rev. 6, 1–76.

    Article  Google Scholar 

  14. McNeal, C J (ed) (1988) The Analysis of Peptides and Proteins by Mass Spectrometry. Wiley, Chichester, UK.

    Google Scholar 

  15. Desiderio, D M (ed) (1990) Mass Spectrometry of Peptides. CRC, Boca Raton, FL.

    Google Scholar 

  16. McEwen, C. N. and Larsen, B. S (eds.) (1990) Mass Spectrometry of Biological Materials. M. Dekker, New York.

    Google Scholar 

  17. McCloskey, J. A (ed) (1990) Methods in Enzymology, vol. 193: Mass Spectrometry Academic, San Diego, CA.

    Google Scholar 

  18. Burlingame, A. L and McCloskey, J. A. (eds) (1990) Biological Mass Spectrometry. Elsevier, Amsterdam.

    Google Scholar 

  19. Suelter, C H. and Watson, J T. (eds.) (1990) Methods in Biochemical Analysis, vol. 34· Biomedical Applications of Mass Spectrometry. Wiley, New York.

    Google Scholar 

  20. Aberth, W., Straub, R M., and Burlingame, A L. (1982) Secondary ion mass spectrometry with cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds. Anal Chem 54, 2029–2034.

    Article  CAS  Google Scholar 

  21. Martin, S A., Costello, C. E, and Biemann, K (1982) Optimization of expertmental procedures for fast atom bombardment mass spectrometry Anal Chem 54, 2362–2368.

    Article  CAS  Google Scholar 

  22. Alexander, A. J and Hogg, A M. (1986) Characterization of a saddle-field discharge gun for FABMS using different discharge vapours Int. J. Mass spectrom. Ion Processes 69, 297–311.

    Article  CAS  Google Scholar 

  23. Barber, M. and Green, B. N (1987) The analysis of small proteins in the molecular weight range 10–24 kDa by magnetic sector mass spectrometry Rapid Commun. Mass Spectrom 1, 80–83.

    Article  CAS  Google Scholar 

  24. Buko, A. M., Phillips, L. R., and Fraser, B. A. (1983) Peptide studies using a fast atom bombardment high field mass spectrometer and data system: 1—Sample introduction, data acquisition and mass calibration. Biomed. Muss. Spectrom 10, 324–333.

    Article  CAS  Google Scholar 

  25. Van Bremen, R B. and Le, J C. (1989) Enhanced sensitivity of peptide analysis by fast atom bombardment mass spectrometry using nitrocellulose as a substrate. Rapid. Commun Mass. Spectrom 3, 20–24.

    Article  Google Scholar 

  26. Fenselau, C and Cotter, R. J. (1987) Chemical aspects of fast atom bombardment. Chem. Revs. 87, 501–512.

    Article  CAS  Google Scholar 

  27. Falick, A. M, Walls, F C, and Laine, R. A (1986) Cooled sample introduction probe for liquid secondary ionization mass spectrometry Anal Biochem. 159, 132–137.

    Article  CAS  Google Scholar 

  28. Shiea, J. T and Sunner, J (1990) Effects of matrix viscosity on FAB spectra Int J Mass Spectrom. Ion Processes 96, 243–265.

    Article  CAS  Google Scholar 

  29. De Pauw, E (1986) Liquid matrices for secondary ion mass spectrometry. Muss Spectrom. Rev. 5, 191–212.

    Article  Google Scholar 

  30. De Pauw, E (1990) Matrix selection in liquid secondary ion and fast atom bombardment mass spectrometry Methods Enzymol. 193, 201–214.

    Article  Google Scholar 

  31. Gower, J L. (1985) Matrix compounds for fast atom bombardment mass spectrometry. Biomed Mass. Spectrom. 12, 191–196.

    Article  CAS  Google Scholar 

  32. Cook, K. D, Todd, P. J, and Friar, D. H. (1989) Physical properties of matrices used for fast atom bombardment. Biomed Environ. Mass Spectrom. 18, 492–497.

    Article  CAS  Google Scholar 

  33. Kenny, P. T M. (1990) The use of 2-hydroxyethyl disulphide as a matrix in liquid secondary-ion mass spectrometry Rapid Commun. Mass Spectrom 4, 156–158.

    Article  CAS  Google Scholar 

  34. De Angelis, F, Nicoletti, R., and Santi, A (1988) Thiodiethyleneglycol: A very p ]efficient matrix compound for fast atom bombardment mass spectrometry (FAB-MS). Org Mass Spectrom. 23, 800–803.

    Article  Google Scholar 

  35. Green, B N. and Bordoli, R S (1990) The molecular weight determination of large peptides by magnetic sector mass spectrometry, in Mass Spectrometry of Peptides (Desideno, D. M., ed.), CRC, Boca Raton, FL, pp. 109–119.

    Google Scholar 

  36. Meili, J and Seible, J (1984) A new versatile matrix for fast atom bombardment analysis. Org. Mass Spectrom. 19, 581, 582.

    Article  CAS  Google Scholar 

  37. Field, F H (1982) Fast atom bombardment study of glycerol Mass spectra and radiation chemistry. J. Phys. Chem 86, 5115–5123

    Article  CAS  Google Scholar 

  38. Buko, A. M and Fraser, B A (1985) Peptide studies using a fast atom bombardment high field mass spectrometer and data system. 4. Disulfide containing peptides. Biomed. Mass Spectrom 12, 577–585.

    Article  CAS  Google Scholar 

  39. Keough, T. (1988) Matrix effects on the formation of beam-induced adduct ions during fast atom bombardment of N-alkylpyridinium salts Int J Mass. Spectrom Ion Processes 86, 155–168.

    Article  CAS  Google Scholar 

  40. Lehmann, W D., Ressler, M, and Konig, W A (1984) Investigations on basic aspects of fast atom bombardment mass spectrometry Biomed. Mass Spectrom 11, 217–222.

    Article  CAS  Google Scholar 

  41. Dass, C. and Desiderio, D M (1988) Particle beam induced reactions between peptides and liquid matrices. Anal. Chem. 60, 2723–2729.

    Article  CAS  Google Scholar 

  42. Barber, M, Bell, D. J., Morris, M, Tetler, L. W., Woods, M D, Monaghan, J. J, and Morden, W. E. (1988) The interaction of meta-nitrobenzyl alcohol with compounds under fast atom bombardment conditions. Rapid. Commun. Mass Spectrom 2, 181–183.

    Article  CAS  Google Scholar 

  43. Kyranos, J. N. and Vouros, P (1990) Reduction processes in fast atom bombardment mass spectrometry: Interdependance of analyte and matrix redox potentials Biomed Environ. Mass Spectrom 19, 628–634.

    Article  CAS  Google Scholar 

  44. Fujita, Y, Matsuo, T, Sakurai, T, Matsuda, H, and Katakuse, I (1985) Mass distribution of peptide molecular ions in the secondary ionization process Int J Mass. Spectrom Ion. Processes 63, 231–240.

    Article  CAS  Google Scholar 

  45. Verkey, K (1990) Interference effects caused by oxidation and reduction processes in fast atom bombardment mass spectrometry Int J Mass Spectrom Ion Processes 97, 265–282.

    Article  Google Scholar 

  46. Shiea, J. and Sunner, J. (1991) The acid effect in fast atom bombardment Org Mass Spectrom 26, 38–44.

    Article  CAS  Google Scholar 

  47. Kausler, W., Schneider, K., and Spiteller, G (1988) Practical hints for peptide sequencing by soft ionization methods. Biomed Environ Mass Spectrom 17, 15–19.

    Article  CAS  Google Scholar 

  48. Naylor, S and Moneti, G. (1989) Factors affecting the fragmentation of peptides in fast atom bombardment mass spectrometry Biomed. Environ. Mass. Spectrom l8, 405–412.

    Article  Google Scholar 

  49. Mueller, D. R., Eckersley, M, and Richter, W J (1988) Hydrogen transfer reactions in the formation of “Y+2” sequence ions from protonated peptides Org Mass Spectrom. 23, 217–222.

    Article  CAS  Google Scholar 

  50. Ende, M. and Spiteller, G (1982) Contaminants in mass spectrometry. Mass Spectrom. Rev 1, 29–62.

    Article  CAS  Google Scholar 

  51. Middleditch, B. S. (1989) Analytical Artifacts. Elsevier, Amsterdam.

    Google Scholar 

  52. Moon, D.-C. and Kelley, J A. (1988) A simple desalting procedure for fast atom bombardment mass spectrometry Biomed Environ. Mass Spectrom. 17, 229–237.

    Article  CAS  Google Scholar 

  53. Sato, K., Asada, T., Ishihara, M., Kunihiro, F, Kammei, Y, Kubota, E, Costello, C. E., Martin, S. A., Scoble, H. A, and Biemann, K (1987) High performance tandem mass spectrometry: Calibration and performance of linked scans of a four-sector instrument. Anal Chem. 59, 1652–1659.

    Article  CAS  Google Scholar 

  54. Buko, A. M., Phillips, L. R., and Fraser, B. A. (1983) Peptide studies using a fast atom bombardment high field mass spectrometer and data system 3-Negative ionization. Mass calibration, data acquisition and structural characterization Biomed. Mass. Spectrom. 10, 387–393.

    Article  CAS  Google Scholar 

  55. Reynolds, J D. and Cook, K. D (1990) Improving fast atom bombardment mass spectra: the influence of some controllable parameters on spectral quality. J. Am Sot. Mass Spectrom. 1, 149–157.

    Article  CAS  Google Scholar 

  56. Arberth, W. H and Burlingame, A. L (1988) Effect of primary beam energy on the secondary ion sputtering efficiency of liquid secondary ionization mass spectrometry in the 5–30 keV range. Anal. Chem. 60, 1426–1428.

    Article  Google Scholar 

  57. Grotjahn, L. and Taylor, L. C E. (1985) The use of signal averaging techniques for the quantitation and mass measurement of high molecular weight compounds using fast atom bombardment mass spectrometry. Org Mass Spectrom. 20, 146–152.

    Article  CAS  Google Scholar 

  58. Cotter, R. J., Larsen, B S., Heller, D. N, Campana, J E, and Fenselau, C (1985) Wide mass range scanning for the fast atom bombardment mass spectrometry of very large compounds. Anal Chem. 57, 1479–1480.

    Article  CAS  Google Scholar 

  59. Yergey, J., Heller, D. N, Hansen, G., Cotter, R. J, and Fenselau, C. (1983) Isotope distributions in mass spectra of large molecules Anal Chem. 55, 353–356.

    Article  CAS  Google Scholar 

  60. Yergey, J., Cotter, R J, Heller, D N, and Fenselau, C (1984) Resolution requirements for middle-molecule mass spectrometry. Anal Chem 56, 2262, 2263.

    Article  Google Scholar 

  61. Morris, H. R, Panico, M, Barber, M., Bordoli, R. S, Sedgwick, R. D., and Tyler, A (1981) Fast atom bombardment A new mass spectrometric method for peptide sequence analysis Biochem. Biophys Res. Commun 101, 623–631.

    Article  CAS  Google Scholar 

  62. Williams, D H., Bradley, C V, Santikarn, S, and Bojesen, G. (1982) Fast-atom-bombardment mass spectrometry. a new technique for the determination of molecular weights and amino acid sequences of peptides. Biochem J 201, 105–117.

    CAS  Google Scholar 

  63. Barber, M., Bordoli, R S, Sedgwick, R. D, and Tyler, A N (1982) Fast atom bombardment mass spectrometry of the anglotensin peptides Biomed. Mass Spectrom. 9, 208–214.

    Article  CAS  Google Scholar 

  64. Roepstorff, P. and Fohlman, J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom 11, 601.

    Article  CAS  Google Scholar 

  65. Biemann, K (1988), Contribution of mass spectrometry to peptide and protein structure Biomed Environ. Mass. Spectrom 16, 99–111.

    Article  CAS  Google Scholar 

  66. Johnson, R. S, Martin, S A., and Biemann, K (1988) Collision-induced fragmentation of (M+H)+ions of peptides. Side chain specific sequence Ions Int J Mass Spectrom Ion Processes 86, 137–154.

    Article  CAS  Google Scholar 

  67. Johnson, R. S., Martin, S. A, Biemann, K., Stults, J. T., and Watson, J T. (1987) Novel fragmentation of peptides by collision induced decomposition in a tandem mass spectrometer Differentiation of leucine and isoleucine. Anal Chem 59, 2621–2625.

    Article  CAS  Google Scholar 

  68. Stults, J. T. and Watson, J. T. (1987) Identification of a new type of fragment ion in the collisional activation spectra of peptides allows leucine/isoleucine differentiation Biomed. Environ. Mass. Spectrom. 14, 583–586.

    Article  CAS  Google Scholar 

  69. Kassel, D. B. and Biemann, K (1990) Differentiation of hydroxyproline isomers and isobars in peptides by tandem mass spectrometry. Anal Chem. 62, 1691–1695.

    Article  CAS  Google Scholar 

  70. Morris, H. R., Panico, M, Karplus, A, Lloyd, P. E., and Riniker, B. (1982) Elucidation by FAB-MS of the structure of a new cardioactive peptide from Aplysia Nature 300, 643–645.

    Article  CAS  Google Scholar 

  71. Seki, S, Kambara, H., and Naolu, H. (1985) Sequence analysis for an unknown peptide by molecular secondary ion mass spectrometry. Org Mass. Spectrom 20, 18–24.

    Article  CAS  Google Scholar 

  72. Bradley, C. V., Williams, D. H., and Hanley, M. R (1982) Peptide sequencing using the combination of Edman degradation, carboxypeptidase digestion and fast atom bombardment mass spectrometry. Biochem. Biophys Res. Commun. 104, 1223–1230.

    Article  CAS  Google Scholar 

  73. Caprioli, R. M. and Fan, T. (1986) Peptide sequence analysis using exopeptidases with molecular analysis of the truncated polypeptides by mass spectrometry. Anal. Biochem. 154, 596–603.

    Article  CAS  Google Scholar 

  74. Biemann, K (1982) Sequencing of proteins Int J Mass Spectrom Ion. Phys 45, 183–194.

    CAS  Google Scholar 

  75. Wada, Y, Hayashi, A., Masanori, F, Katakuse, I., Ichihara, T, Nakabushi, H, Matsuo, T, Sakurai T., and Matsuda, H. (1983) Characterization of a new fetal hemoglobin variant, Hb F IzumiA 6Glu-Gly, by molecular secondary ion mass spectrometry. Biochim. Biophys. Acta. 749, 244–248.

    Article  CAS  Google Scholar 

  76. Wan, R., James, B., and Calder, M R (1991) Synthesis and characterization by fast atom bombardment mass spectrometry of peptides related to the B-domain of staphylococcal protein A. Org. Mass Spectrom 26, 458–462.

    Article  Google Scholar 

  77. Vestling, M M., Murphy, C. M., and Fenselau, C (1990) Recognition of trypsin autolysis products by high-performance liquid chromatography and mass spectrometry Anal Chem. 62, 2391–2394.

    Article  CAS  Google Scholar 

  78. Clench, M R, Garner, G. V, Gorden, D B, and Barber, M (1985) Surface effects in FAB mapping of proteins and peptides Biomed Mass Spectrom 12, 355–357.

    Article  CAS  Google Scholar 

  79. Naylor, S., Findeis, A. F, Gibson, B.W., and Williams, D H (1986) An approach toward the complete FAB analysis of enzymic digests of peptides and proteins J Am Chem. Soc. 108, 6359–6363.

    Article  CAS  Google Scholar 

  80. Naylor, S., Moneti, G., and Guyan, S (1988) Hydrophobic effects in the fast atom bombardment mass spectra of proteins and large peptides. Biomed Environ. Mass Spectrom. 17, 393–397.

    Article  CAS  Google Scholar 

  81. Bull, H B. and Breese, K (1974) Surface tension of amino acid solutions A hydrophobicity scale of the amino acid residues. Arch. Biochem Brophys. 161, 665–670.

    Article  CAS  Google Scholar 

  82. Poulter, L., Ang, S.-G, Williams, D H., and Cohen, P (1987) Observations on the quantitation of the phosphate content of peptides by fast atom-bombardment mass spectrometry Biochim. Biophys. Acta 929, 296–391.

    Article  CAS  Google Scholar 

  83. Caprioli, R. M., Moore, W. T, and Fan, T. (1987) Improved detection of “suppressed” peptides in enzymic digests analysed by FAB mass spectrometry Rapid Commun. Mass Spectrom 1, 15–17.

    Article  CAS  Google Scholar 

  84. Falick, A. M. and Maltby, D A (1989) Derivatization of hydrophilic peptides for liquid secondary ion mass spectrometry at the picomole level Anal Biochem. 182, 165–169.

    Article  CAS  Google Scholar 

  85. Whaley, B. and Caprioli, R. M. (1991) Identification of nearest-neighbor peptides in protease digests by mass spectrometry for construction of sequence-ordered tryptic maps. Biol Mass Spectrom. 20, 210–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wait, R. (1993). Fast Atom Bombardment Mass Spectrometry of Peptides. In: Jones, C., Mulloy, B., Thomas, A.H. (eds) Spectroscopic Methods and Analyses. Methods in Molecular Biology, vol 17. Humana Press. https://doi.org/10.1385/0-89603-215-9:237

Download citation

  • DOI: https://doi.org/10.1385/0-89603-215-9:237

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-215-6

  • Online ISBN: 978-1-59259-504-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics