Fast Atom Bombardment Mass Spectrometry of Peptides

  • Robin Wait
Part of the Methods in Molecular Biology book series (MIMB, volume 17)


The contribution of mass spectrometry to the solution of problems in protein biochemistry was limited until the development of methods of ionization that do not require derivatization or prior vaporization of the sample. Fast atom bombardment (FAB), introduced by Barber et al. in 1981 (1), is one of the most important of these methods, and has been widely applied in the peptide and protein field. In the FAB experiment (Fig. 1), the sample is dissolved in a liquid of low vapor pressure, often glycerol or thioglycerol (“the matrix”), and is bombarded by a beam of energetic particles, such as xenon atoms that sputter sample molecules from the surface layers of the matrix into the mass spectrometer vacuum. Proton or other cation attachment produces abundant (positive) ions characteristic of the sample's molecular mass. A proportion of these molecular ions dissociate, producing structurally informative fragments that are generally less intense than the molecular ions, since the ionization process imparts relatively little excess energy. Negatively charged ions are also generated, and spectra may be recorded in either mode by appropriate selection of the polarity of the ion extraction voltages. At low-mass FAB, spectra are generally dominated by signals attributable to ionization of the matrix. The background of “chemical noise” extending to high mass, which gives FAB spectra their characteristic peak-at-every-mass appearance, is probably attributable to direct hits on sample and matrix molecules by the bombarding species. Figure 2 shows a typical FAB spectrum of the cyclic heptapeptide microcystin-LR, obtained from the cyanobacterium Microcystis aeruginosa.


Fast Atom Bombardment Cyanogen Bromide Xenon Atom Liquid Secondary Ionization Mass Spectrometry Ammonium Hydrogen Carbonate Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barber, M., Bordoli, R. S., Sedgwick, R. D, and Tyler, A. N. (1981) Fast atom bombardment of solids as an ion source in mass spectrometry Nature 293, 270–275CrossRefGoogle Scholar
  2. 2.
    Eckart, K., Schwartz, H., Tomer, K B., and Gross, M L. (1985) Tandem mass spectrometry methodology for the sequence determination of cyclic peptides J Am. Chem. Sot. 107, 6765–6769.CrossRefGoogle Scholar
  3. 3.
    Carr, S. A. and Biemann, K. (1984) Identification of posttranslationally modified amino acids in proteins by mass spectrometry. Methods Enzymol. 106, 29–58.CrossRefGoogle Scholar
  4. 4.
    Carr, S. A. and Roberts, G D (1986) Carbohydrate mapping by mass spectrometry* A novel method for identifying attachment sites of Asn-linked sugars in glycoproteins Anal Biochem 157, 396–406.CrossRefGoogle Scholar
  5. 5.
    Poulter, L., Ang, S.-G., Gibson, B W, Holmes, C F B, Caudwell, F. B, Pitcher, J., and Cohen, P (1988) Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry. Eur J. Biochem 175, 497–510.CrossRefGoogle Scholar
  6. 6.
    Arlandini, E., Gioia, B, Perseo, G., and Vigevam, A (1984) Fast atom bombardment mass spectrometry of ceruletide and [Tyr4] ceruletide. Int. J. Peptlde Protein Res. 24, 386–391.CrossRefGoogle Scholar
  7. 7.
    Gibson, B. W. and Btemann, K (1984) Strategy for the mass spectrometric verification and correction of the primary structures of proteins deduced from their DNA sequences Proc Natl. Acad. Sci. USA 81, 1956–1960CrossRefGoogle Scholar
  8. 8.
    Morris, H. R., Panico, M., and Taylor, G W (1983) FAB-mapping of recombinant-DNA protein products. Biochem Biophys Res Commun. 117, 299–305CrossRefGoogle Scholar
  9. 9.
    Canova-Davts, E., Chloupek, R C, Baldonado, I. P., Battersby, J E, Spellman, M. W., Basa, L. J., O'Connor, B., Pearlman, R., Quan, C., Chakel, J. A., Stults, J. T., and Hancock, W S (1988) Analysis by FAB-MS and LC of proteins produced by either biosynthetic or chemical techniques. Am. Biotechnol. Lab 6, 8–17.Google Scholar
  10. 10.
    Wada, Y., Matsuo, T., and Sakurai, T. (1989) Structure elucidation of hemoglobin varients and other proteins by digit-printing method Mass Spectrom. Rev 8,379–434.CrossRefGoogle Scholar
  11. 11.
    Morris, H. R. and Pucci, P. (1985) A new standard method for rapid assignment of —S bridges in proteins Biochem Biophys. Res. Commun. 126, 1122–1128.CrossRefGoogle Scholar
  12. 12.
    Yasdanparast, R, Andrews, P. C, Smith, D. L, and Dixon, J E (1987) Asugnment of disulfide bonds in proteins by fast atom bombardment mass spectrometry. J. Biol. Chem. 262, 2507–2513.Google Scholar
  13. 13.
    Btemann, K. and Martin, S. A. (1987) Mass spectrometnc determination of the amino acid sequence of peptides and proteins. Mass Spectrom Rev. 6, 1–76.CrossRefGoogle Scholar
  14. 14.
    McNeal, C J (ed) (1988) The Analysis of Peptides and Proteins by Mass Spectrometry. Wiley, Chichester, UK.Google Scholar
  15. 15.
    Desiderio, D M (ed) (1990) Mass Spectrometry of Peptides. CRC, Boca Raton, FL.Google Scholar
  16. 16.
    McEwen, C. N. and Larsen, B. S (eds.) (1990) Mass Spectrometry of Biological Materials. M. Dekker, New York.Google Scholar
  17. 17.
    McCloskey, J. A (ed) (1990) Methods in Enzymology, vol. 193: Mass Spectrometry Academic, San Diego, CA.Google Scholar
  18. 18.
    Burlingame, A. L and McCloskey, J. A. (eds) (1990) Biological Mass Spectrometry. Elsevier, Amsterdam.Google Scholar
  19. 19.
    Suelter, C H. and Watson, J T. (eds.) (1990) Methods in Biochemical Analysis, vol. 34· Biomedical Applications of Mass Spectrometry. Wiley, New York.Google Scholar
  20. 20.
    Aberth, W., Straub, R M., and Burlingame, A L. (1982) Secondary ion mass spectrometry with cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds. Anal Chem 54, 2029–2034.CrossRefGoogle Scholar
  21. 21.
    Martin, S A., Costello, C. E, and Biemann, K (1982) Optimization of expertmental procedures for fast atom bombardment mass spectrometry Anal Chem 54, 2362–2368.CrossRefGoogle Scholar
  22. 22.
    Alexander, A. J and Hogg, A M. (1986) Characterization of a saddle-field discharge gun for FABMS using different discharge vapours Int. J. Mass spectrom. Ion Processes 69, 297–311.CrossRefGoogle Scholar
  23. 23.
    Barber, M. and Green, B. N (1987) The analysis of small proteins in the molecular weight range 10–24 kDa by magnetic sector mass spectrometry Rapid Commun. Mass Spectrom 1, 80–83.CrossRefGoogle Scholar
  24. 24.
    Buko, A. M., Phillips, L. R., and Fraser, B. A. (1983) Peptide studies using a fast atom bombardment high field mass spectrometer and data system: 1—Sample introduction, data acquisition and mass calibration. Biomed. Muss. Spectrom 10, 324–333.CrossRefGoogle Scholar
  25. 25.
    Van Bremen, R B. and Le, J C. (1989) Enhanced sensitivity of peptide analysis by fast atom bombardment mass spectrometry using nitrocellulose as a substrate. Rapid. Commun Mass. Spectrom 3, 20–24.CrossRefGoogle Scholar
  26. 26.
    Fenselau, C and Cotter, R. J. (1987) Chemical aspects of fast atom bombardment. Chem. Revs. 87, 501–512.CrossRefGoogle Scholar
  27. 27.
    Falick, A. M, Walls, F C, and Laine, R. A (1986) Cooled sample introduction probe for liquid secondary ionization mass spectrometry Anal Biochem. 159, 132–137.CrossRefGoogle Scholar
  28. 28.
    Shiea, J. T and Sunner, J (1990) Effects of matrix viscosity on FAB spectra Int J Mass Spectrom. Ion Processes 96, 243–265.CrossRefGoogle Scholar
  29. 29.
    De Pauw, E (1986) Liquid matrices for secondary ion mass spectrometry. Muss Spectrom. Rev. 5, 191–212.CrossRefGoogle Scholar
  30. 30.
    De Pauw, E (1990) Matrix selection in liquid secondary ion and fast atom bombardment mass spectrometry Methods Enzymol. 193, 201–214.CrossRefGoogle Scholar
  31. 31.
    Gower, J L. (1985) Matrix compounds for fast atom bombardment mass spectrometry. Biomed Mass. Spectrom. 12, 191–196.CrossRefGoogle Scholar
  32. 32.
    Cook, K. D, Todd, P. J, and Friar, D. H. (1989) Physical properties of matrices used for fast atom bombardment. Biomed Environ. Mass Spectrom. 18, 492–497.CrossRefGoogle Scholar
  33. 33.
    Kenny, P. T M. (1990) The use of 2-hydroxyethyl disulphide as a matrix in liquid secondary-ion mass spectrometry Rapid Commun. Mass Spectrom 4, 156–158.CrossRefGoogle Scholar
  34. 34.
    De Angelis, F, Nicoletti, R., and Santi, A (1988) Thiodiethyleneglycol: A very p ]efficient matrix compound for fast atom bombardment mass spectrometry (FAB-MS). Org Mass Spectrom. 23, 800–803.CrossRefGoogle Scholar
  35. 35.
    Green, B N. and Bordoli, R S (1990) The molecular weight determination of large peptides by magnetic sector mass spectrometry, in Mass Spectrometry of Peptides (Desideno, D. M., ed.), CRC, Boca Raton, FL, pp. 109–119.Google Scholar
  36. 36.
    Meili, J and Seible, J (1984) A new versatile matrix for fast atom bombardment analysis. Org. Mass Spectrom. 19, 581, 582.CrossRefGoogle Scholar
  37. 37.
    Field, F H (1982) Fast atom bombardment study of glycerol Mass spectra and radiation chemistry. J. Phys. Chem 86, 5115–5123CrossRefGoogle Scholar
  38. 38.
    Buko, A. M and Fraser, B A (1985) Peptide studies using a fast atom bombardment high field mass spectrometer and data system. 4. Disulfide containing peptides. Biomed. Mass Spectrom 12, 577–585.CrossRefGoogle Scholar
  39. 39.
    Keough, T. (1988) Matrix effects on the formation of beam-induced adduct ions during fast atom bombardment of N-alkylpyridinium salts Int J Mass. Spectrom Ion Processes 86, 155–168.CrossRefGoogle Scholar
  40. 40.
    Lehmann, W D., Ressler, M, and Konig, W A (1984) Investigations on basic aspects of fast atom bombardment mass spectrometry Biomed. Mass Spectrom 11, 217–222.CrossRefGoogle Scholar
  41. 41.
    Dass, C. and Desiderio, D M (1988) Particle beam induced reactions between peptides and liquid matrices. Anal. Chem. 60, 2723–2729.CrossRefGoogle Scholar
  42. 42.
    Barber, M, Bell, D. J., Morris, M, Tetler, L. W., Woods, M D, Monaghan, J. J, and Morden, W. E. (1988) The interaction of meta-nitrobenzyl alcohol with compounds under fast atom bombardment conditions. Rapid. Commun. Mass Spectrom 2, 181–183.CrossRefGoogle Scholar
  43. 43.
    Kyranos, J. N. and Vouros, P (1990) Reduction processes in fast atom bombardment mass spectrometry: Interdependance of analyte and matrix redox potentials Biomed Environ. Mass Spectrom 19, 628–634.CrossRefGoogle Scholar
  44. 44.
    Fujita, Y, Matsuo, T, Sakurai, T, Matsuda, H, and Katakuse, I (1985) Mass distribution of peptide molecular ions in the secondary ionization process Int J Mass. Spectrom Ion. Processes 63, 231–240.CrossRefGoogle Scholar
  45. 45.
    Verkey, K (1990) Interference effects caused by oxidation and reduction processes in fast atom bombardment mass spectrometry Int J Mass Spectrom Ion Processes 97, 265–282.CrossRefGoogle Scholar
  46. 46.
    Shiea, J. and Sunner, J. (1991) The acid effect in fast atom bombardment Org Mass Spectrom 26, 38–44.CrossRefGoogle Scholar
  47. 47.
    Kausler, W., Schneider, K., and Spiteller, G (1988) Practical hints for peptide sequencing by soft ionization methods. Biomed Environ Mass Spectrom 17, 15–19.CrossRefGoogle Scholar
  48. 48.
    Naylor, S and Moneti, G. (1989) Factors affecting the fragmentation of peptides in fast atom bombardment mass spectrometry Biomed. Environ. Mass. Spectrom l8, 405–412.CrossRefGoogle Scholar
  49. 49.
    Mueller, D. R., Eckersley, M, and Richter, W J (1988) Hydrogen transfer reactions in the formation of “Y+2” sequence ions from protonated peptides Org Mass Spectrom. 23, 217–222.CrossRefGoogle Scholar
  50. 50.
    Ende, M. and Spiteller, G (1982) Contaminants in mass spectrometry. Mass Spectrom. Rev 1, 29–62.CrossRefGoogle Scholar
  51. 51.
    Middleditch, B. S. (1989) Analytical Artifacts. Elsevier, Amsterdam.Google Scholar
  52. 52.
    Moon, D.-C. and Kelley, J A. (1988) A simple desalting procedure for fast atom bombardment mass spectrometry Biomed Environ. Mass Spectrom. 17, 229–237.CrossRefGoogle Scholar
  53. 53.
    Sato, K., Asada, T., Ishihara, M., Kunihiro, F, Kammei, Y, Kubota, E, Costello, C. E., Martin, S. A., Scoble, H. A, and Biemann, K (1987) High performance tandem mass spectrometry: Calibration and performance of linked scans of a four-sector instrument. Anal Chem. 59, 1652–1659.CrossRefGoogle Scholar
  54. 54.
    Buko, A. M., Phillips, L. R., and Fraser, B. A. (1983) Peptide studies using a fast atom bombardment high field mass spectrometer and data system 3-Negative ionization. Mass calibration, data acquisition and structural characterization Biomed. Mass. Spectrom. 10, 387–393.CrossRefGoogle Scholar
  55. 55.
    Reynolds, J D. and Cook, K. D (1990) Improving fast atom bombardment mass spectra: the influence of some controllable parameters on spectral quality. J. Am Sot. Mass Spectrom. 1, 149–157.CrossRefGoogle Scholar
  56. 56.
    Arberth, W. H and Burlingame, A. L (1988) Effect of primary beam energy on the secondary ion sputtering efficiency of liquid secondary ionization mass spectrometry in the 5–30 keV range. Anal. Chem. 60, 1426–1428.CrossRefGoogle Scholar
  57. 57.
    Grotjahn, L. and Taylor, L. C E. (1985) The use of signal averaging techniques for the quantitation and mass measurement of high molecular weight compounds using fast atom bombardment mass spectrometry. Org Mass Spectrom. 20, 146–152.CrossRefGoogle Scholar
  58. 58.
    Cotter, R. J., Larsen, B S., Heller, D. N, Campana, J E, and Fenselau, C (1985) Wide mass range scanning for the fast atom bombardment mass spectrometry of very large compounds. Anal Chem. 57, 1479–1480.CrossRefGoogle Scholar
  59. 59.
    Yergey, J., Heller, D. N, Hansen, G., Cotter, R. J, and Fenselau, C. (1983) Isotope distributions in mass spectra of large molecules Anal Chem. 55, 353–356.CrossRefGoogle Scholar
  60. 60.
    Yergey, J., Cotter, R J, Heller, D N, and Fenselau, C (1984) Resolution requirements for middle-molecule mass spectrometry. Anal Chem 56, 2262, 2263.CrossRefGoogle Scholar
  61. 61.
    Morris, H. R, Panico, M, Barber, M., Bordoli, R. S, Sedgwick, R. D., and Tyler, A (1981) Fast atom bombardment A new mass spectrometric method for peptide sequence analysis Biochem. Biophys Res. Commun 101, 623–631.CrossRefGoogle Scholar
  62. 62.
    Williams, D H., Bradley, C V, Santikarn, S, and Bojesen, G. (1982) Fast-atom-bombardment mass spectrometry. a new technique for the determination of molecular weights and amino acid sequences of peptides. Biochem J 201, 105–117.Google Scholar
  63. 63.
    Barber, M., Bordoli, R S, Sedgwick, R. D, and Tyler, A N (1982) Fast atom bombardment mass spectrometry of the anglotensin peptides Biomed. Mass Spectrom. 9, 208–214.CrossRefGoogle Scholar
  64. 64.
    Roepstorff, P. and Fohlman, J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom 11, 601.CrossRefGoogle Scholar
  65. 65.
    Biemann, K (1988), Contribution of mass spectrometry to peptide and protein structure Biomed Environ. Mass. Spectrom 16, 99–111.CrossRefGoogle Scholar
  66. 66.
    Johnson, R. S, Martin, S A., and Biemann, K (1988) Collision-induced fragmentation of (M+H)+ions of peptides. Side chain specific sequence Ions Int J Mass Spectrom Ion Processes 86, 137–154.CrossRefGoogle Scholar
  67. 67.
    Johnson, R. S., Martin, S. A, Biemann, K., Stults, J. T., and Watson, J T. (1987) Novel fragmentation of peptides by collision induced decomposition in a tandem mass spectrometer Differentiation of leucine and isoleucine. Anal Chem 59, 2621–2625.CrossRefGoogle Scholar
  68. 68.
    Stults, J. T. and Watson, J. T. (1987) Identification of a new type of fragment ion in the collisional activation spectra of peptides allows leucine/isoleucine differentiation Biomed. Environ. Mass. Spectrom. 14, 583–586.CrossRefGoogle Scholar
  69. 69.
    Kassel, D. B. and Biemann, K (1990) Differentiation of hydroxyproline isomers and isobars in peptides by tandem mass spectrometry. Anal Chem. 62, 1691–1695.CrossRefGoogle Scholar
  70. 70.
    Morris, H. R., Panico, M, Karplus, A, Lloyd, P. E., and Riniker, B. (1982) Elucidation by FAB-MS of the structure of a new cardioactive peptide from Aplysia Nature 300, 643–645.CrossRefGoogle Scholar
  71. 71.
    Seki, S, Kambara, H., and Naolu, H. (1985) Sequence analysis for an unknown peptide by molecular secondary ion mass spectrometry. Org Mass. Spectrom 20, 18–24.CrossRefGoogle Scholar
  72. 72.
    Bradley, C. V., Williams, D. H., and Hanley, M. R (1982) Peptide sequencing using the combination of Edman degradation, carboxypeptidase digestion and fast atom bombardment mass spectrometry. Biochem. Biophys Res. Commun. 104, 1223–1230.CrossRefGoogle Scholar
  73. 73.
    Caprioli, R. M. and Fan, T. (1986) Peptide sequence analysis using exopeptidases with molecular analysis of the truncated polypeptides by mass spectrometry. Anal. Biochem. 154, 596–603.CrossRefGoogle Scholar
  74. 74.
    Biemann, K (1982) Sequencing of proteins Int J Mass Spectrom Ion. Phys 45, 183–194.Google Scholar
  75. 75.
    Wada, Y, Hayashi, A., Masanori, F, Katakuse, I., Ichihara, T, Nakabushi, H, Matsuo, T, Sakurai T., and Matsuda, H. (1983) Characterization of a new fetal hemoglobin variant, Hb F IzumiA 6Glu-Gly, by molecular secondary ion mass spectrometry. Biochim. Biophys. Acta. 749, 244–248.CrossRefGoogle Scholar
  76. 76.
    Wan, R., James, B., and Calder, M R (1991) Synthesis and characterization by fast atom bombardment mass spectrometry of peptides related to the B-domain of staphylococcal protein A. Org. Mass Spectrom 26, 458–462.CrossRefGoogle Scholar
  77. 77.
    Vestling, M M., Murphy, C. M., and Fenselau, C (1990) Recognition of trypsin autolysis products by high-performance liquid chromatography and mass spectrometry Anal Chem. 62, 2391–2394.CrossRefGoogle Scholar
  78. 78.
    Clench, M R, Garner, G. V, Gorden, D B, and Barber, M (1985) Surface effects in FAB mapping of proteins and peptides Biomed Mass Spectrom 12, 355–357.CrossRefGoogle Scholar
  79. 79.
    Naylor, S., Findeis, A. F, Gibson, B.W., and Williams, D H (1986) An approach toward the complete FAB analysis of enzymic digests of peptides and proteins J Am Chem. Soc. 108, 6359–6363.CrossRefGoogle Scholar
  80. 80.
    Naylor, S., Moneti, G., and Guyan, S (1988) Hydrophobic effects in the fast atom bombardment mass spectra of proteins and large peptides. Biomed Environ. Mass Spectrom. 17, 393–397.CrossRefGoogle Scholar
  81. 81.
    Bull, H B. and Breese, K (1974) Surface tension of amino acid solutions A hydrophobicity scale of the amino acid residues. Arch. Biochem Brophys. 161, 665–670.CrossRefGoogle Scholar
  82. 82.
    Poulter, L., Ang, S.-G, Williams, D H., and Cohen, P (1987) Observations on the quantitation of the phosphate content of peptides by fast atom-bombardment mass spectrometry Biochim. Biophys. Acta 929, 296–391.CrossRefGoogle Scholar
  83. 83.
    Caprioli, R. M., Moore, W. T, and Fan, T. (1987) Improved detection of “suppressed” peptides in enzymic digests analysed by FAB mass spectrometry Rapid Commun. Mass Spectrom 1, 15–17.CrossRefGoogle Scholar
  84. 84.
    Falick, A. M. and Maltby, D A (1989) Derivatization of hydrophilic peptides for liquid secondary ion mass spectrometry at the picomole level Anal Biochem. 182, 165–169.CrossRefGoogle Scholar
  85. 85.
    Whaley, B. and Caprioli, R. M. (1991) Identification of nearest-neighbor peptides in protease digests by mass spectrometry for construction of sequence-ordered tryptic maps. Biol Mass Spectrom. 20, 210–214.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1993

Authors and Affiliations

  • Robin Wait
    • 1
  1. 1.Division of PathologyPublic Health Laboratory Service Centre for Applied Microbiology and ResearchSalisburyUK

Personalised recommendations