Skip to main content

Animal Models of Niacin-Nicotinamide Deficiency

  • Protocol
Animal Models of Neurological Disease, II

Part of the book series: Neuromethods ((NM,volume 22))

  • 461 Accesses

Abstract

The human disease caused by niacin (vitamin B3) deficiency is pellagra, a disease that at one time filled insane asylums all over the world before the function of niacin was discovered. The recognition of pellagra as an endemic disease in the US dates from Searcy’s report in 1907 (Strandell et al., 1989) describing 88 cases of dementia in the Mount Vernon, Alabama Insane Asylum. Extensive knowledge about the course of pellagra has since been obtained and this disease has been eradicated as a public health problem; however, exact relationships between niacin deficiency and specific lesions in the central nervous system (CNS) remain poorly defined. Other nutritional deficiencies, common among patients in mental hospitals and in those with senility (Gregory, 1955; Hersov, 1955; McIlwain, 1966), undoubtedly contribute to neuronal dysfunction and exacerbate neurological problems associated with niacin deficiency. Mental symptoms associated with niacin deficiency often precede the dermatitis and other effects of this nutritional deficiency, suggesting a special sensitivity of the nervous system. If initial mental disturbances are not remedied by administration of nicotinic acid or tryptophan, from which nicotinic acid is synthesized in vivo, permanent structural changes occur in cerebral tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams D. A., Smith S. J., and Thompson S. H. (1980) Ionic currents in molluscan soma. Ann. Rev. Neurosci. 3,141–167.

    PubMed  CAS  Google Scholar 

  • Axelrod A. E., Spies T. D, and Elvehjam C. A. (1941) The effect of a nicotinic acid deficiency upon the coenzy me I content of the human. J. Biol. Chem. 138,667–676.

    CAS  Google Scholar 

  • Badawy A. A.-B,, Morgan C. J., Lane J., Dhaliwal K., and Bradley D. M. (1989) Liver tryptophan pyrrolase. A major determinant of the lower brain 5-hydroxytryptamine concentration in alcohol-preferring C57BL mice. Biochem. J. 264, 597–599.

    PubMed  CAS  Google Scholar 

  • Bain J. A. and Pollock G. H. (1949) Normal and seizure levels of lactate, pyruvate and acid soluble phosphates in the cerebellum and cerebrum. Proc. Soc. Exp. Biol. Med. NY 71, 495–497.

    CAS  Google Scholar 

  • Balazs R., Machiyama Y., Hammond B. J., Julian T., and Richter D. (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxy-lic acid cycle in brain tissue in vitro. Biochem. J. 116, 445–467.

    PubMed  CAS  Google Scholar 

  • Bender D. A., Smith W. R. D., and Humm R. P. (1977) Effects of benserazide on tryptophan metabolism in the mouse. Biochem Pharmcol. 26, 1619–1623.

    CAS  Google Scholar 

  • Bielicki L. and Krieglstein J. (1976) Inhibition of glucose phosphorylation in rat brain by thiopental. Naunyn-Schmied. Arch. Pharmacol. 293, 25–29.

    CAS  Google Scholar 

  • Blackwood W., McMenemey W. H., Meyer A., Norman R. M., and Russell D. S. (1963) Greenfield’s Neuropathology. Arnold, London.

    Google Scholar 

  • Boegman R. J. and Albuquerque E. X. (1980) Axonal transport in rats ren dered paraplegic following a single subarachnoid injection of either batrachotoxin or 6-amino-nicotinamide into the spinal cord. J. Neurobiol. 11, 283–290.

    PubMed  CAS  Google Scholar 

  • Booth R. F. G. and Clarke J. B. (1978) The control of pyruvate dehydrogenase in isolated brain mitochondria. J. Neurochem. 30, 1003–1008.

    PubMed  CAS  Google Scholar 

  • Brown O. R. and Seither R. L. (1989) Paraquat inhibits NAD biosynthesis at the quinolinic acid synthetase site. Med. Sci. Res. 17, 819–820.

    CAS  Google Scholar 

  • Brunink H. and Wessels E. J. (1972) The determination of nicotinic acid by fluorometric densitometry. Analyst 97, 258,259.

    Google Scholar 

  • Bruyn R. P. M. and Stoof J. C. (1990) The quinolinic acid hypothesis in Huntington’s chorea. J. Neurol. Sci. 95,29–38.

    PubMed  CAS  Google Scholar 

  • Brzoska H.-R. and Adhami H. (1975) Electron microscopic study of the effect of 6-AN on the sciatic nerve in newborn rats. Acta Neuropathol. 33 59–6

    PubMed  CAS  Google Scholar 

  • Buell M. V., Lowry O. R, Roberts N. R., Chang M-L. W., and Kapphahn J. I. (1958) The quantitative histochemistry of the brain. V. Enzymes of glucose metabolism. J. Biol. Chem. 232, 979–993.

    PubMed  CAS  Google Scholar 

  • Burch H. B., Lowry O. H., Padilla A. M., and Combs A. M. (1956) Effects of riboflavin deficiency and realimentation on flavin enzymes of tissues. J. Biol. Chem. 233, 29–45.

    Google Scholar 

  • Carpenter K. I. (1981) Effects of different methods of processing maize on its pellagragenic activity. Fed. Proc. 40, 1531–1535.

    PubMed  CAS  Google Scholar 

  • Chamberlain J. G. and Nelson M. M. (1963) Multiple congenital abnormalities in the rat resulting from acute maternal niacin deficiency during pregnancy. Proc Soc. Exp Biol. Med 112, 836–840.

    PubMed  CAS  Google Scholar 

  • Chamberlain J. G. (1972) 6-Aminonicotinamide (6AN)-induced abnormali-ties of the developing ependyma and choroid plexus as seen with the scanning electron microscope. Teratology 6, 281–286.

    PubMed  CAS  Google Scholar 

  • Chui E. and Garcia H. J. (1979) Pathogenesis of 6aminonicotinamide neurotoxicity: New structural analysis, in Progress in Neuropathology, vol.4 (ZimmermanH. M., ed.), Raven Press,New York, pp. 341–359

    Google Scholar 

  • Churchill L., Dilts R. P., and Kalivas P. W. (1990) Changes in garnmaaminobutyric acid, ÎĽ-opioid and neurotensin receptors in the accumbens-pallidal projection after discrete quinolinic acid lesions in the nucleus accumbens. Brain Res. 511, 41–54.

    PubMed  CAS  Google Scholar 

  • Clark B. R., Halpern R. M., and Smith R. A. (1975) A fluorimetric method for quantitation in the picomole range of N1-methylnicotinamide and nicotinamide in serum. Anal. Biochem. 68, 54–61

    PubMed  CAS  Google Scholar 

  • Coggeshall R. E. and MacLean P. D. (1958) Hippocampal lesions following administration of 3-acetylpyridine. Proc. Soc. Exp. Biol. Med. 98, 687–689.

    PubMed  CAS  Google Scholar 

  • Coper H., Hadass H., and Lison H. (1966) Untersuchungen zum mechanismus zentralnervoser funktionsstorungen durch 6-aminonicotinamid. Naunyn-Schmied. Arch. Pharmakol. Exp. Pathol. 255, 96–106.

    Google Scholar 

  • D’Adamo A. F., Jr. and Haft D. E. (1965) An alternate pathway of alphaketoglutarate catabolism in the isolated, perfused rat liver. I. Studies with DL-glutamate-2-and-5-14C. J Biol. Chem 240, 613–617.

    Google Scholar 

  • Deguchi T., Ichiyama A., Nishizuka Y., and Hayaishi O. (1968) Studies on the biosynthesis of nicotinamide adenine dinucleotide in the brain. Biochim. Biophys Acta 158, 382–393.

    PubMed  CAS  Google Scholar 

  • Denson R. (1962) Nicotinamide in the treatment of schizophrenia. Dis Nerv. Syst. 23, 162–172.

    Google Scholar 

  • Desclin J. C. and Escubi J. (1974) Effects of 3-acetylpyrine on the CNS of the rat, as demonstrated by silver methods. Brain Res. 77,349–364.

    PubMed  CAS  Google Scholar 

  • Deshpande S. S., Albuquerque E. X., Kauffman F. C., and Guth L. (1978) Physiological, biochemical and histological changes in skeletal muscle, neuromuscular junction and spinal cord of rats rendered paraplegic by subarachnoidal administration of 6-aminonicotinamide. Brain Res. 140, 89–109.

    PubMed  CAS  Google Scholar 

  • Deutch A. Y., Rosin D. L., Goldstein M., and Roth R. H. (1989) 3-Acetylpyridine-induced degeneration of the nigrostriatal dopamine system: An animal model of olivopontocerebellar atrophy-associated Parkinsonism. Exp. Neural. 105, 1–9.

    CAS  Google Scholar 

  • Dorris R. L. (1989) Interactions of nicotinamide with dopamine receptors in vivo. Pharmacol. Biochem. Behav. 33,915–917.

    PubMed  CAS  Google Scholar 

  • Dickens F. and Glock G. E. (1951) Direct oxidation of glucose-6-phosphate, 6-phosphogluconate and pentosed-phosphates by enzymes of animal origin. Biochem. J. 50,81–95.

    PubMed  CAS  Google Scholar 

  • Edstrom J.-E. and Grampp W. (1965) Nervous activity and metabolism of ribonucleic acids in the crustacean stretch receptor neuron. J. Neurochem. 12,735–741.

    PubMed  CAS  Google Scholar 

  • Fenerty C. A. and Lindup W. E. (1989) Brain uptake of L-tryptophan and diazepam: The role of plasma protein binding. J Neurochem. 53, 416–422.

    PubMed  CAS  Google Scholar 

  • Frieda R. L. and Bischhausen R. (1978) How do axons control myelin formation? The model of 6-aminonicotinamide neuropathy. J. Neural. Sci. 35, 341–353.

    Google Scholar 

  • Gal E. M. (1974) Cerebral tryptophan-2,3-dioxygenase (pyrrolase) and its induction in rat brain, J. Neurochem. 22, 861–863.

    PubMed  CAS  Google Scholar 

  • Gallent M., Bishop M., and Steele G. (1966) DPN (NAD oxidized form): A preliminary evaluation in chronic schizophrenic patients. Ann. Ther. Res. 8, 542.

    Google Scholar 

  • Garcia-Bunuel L., McDougal D. B., Jr., Burch H. B., Jones E. M., and Touhill E. (1962) Oxidized and reduced pyridine nucleotide levels and enzyme activities in brain and liver of niacin deficient rats. J. Neurochem. 9, 589–594.

    PubMed  CAS  Google Scholar 

  • Genazzani E. and Di Carlo R. (1974) Inference of neurologically active drugs with metabolism of RNA in brain, in Central Nervous System. Studies on Metabolic Regulation and Function (Genazzani E. and Herken H., eds.), Springer-Verlag, Berlin pp.217–222.

    Google Scholar 

  • Gerber G. B. and Demo J. (1970) Metabolism of labelled nicotinamide coenzyme in different organs of mice and rats. Proc. Soc. Exp. Biol. Med. 134,689–693.

    PubMed  CAS  Google Scholar 

  • Gibson G. E., Glantz S., Duffy T. E., and Blass J. P. (1983) Regional brain glucose utilization and behavior during niacin deficiency. Trans. Am. Soc. Neurochem. 14, 121.

    Google Scholar 

  • Clock G. E., and McLean P. (1954) Levels of enzymes of the direct oxidative pathway of carbohydrate metabolism in mammalian tissues and tumours. Biochem J. 56, 171–175.

    Google Scholar 

  • Goldsmith G. A. (1958) Niacin-tryptophan relationships in man and niacin requirement. Am. J. Clin. Nutr. 6, 479–486.

    PubMed  CAS  Google Scholar 

  • Grant W. M. (1980) The peripheral visual system as a target, in Experimental and Clinical Neurotoxicology (Spencer P. S. and Schaumburg H. H., eds.), Williams and Wilkins, Baltimore, pp.77–91.

    Google Scholar 

  • Gregory I. (1955) The role of nicotinic acid (niacin) in mental health and disease. J. Merit. Sci. 101,85–109.

    CAS  Google Scholar 

  • Griffiths I. R., Kelly P. A. T., and Grome J. J. (1981) Glucose utilization in the CNS in the acute gliopathy due to 6-aminomcotinamide. Lab. Invest. 44, 547–552.

    PubMed  CAS  Google Scholar 

  • Harkonen M. A. and Kauffman F. C. (1974) Metabolic alterations in the axotomized superior cervical ganglion of the rat. II. The pentose phosphate pathway. Brain Res. 65, 141–157.

    PubMed  CAS  Google Scholar 

  • Hayes W. J., Jr. (1982) Pesticides Studied in Man. Williams and Wilkins, Baltimore

    Google Scholar 

  • Heald P. J. (1956) Effects of electrical pulses on the distribution of radioactive phosphate in cerebral tissue. Biochem. J. 63,242–249.

    PubMed  CAS  Google Scholar 

  • Herken H., Lange K., and Kolbe H. (1969) Brain disorders induced by pharmacological blockade of the pentose phosphate pathway. Biochem. Biophys. Res. Commun. 36, 93–100.

    PubMed  CAS  Google Scholar 

  • Herken H. (1970) Antimetabolic action of 6aminonicotinamide on the pentose phosphate pathway in the brain, in A Symposium on Mechanisms of Toxicity (Aldridge W. N., ed.), MacMillan, London, pp. 189–203.

    Google Scholar 

  • Herken H., Lange K., Kolbe H., and Keller K. (1974) Antimetabolic action of the pentose phosphate pathway in the entral nervous sytem induced by 6-aminonicotinamide, in Central Nervous System. Studies on Metabolic Regulation and Function (Genazzani E, and Herken H., eds.), Springer-Verlag, Berlin, pp. 41–54.

    Google Scholar 

  • Herken H., Meyer-Estorf G., Halbhubner K., and Loos D. (1976) Spastic paresis after 6-aminonicotinamide: Metabolic disorders in the spinal cord and electromyographically recorded changes in the hind limbs of rats. Naunyn-Schmied. Arch. Pharmacol. 293, 245–255.

    CAS  Google Scholar 

  • Hermann A. and Gorman A. L. F. (1981) Effects of 4-aminopyridine on potassium currents in a molluscan neuron. J. Gen. Physiol. 78, 63–86.

    PubMed  CAS  Google Scholar 

  • Hersov L. A. (1955) A case of childhood pellagra with psychosis. J. Ment. Sci. 101, 878–883.

    PubMed  CAS  Google Scholar 

  • Heyes M. P., Rubinow D., Lane G, and Markey S. P. (1989a) Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann. Neural. 26, 275–277.

    CAS  Google Scholar 

  • Heyes M. P., Quearry B. J., and Markey S. P. (1989b) Systemic endotoxin increases L-tryptophan, 5-hydroxyindoleacetic acid, 3 hydroxykynurenine and quinolinic acid content of mouse cerebral cortex. Brain Res. 49l, 173–179.

    Google Scholar 

  • Hicks S. P. (1955) Pathological effects of antimetabolites. I. Acute lesions in the hypothalamus, peripheral ganglia, and adrenal medulla caused by 3-acetylpyridine and prevented by nicotinamide. Am. J. Pathol. 31, 189–199.

    PubMed  CAS  Google Scholar 

  • Himwich H. E. (1951) Brain Metabolism and Cerebral Disorders. Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Hoffer A. (1962) Niacin Therapy in Psychiatry. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Hoffer A. (1966) The effect of nicotinic acid on the frequency and duration of rehospitalization of schizophrenic patients, a controlled comparison study. Int. J. Neuropsychtr. 2, 234–240.

    CAS  Google Scholar 

  • Horita N., Ishii T., and Izumiyama Y. (1981) Ultrastructure of 6-aminonicotinamide (6-AN)-induced lesions in the CNS of rats. III. Alterations of the spinal gray matter lesions with aging. Acta Neuropathol. 53, 227–235.

    PubMed  CAS  Google Scholar 

  • Hothersall J. S., Baquer N. Z., Greenbaum A. L., and McLean P. (1979) Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulfate on the integration of metabolic routes. Arch. Biochem. Biophys. 198, 478–492.

    PubMed  CAS  Google Scholar 

  • Hothersall J. S., Zubairu S., McLean P., and Greenbaum A. L. (1981) Alternative pathways of glucose utilization in brain; Changes in the pattern of glucose utilization in brain resulting from treatment of rats with 6-aminonicotmamide. J. Neurochein. 37, 1484–1496.

    CAS  Google Scholar 

  • Hyden H. and Egyhazi E. (1968) The effect of tranylcypromine on synthesis of macromolecules and enzyme activities in neurons and glia. Natrology 18, 732–736.

    CAS  Google Scholar 

  • Ikeda M., Tsuji H., Nakamura S., Ichiyama A., Nishizuka Y., and Hayaishi O. (1965) Studies on the biosynthesis of nicotinamide adenine dinucle-otide. II. A role of picolinic carboxylase in the biosynthesis of nicoti-namide adenine dinucleotide from tryptophan in mammals. J. Biol. Chem. 240, 1395–1401.

    PubMed  CAS  Google Scholar 

  • Jacobs J. M., Miller R. H., Whittle A., and Cavanagh J. B. (1979) Studies on the early changes in acute isoniazid neuropathy in the rat. Acta Neuropathol. 47, 85–92.

    PubMed  CAS  Google Scholar 

  • Jepson J. B. (1972) Hartnup disease, in The Metabolic Basis of lnherited Disease (Stanbury J. B., Wyngaarden J. B., and Frederickson D. S., eds.), McGraw Hill, New York, pp. 1486–1503.

    Google Scholar 

  • Johnson W. J. and McCall J. D. (1955) 6-Aminonicotinamide, a potent nicotinamide antagonist. Science 122, 834.

    PubMed  CAS  Google Scholar 

  • Kahana S. E., Lowry O. H., Schulz D. W., Passonneau J. V., and Crawford E. J. (1960) The kinetics of phosphoglucoisomerase. J. Biol. Chem. 235, 2178–2184.

    PubMed  CAS  Google Scholar 

  • Kaplan N. O., Goldin A., Humphreys S. R., Ciotti M. M., and Stolzenbach F. E. (1956) Pyridine nucleotide synthesis in the mouse. J. Biol. Chem. 219, 287–298.

    PubMed  CAS  Google Scholar 

  • Kaplan N. O. (1960) Neurochemistry of Nucleotides and Amino Acids (Brady R. O. and Tower D. B., eds.), Wiley, New York, pp. 41–54.

    Google Scholar 

  • Kauffman F. C. (1972) The quantitative histochemistry of enzymes of the pentose phosphate pathway in the CNS of the rat. J. Neurochem. 19, 1–9.

    PubMed  CAS  Google Scholar 

  • Kauffman F. C. and Johnson E. C. (1974) Cerebral energy reserves and gly-colysis in neural tissue of 6-aminonicotinamide-treated mice. J. Neurobiol. 5, 379–392.

    PubMed  CAS  Google Scholar 

  • Keller K., Kolbe H., Herken H., and Lange K. (1976) Glycolysis and glyco-gen metabolism after inhibition of hexose monophosphate pathway in C6-glial cells. Naunyn-Schmied. Arch. Pharmacol. 294, 213–215.

    CAS  Google Scholar 

  • Kline N. S., Barclay G. L., Cole J. O., Esser A. H., Lehmann H., and Wittenborn J. R. (1967) Diphosphopyridine nucleotide (DPN) in the treatment of schizophrenia. J. Am. Med. Assoc. 200, 881–882.

    CAS  Google Scholar 

  • Knoll-Kohler E., Wojnorowicz F., and Sarkander H.-J. (1980) Correlated changes in neuronal cerebral rat brain RNA synthesis and hypo-and hypermotoric disorders induced by 6-aminonicotinamide (6-AN). Exp. Brain Res. 38, 173–179.

    PubMed  CAS  Google Scholar 

  • Kodicek E., Braude R., Kon S. K., and Mitchell K. G. (1959) The availability to pigs of nicotinic acid in tortilla baked from maize treated with lime-water. Br.J. Nutr. 13, 363–384.

    PubMed  CAS  Google Scholar 

  • Kohler E., Barrach H-J., and Neubert D. (1970) Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analog of NADP. FEBS Lett. 6, 225–228.

    PubMed  Google Scholar 

  • Krehl W. A., Teply L. J., and Elvehjem C. A. (1945) Corn as an etiological factor in the production of nicotinic acid deficiency in the rat. Science 101, 283.

    PubMed  CAS  Google Scholar 

  • Krehl W. A. (1981) Discovery of the effect of tryptophan on niacin deficiency. Fed. Proc. 40, 1527–1530.

    PubMed  CAS  Google Scholar 

  • Krieglstein J. and Stock R. (1975) Decreased glycolytic flux rate in the isolated perfused rat brain after pretreatment with 6-aminonicotinamide. Naunyn-Schinied. Arch. Pharmacol. 290, 323–327.

    CAS  Google Scholar 

  • Kuhlman R. E. and Lowry O. H. (1956) Quantitative histochemical changes during the development of the rat cerebral cortex. J. Neurochem. 1, 173–180.

    PubMed  CAS  Google Scholar 

  • Laatsch R. H. (1962) Glycerol phosphate dehydrogenase activity of developing rat CNS. J. Neurochem. 9, 487–492.

    PubMed  CAS  Google Scholar 

  • Laguna J. and Carpenter K. J. (1951) Raw versus processed corn in niacin-deficient diets. J. Nutr. 45, 21–28.

    PubMed  CAS  Google Scholar 

  • Lajtha A. L., Maker H. S., and Clarke D. D. (1981) Metabolism and transport of carbohydrates and amino acids, in Basic Neurology (Siegel G. J., Albers R. W., Agranoff B. W., and Katzman R., eds.), Little, Brown, Boston, MA, pp.41–54.

    Google Scholar 

  • Lange K., Kolbe H., Keller K., and Herken H. (1970) Der kohlenhydratstof fwechsel des gehims nach blockade des pentose-phosphat-weges durch 6-aminonicotinsaureamid. Hoppe-Seyler’s Z. Physiol. Chein. 351, 1241–1252.

    CAS  Google Scholar 

  • Lapin I. P. (1978) Stimulant and convulsive effects of kynurenines injected into brain ventricules in mice. J. Neural Transm. 42, 37–43.

    PubMed  CAS  Google Scholar 

  • Llinas R., Walton K., Hillman D. E., and Sotelo C. (1975) Inferior olive: Its role in motor learning. Science 190, 1230,1231.

    Google Scholar 

  • Llinas R., Walton K., and Bohr V. (1976) Synaptic transmission in squid giant synapse after potassium conductance blockage with external 3-and 4-aminopyridine. Biophys. J. 16, 83–86.

    PubMed  CAS  Google Scholar 

  • Lowry O. H. and Passonneau J. V. (1964) The relationships between substrates and enzymes of glycolysis in brain. J. Biol. Chem. 239, 31–42.

    PubMed  CAS  Google Scholar 

  • Luine V. N., and Kauffman F. C. (1971) Triphosphopyridine nucleotidede-pendent enzymes in the developing spinal cord of the rabbit. J. Neurochem. l8, 1113–1124.

    Google Scholar 

  • Madsen J., Abraham S., and Chaikoff I. L. (1964) The conversion of glutamate carbon to fatty acid carbon via citrate. I. The influence of glucose in lactating rat mammary gland slices. J. Biol. Chem. 239, 1305–1309.

    PubMed  CAS  Google Scholar 

  • McCandless D. W. and Scott W. J. (1981) The effect of 6-aminonicotinamide on energy metabolism in rat embryo neural tube. Teratology 23, 391–395.

    PubMed  CAS  Google Scholar 

  • McDougal D. B., Jr., Schultz D. W., Passonneau J. V., Clark J. R., Reynolds M. A., and Lowry O. H. (1961) Quantitative studies of white matter. I. Enzymes involved in glucose-6-phosphate metabolism. J. Gen. Physiol. 44, 487–498.

    PubMed  CAS  Google Scholar 

  • McIlwain H. and Rodnight R. (1949) Breakdown of cozymase by a system from nervous tissue. Biochem. J. 44, 470–477.

    CAS  Google Scholar 

  • McIlwain H. (1966) Biochemistry and the CNS. J & A Churchill, London, pp. 102–126.

    Google Scholar 

  • Meyer-Estorf G., Schulze P. E., and Herken H. (1973) Distribution of 3H-labelled 6-aminonicotinamide and accumulation of 6-phosphoglu-conate in the spinal cord. Naunyn-Schmied. Arch. Phrmacol. 276, 235–241.

    CAS  Google Scholar 

  • Meyer-Konig E. (1973) Ultrastruktur der Glia-und Axonschadigung durch 6-Aminonicotinamid (6-AN) am Sehnerv der Ratte. Acta Neuropathol. 26, 115–126.

    PubMed  CAS  Google Scholar 

  • Mosher L. R. (1970) Nicotinic acid side effects and toxicity: A review. Am. J. Psychiatr. 126, 1290–1296.

    PubMed  CAS  Google Scholar 

  • Nakamura S., Ikeda M., Tsuji H., Nishizuka Y., and Hayaishi O. (1963) Quinolinate transphosphoribosylase: A mechanism of niacin ribonucle-otide formation from quinolinic acid. Biochem Biophys. Res. Commun. 13, 285–290.

    CAS  Google Scholar 

  • Nemeth A. M. and Dickerman H. (1960) Pyridine nucleotides and diphosphopyridine nucleotidase in developing mammalian tissues. J. Biol. Chem. 235, 1761–1764.

    PubMed  CAS  Google Scholar 

  • Nisslbaum J. S., Packer D. E., and Bodansky O. (1964) Comparison of the actions of human brain, liver, and heart lactic dehydrogenase variants on nucleotide analogs and on substrate analogs in the absence and in the presence of oxalate and oxamate. J. Biol. Chem. 239, 2830–2834.

    Google Scholar 

  • Osmond H. and Hoffer A. (1962) Massive niacin treatment of schiiophrenia: Review of a nine year study. Lancet 1, 316–319.

    PubMed  CAS  Google Scholar 

  • Perkins M. N. and Stone T. W. (1983) Quinolinic acid: Regional variations in neuronal sensitivity. Bruin Res. 259, 172–176.

    CAS  Google Scholar 

  • Pfeiffer C. C. (1981) Extranutrients and mental illness. Biol. Psychiatr. 16, 797–799.

    CAS  Google Scholar 

  • Plaitakis A., Nicklas W. J., and Desnick R. J. (1980) Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann. Neural. 7, 297–303.

    CAS  Google Scholar 

  • Politis M. J. (1989) 6-Aminonicotinamide selectively causes necrosis in reactive astroglia cells in vivo. Preliminary morphological observations. J. Neural. Sci. 92, 71–79.

    CAS  Google Scholar 

  • Prakash M. R. and Baquer N. Z. (1981) Inhibition of gamma-aminobutyric acid transaminase with 6-aminonicotinamide in regions of the rat brain. Biochem. Pharmacol. 30, 663–664.

    PubMed  CAS  Google Scholar 

  • Salter M., Knowles R. G., and Pogson C. I. (1989) How does displacement of albumin-bound tryptophan cause sustained increases in the free tryptophan concentration in plasma and 5-hydroxytryptamine synthesis in brain? Biochem.J. 262, 365–368.

    PubMed  CAS  Google Scholar 

  • Samson F. E. Jr., and Dahl N. A. (1957) Cerebral energy requirement of neonatal rats. Am. J. Physiol. 188, 277–280.

    PubMed  CAS  Google Scholar 

  • Sanberg P. R., Calderon S. F., Giordano M., Tew J. M., and Norman A. B. (1989) The quinolinic acid model of Huntington’s disease: Locomotor abnormalities. Exp. Neural. 105, 45–53.

    CAS  Google Scholar 

  • Sarkander H.-I., Knoll-Kohler E., and Cervos-Navarro J. (1978) Repression of glial RNA transcription during the development of 6-aminonicotinamide (6-AN)-induced acute gliopathy. J. Pharmacol. Exp. Ther. 205, 503–514.

    PubMed  CAS  Google Scholar 

  • Schneider H. and Cervos-Navarro J. (1974) Acute gliopathy in spinal cord and brain stem induced by 6aminonicotinamide. Acta Neuropthal. 27,11–23.

    CAS  Google Scholar 

  • Schwartz R., Whetsell W. O., Jr., and Mangano R. M. (1983) Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316–318.

    Google Scholar 

  • Singal S. A., Sydenstricker V. P., and Littlejohn J. M. (1948) The nicotinic acid content of tissues of rats on corn rations. J. Biol. Chem. 176, 1069–1073.

    PubMed  CAS  Google Scholar 

  • Speciale C.and Schwarcz R. (1990) Uptake of kynurenine into ratbrain slices. J. Neurochem. 54, 156–163.

    PubMed  CAS  Google Scholar 

  • Speciale C., Ungerstedt U., and Schwartz R. (1989) Production of extracellular quinolinic acid in the striatum studied by microdialysis in unanesthetized rats. Neurosci. Lett. 104,345–350.

    PubMed  CAS  Google Scholar 

  • Spector R. and Huntoon S. (1981) No effect of maternal niacin deficiency on niacin metabolism in newborn brain. Neurochem. Res. 6, 475–483.

    PubMed  CAS  Google Scholar 

  • Spector R. and Kelly P. (1979) Niacin and niacinamide accumulation by rabbit brain slices and choroid plexus in vitro. J. Neurochem. 33, 291–298.

    PubMed  CAS  Google Scholar 

  • Spector R. and Lorenzo A. V. (1975) Myo-inosital transport in the CNS. Am. J. Physiol. 228, 1510–1518.

    PubMed  CAS  Google Scholar 

  • Spector R. (1979) Niacin and niacinamide transport in the CNS. In vivo studies. J. Neurochem. 33, 895–904.

    PubMed  CAS  Google Scholar 

  • Stemberg S. S. and Philips F. S. (1958) 6-Aminonicotinamide and acute degenerative changes in the CNS. Science 127, 644–646.

    Google Scholar 

  • Stone T. W. and Perkins M. N. (1981) Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS. Eur. J. Phurmacol. 72, 411,412.

    Google Scholar 

  • Strandell E., Eizirik D. L., and Sandler S. (1989) Survival and B-cell function of mouse pancreatic islets maintained in culture after concomitant exposure to streptozotocin and nicotmamide. Exp. Clin. Endocrinol. 93, 219–224.

    PubMed  CAS  Google Scholar 

  • Todd W. P., Carpenter B. K., and Schwartz R. (1989) Preparation of 4-halo-3-hydroxyanthranilates and demonstration of their inhibition of 3-hydroxyanthranilate oxygenase activity in rat and human brain tissue. Prep. Biochem. 19,155–165.

    PubMed  CAS  Google Scholar 

  • Turski W. A., Gramsbergen J. B. P., Traitler H., and Schwartz R. (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine. J. Neurochem. 52, 1629–1636.

    PubMed  CAS  Google Scholar 

  • Unna K. (1939) Studies on the toxicity and pharmacology of nicotinic acid. J. Phamtacol. Exp. Ther. 65, 95–103.

    CAS  Google Scholar 

  • Utter M. F. (1950) Mechanism of inhibition of anaerobic glycolysis of brain by sodium ions. J. Biol. Chem. 185, 499–517.

    PubMed  CAS  Google Scholar 

  • Vezzani A., Stasi M. A., Wu H. Q., Castiglioni M., Weckermann B., and Samanin R. (1989) Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood-brain barrier permeability. Exp. Neural. 106, 90–98.

    CAS  Google Scholar 

  • Weil-Malherbe H. and Bone A. D. (1951) Studies on hexokinase. I. The hexokinase activity of rat brain extracts. Biochem. J. 49,339–347.

    PubMed  CAS  Google Scholar 

  • Willing F., Neuhoff V., and Herken H. (1964) Der Austausch von 3-acetylpyridin gegen nicotinsaureamid in den pyridinnucleotiden verschiedener hirnregionen. Naunyn-Schmied. Arch. Pharmacol. 247, 254–266.

    CAS  Google Scholar 

  • Windmueller H. G. and Kaplan N. O. (1962) Solubilization and purification of diphosphopyridine nucleotidase from pig brain. Biochim. Biophys. Acta 56, 388–391.

    PubMed  CAS  Google Scholar 

  • Winer A. D. (1960) Fluorescent studies of ox-brain lactic and malic dehy-drogenase. Biochem. J. 76, 5p–6p.

    Google Scholar 

  • Wolf A. and Cowen D. (1959) Pathological changes in the CNS produced by 6-aminonicotinamide. Bull. N.Y. Acad. Med. 35, 814–817.

    PubMed  CAS  Google Scholar 

  • Woolley D. W. (1952) A Study of Antimetabolites. Chapman and Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press Inc

About this protocol

Cite this protocol

Kauffman, F.C. (1992). Animal Models of Niacin-Nicotinamide Deficiency. In: Boulton, A.A., Baker, G.B., Butterworth, R.F. (eds) Animal Models of Neurological Disease, II. Neuromethods, vol 22. Humana Press. https://doi.org/10.1385/0-89603-211-6:259

Download citation

  • DOI: https://doi.org/10.1385/0-89603-211-6:259

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-211-8

  • Online ISBN: 978-1-59259-627-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics