Chemically Induced Models of Seizures

  • David W. McCandless
  • Ross B. FineSmith
Part of the Neuromethods book series (NM, volume 22)

Abstract

The purpose of this review is to present an overview of various experimental models of chemically induced seizures. It is not intended to be an exhaustive review of all chemical models, but rather a “how to” description of some of the more popular models that have yielded important data concerning mechanisms of seizure propagation. This chapter will examine seizure models that are directly related to chemical or drug administration, and not, for example, those that may result from a chemical imbalance, such as produced by hypoxia or hypoglycemia. Finally, in vivo seizure models will be described. Important information can be derived from in vitro or slice studies, but these models are beyond the scope of this chapter.

Keywords

Cobalt Respiration Penicillin Gelatin Hypoglycemia 

References

  1. Anderson M. C., Chung E., and Van Woert M. H. (1988) Strychnine seizure potentiation by azaspirodecanedione anxiolytics in tts. Eur. J Pharmacol. 155,279–283.PubMedCrossRefGoogle Scholar
  2. Butler T. C. (1978) Some quantitative aspects of the pharmacology of phenobarbital, in Annepileptic Drugs: Quantitative Analysis and Interpretation (Pippenger C. E., Penry J. K., and Kutt H. eds.), Raven Press, New York, pp. 261–271.Google Scholar
  3. Caveness W. F. (1963) Onset and cessation of fits following craniocerebral trauma.J. Neurosurg. 20,570–583.PubMedCrossRefGoogle Scholar
  4. Chusid J. G., Kopeloff L. M., and Kopeloff N. (1955) Motor epilepsy of parieta1 lobe origin in the monkey. Neurology 5,108–112.PubMedGoogle Scholar
  5. de Groot J. (1967) The rat forebrain in Stereotaxic Coordinates. Noordhollandische Uitgevers Maatschappij, Amsterdam, The Netherlands.Google Scholar
  6. Dow R. S., Femandez-Guardiola A., and Manni E. (1962) The production of cobalt experimental epilepsy in the rat. Electroenceph. Clin. Neurophysiol. 14, 399–407.PubMedCrossRefGoogle Scholar
  7. Dworsky S. J. and McCandless D. W. (1987) Regional cerebral energy metabolism bicuculline induced seizures. Neurochem. Res. 12, 237–240.PubMedCrossRefGoogle Scholar
  8. Fisher R. S. (1989) Animal models of the epilepsies. Brain Res. Rev. 14,245–278.PubMedCrossRefGoogle Scholar
  9. Gloor P., Quesney L. F., and Zumstein H. (1977). Pathophysiology of generalized penicillin epilepsy in the cat: The role of cortical and subcortical structures. 2. Topical application of penicillin to the cerebral cortex and to subcortical structures. Electroetqh Clin. Neurophysiol. 43,79–94.CrossRefGoogle Scholar
  10. Hawkins C. A., and Mellanby J. H. (1987) Limbic epilepsy induced by tetanus toxin: A longitudinal electroencephalographic study. Epilepsia 28, 431–441.PubMedCrossRefGoogle Scholar
  11. Hunter C., Chung E., and Van Woert M. H. (1989) Age dependent changes in brain glycine concentration and strychmne induced seizures in the rat. Brain Res. 482247–251.PubMedCrossRefGoogle Scholar
  12. Kaplan H. A. (1961) Management of craniocerebral trauma and its relation to subsequent seizures. Epilepsia 2,111–116.PubMedGoogle Scholar
  13. Kopeloff N., Whiffler J. R., Pacella B. L., and Kopeloff L.M. (1950) The epileptogenic effect of subcortical alumina cream in the Rhesus monkey. Clin. Neurophysiol. 2, 163–168.CrossRefGoogle Scholar
  14. Little H. J., Nutt D. J., and Taylor S. C. (1986) Optimising the pentylenetetrazole infusion method for measuring seizure tresholds. B. J. Pharmacol. 88, 326P.Google Scholar
  15. Lothman E. W. and Collins R. C. (1984) Seizures, in Neurological Puthophysiology (Pearlman A. L. and Collins R. C. eds.), Oxford University Press, New York, pp. 229–249.Google Scholar
  16. Mellanby J., George G., Robinson A., and Thompson P. A. (1977) Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J. Newel. Neurosurg. Psychiatr. 40,404–414.CrossRefGoogle Scholar
  17. Mellanby J., Strawbridge P., Collinridge G. I., George G., Rands G., and Strand C. (1981) Behavioral correlates of an experimental hippocampus epileptiform syndrome in rats. J. Neural. Neurosurg. Psychiatr. 44, 1084–1093.CrossRefGoogle Scholar
  18. McCandless D. W., Abel M. S., and Schwartzenburg F. C. (1982) Isoniazid induced seizures and cerebral cortical and cerebellar energy metabolites. J. Neurosci. Res. 7,419–430.PubMedCrossRefGoogle Scholar
  19. McCandless D. W., DeFrance J. F., Dworsky S., and Presley-Zimmer E. (1986) Status epilepticus-induced changes in primate cortical energy metabolism. Am. J. Physiol. 251,774–779.Google Scholar
  20. McCandless D. W., Dworsky S., Modak A. T., and Stavinoha W. B. (1987) Pentylenetetrazole-induced changes in cerebral energy metabolism in Tupaia Glis. Epilepsia 28,184–189.PubMedCrossRefGoogle Scholar
  21. Prince D. A. (1968) The depolarization shift in epileptic neurons. Exp. Neural. 21,467–485.CrossRefGoogle Scholar
  22. Prince D. A. and Farrell D. (1969). Centrencephalic spike wave discharges following parertera1 penicillin injection in the cat. Neurology 19,309,310.Google Scholar
  23. Prince D. A.and Wilder B. J. (1967) Control mechanisms in cortical epileptogenic foci. Arch. Neurol. 16,194–202.PubMedGoogle Scholar
  24. Purpura D. P., Penry J. K., Woodbury D. M., Tower D. B., and Walter R. D. (1972) Experimental Models of Epilepsy—a Manual for the laboratory Worker. Raven Press, New York.Google Scholar
  25. Schwartz R. D., Seale T. W., Skolnick P., and Paul S. M. (1989) Differential seizure sensitivities to picrotoxin in two inbred strains of mice (DBA/ 2J and BALB/c ByJ): Parallel changes in GABA receptor mediated chloride flux and receptor binding. Bruin Res. 481,169–174.CrossRefGoogle Scholar
  26. Smgh L., Oles R. J., and Tricklebank M. D. (1990) Modulation of seizure susceptibility in the mouse by the strychnine-insensitive glycine recognition site of the NMDA receptor/ion channel complex. Br. J. Pharmacol. 99,285–288.Google Scholar
  27. Velasco A., Olivares N., Rivas F., Velasco M., and Velasco F. (1980) Alumina cream induced focal motor epilepsy in cats. Arch. Neurol. 37,287–290.PubMedGoogle Scholar
  28. Willmore L. J., Sypert G. W., and Munson J. B. (1978) Recurrent seizures induced by cortical iron injection: A model of posttraumatic epilepsy. Ann.Neural. 4,329–336.CrossRefGoogle Scholar
  29. Wong R. K. S. and Prince D. A. (1979) Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science 204,1228–1231.PubMedCrossRefGoogle Scholar
  30. Yamamoto C. (1972) Intracellular study of seizure-like after discharges elicited in thin hippocampal sections in vitro. Exp. Neural. 35,154–164.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1992

Authors and Affiliations

  • David W. McCandless
    • 1
  • Ross B. FineSmith
    • 1
  1. 1.Department of Cell Biology and AnatomyThe Chicago Medical SchoolNorth Chicago

Personalised recommendations