Investigation of the Intracellular Regulators and Components of the Exocytotic Pathway

  • Robert D. Burgoyne
Part of the Neuromethods book series (NM, volume 20)


Exocytotic fusion of secretory vesicles with the plasma membrane occurs in cells in either a constitutive or regulated fashion (Burgess and Kelly, 1987). Constitutive exocytosis is the mechanism by which membrane components and certain soluble proteins are released. In the regulated secretory pathway, secretory products are stored in secretory vesicles until exocytois is triggered by an intracellular signal, and is the pathway for secretion of neurotransmitters and many hormones. The regulated secretory pathways in neurons and secretory cells have a number of aspects in common (Cheek and Burgoyne, 1990), and we and many others have chosen to study the bovine adrenal chromaffin cell as a convenient model system for the investigation of regulated exocytosis (Burgoyne, 1984a; Kink and Knight, 1988; Winkler, 1988). This chapter will concentrate on work on adrenal chromaffin cells (Fig. 1) with some reference to exocytosis in other secretory cells, and will cover experimental approaches that have been used in the study of the intracellular regulators and mediators of exocytosis in chromaffin cells.
Fig. 1.

General scheme showing the control of exocytosis in bovine adrenal chromaffin cells. The sources of Ca2+ include entry from outside and release from two separate internal stores. The cytoskeletal barrier at the cell cortex is disassembled in response to Ca2+ or activation of protein kinase C. The exocytotic machinery is shown as a shaded box. Following exocytosis, vesicle membrane is recovered by endocytosis through coated vesicles. Abbreviations: pIc, phosphoinositidase C; pKc, protein kinase C ACh, acetylcholine; m, muscarinic receptor; n, nicotinic receptor.


Chromaffin Cell Secretory Vesicle Catecholamine Secretion Adrenal Chromaffin Cell Bovine Chromaffin Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam-Vizi V., Rosener S., Aktories K., and Knight D. E. (1988) Botulinum toxin-induced ADP-ribosylation and inhibition of exocytosis are unrelated events. FEBS Lett. 238, 277–280.PubMedGoogle Scholar
  2. Ahnert-Hilger G., Bhakdi S., and Gratzl M. (1985) Minimal requirement for exocytosis: A study using PC12 cells permeabilized with staphylococ-cal alpha-toxin. J Biol. Chem. 260, 12,730–12,734.PubMedGoogle Scholar
  3. Ahnert-Hilger G., Bader M.-F., Bhakdi S, and Gratzl M. (1989) Introduction of macromolecules into bovine medullary chromaffin cells and rat pheochromocytoma cells (PC12) by permeabilization with strepto-lysin O-inhibitory effect of tetanus toxin on catecholamine secretion. J. Neuro-chem. 53, 751–1758.Google Scholar
  4. Ali S. M. and Burgoyne R. D. (1990) These stimulatory effect of calpactin (annexin II) on calcium-dependent exocytosis in chromaffin cells: Requirement for both the N-terminal and core domains of p36 and ATP. Cell Signal. 2, 265–276.PubMedGoogle Scholar
  5. Ali S. M., Geisow M. J., and Burgoyne R. D. (1989) A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells. Nature 340, 313–315.PubMedGoogle Scholar
  6. Artalejo C. R., Garcia A. G., and Aunis D. (1987) Chromaffin cell calcium channel kinetics measured isotopically through fast calcium, strontium and barium fluxes. J. Biol. Chem. 262, 915–926.PubMedGoogle Scholar
  7. Bader M.-F. and Aunis D. (1983) The 97-KD-actinin-like protein in chromaffin granule membranes from adrenal medulla: Evidence for localization on the cytoplasmic surface and for binding to actin filament. Neurosci. 8, 165–181.Google Scholar
  8. Bader M.-F., Hikita T., and Trifaro J. M. (1985) Calcium-dependent calmodulin binding to chromaffin granule membranes: Presence of a 65-kilo-dalton calmodulin-binding protein. J. Neurochem. 44, 526–539.PubMedGoogle Scholar
  9. Bader M.-F., Thierse D., Aunis D., Ahnert-Hilger G., and Gratzl M. (1986) Characterization of hormone and protein release from α-toxin-permeabilized chromaffin cells in primary culture. J. Biol. Chem. 261, 5777–5783.PubMedGoogle Scholar
  10. Baker E. M., Cheek T. R., and Burgoyne R. D. (1986) Cyclic AMP inhibits secretion from bovine adrenal chromaffin cells evoked by carbamyl-choline but not high K+. Biochim. Biophys. Acta 846, 167–173.Google Scholar
  11. Baker P. F. and Knight D. E. (1981) Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Phil. Trans. R. Sot. Land. [Biol.] 296, 83–103.Google Scholar
  12. Barrowman M. M., Cockcroft S., and Gomperts B. D. (1986) Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature 319, 504–507.PubMedGoogle Scholar
  13. Bar-Sagi D. and Gomperts B. D. (1988) Stimulation of exocytotic degranulation by microinjection of the rus oncogene protein into rat mast cells. Oncogene 3, 463–469.PubMedGoogle Scholar
  14. Bittner M. A. and Holz R. W. (1988) Effects of tetanus toxin on catecholamine release from intact and digitonin-permeabilized chromaffin cells. J Neurochem. 51, 451–456.PubMedGoogle Scholar
  15. Bittner M. A., Holz R. W., and Neubig R. R. (1986) Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells. J. Biol. Chem. 261, 10,182–10,188.PubMedGoogle Scholar
  16. Brocklehurst K. W., Morita K, and Pollard H. B. (1985) Characterization of protein kinase C and its role in catecholamine secretion from bovine adrenal medullary cells. Biochem. J. 228, 35–42.PubMedGoogle Scholar
  17. Brooks J. C. and Treml S. (1984) Effect of trifluoperazine and calmodulin on catecholamine secretion by saponin-skinned cultured chromaffin cells. Life Sci. 34, 669–674.PubMedGoogle Scholar
  18. Brooks J. C., Treml S., and Brooks M. (1984) Thiophosphorylation prevents catecholamine secretion by chemically skinned chromaffin cells. Life Sci. 35, 569–574.PubMedGoogle Scholar
  19. Bunn S. J. and Marley P. D. (1989) Effects of angiotensin II on cultured, bovine adrenal medullary cells. Neuropeptides 13, 121–132.PubMedGoogle Scholar
  20. Burgess T. L. and Kelly R. B. (1987) Constitutive and regulated secretion of proteins. Ann. Rev. Cell Biol. 3, 143–193.Google Scholar
  21. Burgoyne R. D. (1984a) Mechanisms of secretion from adrenal chromaffin cells. Biochim. Biophys. Acta 779, 201–216.PubMedGoogle Scholar
  22. Burgoyne R. D. (1984b) The relationship between secretion and intracellular free calcium in bovine adrenal chromaffin cells. Biosci. Rep. 4, 605–611.PubMedGoogle Scholar
  23. Burgoyne R. D. (1987) Control of exocytosis. Nature 328, 112,113.Google Scholar
  24. Burgoyne R. D. (1988) Calpactin in exocytosis? Nature 331, 20.PubMedGoogle Scholar
  25. Burgoyne R. D. (1990) Secretory vesicle-associated proteins and their role in exocytosis. Ann. Rev. Physiol. 52, 647–659.Google Scholar
  26. Burgoyne R. D. and Cheek T. R. (1987a) Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci. Rep. 7, 281–288.PubMedGoogle Scholar
  27. Burgoyne R. D. and Cheek T. R. (1987b). Role of fodrin in secretion. Nature 326, 448.PubMedGoogle Scholar
  28. Burgoyne R. D. and Geisow M.-J. (1981) Specific binding of 125I-calmodulin to and protein phosphorylation in adrenal chromaffin granule membranes. FEBS Left. 131, 127–131.Google Scholar
  29. Burgoyne R. D. and Geisow M. J. (1989) The annexin family of calciumbinding proteins. Cell Galcium 10, 1–10.Google Scholar
  30. Burgoyne R. D. and Morgan A. (1989) Low molecular weight GTP-binding proteins of adrenal chromaffin cells are present on the secretory granule. FEBS Left. 245, 122–126.Google Scholar
  31. Burgoyne R. D. and Norman K. M. (1984) Effect of calmidazolium and phorbol ester on catecholamine secretion from adrenal chromaffin cells. Biochim. Biophys. Acta 805, 37–43.PubMedGoogle Scholar
  32. Burgoyne R. D., Cheek T. R,, and Norman K. M. (1986) Identification of a secretory granule-binding protein as caldesmon. Nature 319, 68–70.PubMedGoogle Scholar
  33. Burgoyne R. D., Cheek T. R., O'Sullivan A. J., and Richards R. C. (1988a) Control of the cytoskeleton during secretion, in Molecular Mechanisms in Secretion (Thorn N. A., Treiman M., and Petersen O. H., eds.), Munksgaard, Copenhagen, pp. 612–627.Google Scholar
  34. Burgoyne R. D., Morgan A., and O'Sullivan A. J. (1988b) A major role for protein kinase C in calcium activated exocytosis in permeabilized adrenal chromaffin cells. FEBS Lett. 238, 151–155.PubMedGoogle Scholar
  35. Burgoyne R. D., Geisow M. J., and Barron J. (1982) Dissection of stages in exocytosis in adrenal chromaffin cells with the use of trifiuoperazine. Proc. R. Sot. Land. [Biol.] 216, 111–115.Google Scholar
  36. Burgoyne R. D., Cheek T. R, Morgan A., O’Sullivan A. J., Moreton R. B., Berridge M. J., Mata A., Colyer J., Lee A. G, and East J, M. (1989a) Distribution of two distinct Cab-ATPase-like proteins and their relationship to the agonist-sensitive calcium store in bovine adrenal chromaffin cells. Nature 342, 72–74.PubMedGoogle Scholar
  37. Burgoyne R. D., Morgan A., and O'Sullivan A. J. (1989b) The control of cytoskeletal actin and exocytosis in intact and permeabilized chromaffin cells: Role of caicium and protein kinase C. Cell. Signal. 1, 323–334.PubMedGoogle Scholar
  38. Cena V., Stutzin A., and Rojas E. (1989) Effects of calcium and Bay K-8644 on calcium currents in adrenal medullary chromaffin cells. J. Memb. Biol. 112, 255–265.Google Scholar
  39. Cheek T. R. and R. D. Burgoyne. (1985) Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells. Biochim. Biophys. Acta 846, 167–173.PubMedGoogle Scholar
  40. Cheek T. R. and Burgoyne R. D. (1986) Nicotine evoked disassembly of cortical actin filaments in bovine adrenal chromaffin cells. FEBS Left. 207, 110–113.Google Scholar
  41. Cheek T. R. and Burgoyne R. D. (1987) Cyclic AMP inhibits both nicotine stimulated actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J. Biol. Chem. 262, 11,663–11,666.PubMedGoogle Scholar
  42. Cheek T. R. and Burgoyne R. D. (1991) The cytoskeleton in secretion and neurotransmitter release, in The Neuronal Cytoskeleton (Burgoyne R. D., ed.), Liss, New York, pp. 309–325.Google Scholar
  43. Cheek T. R. and Thastrup O. (1989) Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells. Cell Calcium 10, 213–221.PubMedGoogle Scholar
  44. Cheek T. R. Jackson T. R., O'Sullivan A. J., Moreton R. B, Berridge M. J., and Burgoyne R. D. (1989a) Simultaneous measurement of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of fura-2 in co-cultured cells. J. cell Biol. 109, 1219–1427.PubMedGoogle Scholar
  45. Cheek T. R., O'Sullivan A. J., Moreton R. B, Berridge M. J., and Burgoyne R. D. (1989b) Spatial localization of the stimulus-induced rise in cytosolic Ca2+ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarink patterns. FEBS Lett. 247, 429–434.PubMedGoogle Scholar
  46. Cheek T. R., O'Sullivan A. J., Moreton R. B, Berridge M. J., and Burgoyne R. D. (1990) The caffeine-sensitive store in bovine adrenal chromaffin cells: An examination of its role in triggereing secretion and Ca2+ homeostasis. FEBS Lett. 266, 91–95.PubMedGoogle Scholar
  47. Cobbold P. H., Cheek T. R., Cuthbertson K. S. R., and Burgoyne R. D. (1987) Calcium transients in single adrenal chromaffin cells detected with aequorin. FEBS Latt. 211, 44–48.Google Scholar
  48. Cote A., Doucet J.-P., and Trifaro J.-M. (1986) Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neurosci. 19, 629–645.Google Scholar
  49. Crabb J. H. and Jackson R. C. (1985) In vitro reconstitution of exocytosis from plasma membrane and isolated secretory vesicles. J. cell Biol. 101, 2263–2273.PubMedGoogle Scholar
  50. Creutz C. E. (1981) Cis-unsaturated fatty acids induce the fusion of chromaffin granule aggregated by synexin. J. Cell Biol. 91, 247–256.PubMedGoogle Scholar
  51. Creutz C. E., Pazoles C. J., and Pollard H. B. (1978) Identification and purification of an adrenal meduIIary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J. Biol. Chem. 253, 2858–2866.PubMedGoogle Scholar
  52. Creutz C. E., Dowling L. G., Sando J. J., Villar-Palasi C., Whipple J. H., and Zaks W. J. (1983) Characterisation of the chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+. J. Biol. Chem. 258, 14,664–14,674.PubMedGoogle Scholar
  53. Creutz C. E., Zaks W. J., Hamman H. C., Crane S., Martin W. H., Gould K. L., Oddie K. M, and Parsons S. J. (1987) Identification of chromaffin granule-binding proteins. Relationship of the chromobindins to calelectrin, synhibin and the tyrosine kinase subtrates p35 and p36. J. Biol. Chem. 262, 1860–1868.PubMedGoogle Scholar
  54. De Camilli P. and Greengard P. (1986) Synapsin I, a synaptic vesicle-associated neuronal phosphoprotein. Biochem. Pharmacol. 35, 4349–4357.PubMedGoogle Scholar
  55. Drust D. S. and Creutz C. E. (1988) Aggregation of chromaffin granule by calpactin at micromolar levels of calcium. Nature 33, 88–91.Google Scholar
  56. Dunn L. A. and Holz R. W. (1983) Catecholamine secretion from digitonln-treated adrenal medullary chromaffin cells. J. Biol. Ghem. 258, 4989–4993.Google Scholar
  57. Eberhard D. A. and Holz R. W. (1987) Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic mechanisms. J. Neurochem. 49, 1634–1643.PubMedGoogle Scholar
  58. Eberhard D. A. and Holz R. W. (1988) Intracellular Ca2+ activates phospholipase C. Trends Neurosci. 11, 517–520.PubMedGoogle Scholar
  59. Fisher S. K., Holz R. W., and Agranoff B. W. (1980) Muscarinic receptors in chromaffin cell cultures mediate enhanced phospholipid labelling but not catecholamine secretion. J. Neurochem. 37, 491–497.Google Scholar
  60. Fournier S. and Trifaro J.-M. (1988) A similar calmodulin-binding protein expressed in chromaffin, synaptic, and neurohypophyseal secretory vesicles. J. Neurochem. 50, 27–37.PubMedGoogle Scholar
  61. Fowler V. M. and Pollard H. B. (1982) Chromaffin granule membrane-F-actin interactions are calcium sensitive. Nature 295, 336–339.PubMedGoogle Scholar
  62. Frye R. A. and Holz R. W. (1983) Phospholipase A2 inhibitors block catecholamine secretion and calcium uptake in cultures bovine adrenal medullary cells. Mol. Pharmucol. 23, 547–550.Google Scholar
  63. Frye R. A. and Holz R. W. (1984) The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells. J. Neurochem. 43, 146–150.PubMedGoogle Scholar
  64. Frye R. A. and Holz R. W. (1985) Arachidonic acid release and catecholamine secretion from digitonin-permeabilized chromaffin cells. Effects of micromolar calcium, phorbol ester, and protein alkylating agents. J. Neurochem. 44, 265–273.PubMedGoogle Scholar
  65. Geisow M. J. and Burgoyne R. D. (1982) Calcium-dependent binding of cytosolic proteins by chromaffin granules from adrenal medulla. J. Neurothem. 38, 1735–1741.Google Scholar
  66. Geisow M. J. and Burgoyne R. D. (1983) Recruitment of cytosolic proteins to a secretory granule membrane depends on Ca2+-calmodulin. Nature 301, 432–435.PubMedGoogle Scholar
  67. Geisow M. J., Burgoyne R. D, and Harris A. (1982) Interaction of calmodulin with adrenal chromaffin granule membranes. FEBS Lett. 143, 69–72.PubMedGoogle Scholar
  68. Gomperts B. D. (1986) Calcium shares the limelight in stimulus-secretion coupling. Trends Biochem. Sci. 11, 290–292.Google Scholar
  69. Goud B., Salminen A., Walworth N. C, and Novick P. (1988) A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53, 753–768.PubMedGoogle Scholar
  70. Harris B., Cheek T. R, and Burgoyne R. D. (1986) Effects of metalloendo-protease inhibitors on secretion and intracellular free calcium in bovine adrenal chromaffin cells. Biochim. Biophys. Acta 889, 1–5.PubMedGoogle Scholar
  71. Hirokawa N., Sobue K., Kanda K., Harada A., and Yorifuji H. (1989) The cytoskeletal architecture of the presynaptic terminal and the molecular structure of synapsin I. J. Cell. Biol. 108, 111–126.PubMedGoogle Scholar
  72. Holz R. W. Senter R. A., and Frye R. A. (1982) Relationship between Ca2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla. J. Neurochem. 39, 635–645.PubMedGoogle Scholar
  73. Holz R. W., Bittner M. A., Peppers S. C., Senter R. A., and Eberhard D. A. (1989) MgATP-independent and MgATP-dependent exocytosis. Evidence that MgATP primes adrenal chromaffin cells to undergo exocytosis. J. Biol. Chem. 264, 5412–5419.PubMedGoogle Scholar
  74. Kao L. S. and Schneider A. S. (1985) Mucarinic receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium. J. Biol. Chem. 60, 2019–2022.Google Scholar
  75. Kenigsberg R. L. and Trifaro J. M. (1985) Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neurosci. 14, 335–347.Google Scholar
  76. Kenigsberg R. L., Cote A., and Trifaro J, M. (1982) Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entry. Neurosci. 7, 2277–2281.Google Scholar
  77. Kilpatrick D. L., Slepetis R. J., Corcoran J. J., and Kirshner N. (1982) Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Natrochem. 38, 427–435.Google Scholar
  78. Knight D. E. and Baker P. P. (1982) Calcium dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J. Memb. Biol. 68, 107–140.Google Scholar
  79. Knight D. E. and Baker P. P. (1983) The phorbol ester TPA increases the af-finity of exocytosis for calcium in leaky adrenal medullary cells. FEBS Lett. 160, 98–100.PubMedGoogle Scholar
  80. Knight D. E. and Baker P. P. (1985) Guanine nucleotides and Ca-dependent exocytosis. Studies on two adrenal cell preparations. FEBS Lett. 189, 345–349.PubMedGoogle Scholar
  81. Knight D. E. and Kesteven N. T. (1983) Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cell. Proc. R. Soc. Lond. [Biol.] 218, 177–199.Google Scholar
  82. Knight D. E., Sugden D., and Baker P. F. (1989) Evidence implicating protein kinase C in exocytosis from electropermeabilized bovine chromaffin cells. J. Memb. Biol. 104, 21–34.Google Scholar
  83. Knight D. E., Tonge D. A, and Baker P. F. (1985) Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317, 719–721.PubMedGoogle Scholar
  84. Kondo H., Wolosewick J. J., and Pappas G. D. (1982) The microtrabecular lattice of the adrenal medulla revealed by polyethylene glycol embedding and stereo electron microscopy. J. Neurosci. 2, 57–65.PubMedGoogle Scholar
  85. Lee S. A. and Holz R. W. (1986) Protein phosphorylation and secretion in digitonin-permeabilized adrenal chromaffin cells. Effects of micromolar C2+, phorbol esters and diacylglycerol. J Biol. Ghem. 261, 17,089–17,098.Google Scholar
  86. Lee S. A., Holz R. W., and Hathaway D. R. (1987) Effects of purified myosin light chain kinase on myosin light chain phosphorylation and catech-olamine secretion in digitonin-permeabilised chromaffin cells. Biosci. Rep 7, 323–332.PubMedGoogle Scholar
  87. Lelkes P. I., Friedman J. E, Rosenheck K. and Oplatka A. (1986) Destabilization of actin filaments as a requirement for the secretion of catecholamines from permeabilized chromaffin cells. FEBS Lett. 208, 357–363.PubMedGoogle Scholar
  88. Lipscombe D., Madison D. V., Poenie M. Reuter H. Tien R. W. and Tsien R. Y. (1988) Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron. 1, 355–36PubMedGoogle Scholar
  89. Livett B. G. (1984) Adrenal medullary cells in vitm. Physiol. Rev. 64, 1103–1161.PubMedGoogle Scholar
  90. Marriott D., Adams M., and Boarder M. R. (1988) Effect of forskolin and prostaglandin E1 on stimulus secretion coupling in cultured bovine adrenal chromaffin cells. J. Neuuochem. 50, 616–623.Google Scholar
  91. Matter K., Dreyev F., and Aktories F. (1989) Actin involvement in exocytosis from PC12 cells: Studies on the influence of botulinum toxin C2 on stimulated noradrenaline release. J. Neurochem. 52, 370–376.PubMedGoogle Scholar
  92. Momayezi M., Lumpert C. J., Kersen H, Gras U., Plattner H., Krinks M. H., and Klee C. B. (1987) Exocytosis induction in Puramecium tefruureliu cells by exogenous phosphoprotein phosphatase in vivo and in vitro: Possible involvement of calcineurin in exocytotic membrane fusion. J. Cell Biol. 105, 181–189.PubMedGoogle Scholar
  93. Morgan A. and Burgoyne R. D. (1990a) Stimulation of calcium-independent catecholamine secretion from digitonin-permeabilized bovine adrenal chromaffin cells by guanine nucleotide analogues. Relationship to arachidonate release. Biochem. J. 269, 521–526.PubMedGoogle Scholar
  94. Morgan A. and Burgoyne R. D. (1990b) Relationship between arachidonic acid release and calcium-dependent exocytosis in digitonin-permeabilized bovine adrenal chromaffin cells. Biochem. J. 271, 571–574.PubMedGoogle Scholar
  95. Morita K., Dohi T., Kitayama S., Koyama Y., and Tsijimoto A. (1987a) Enhancement of stimulation-evoked catecholamine release from cultured bovine adrenal chromaffin cells by forskolin. J, Neurochem. 48, 243–247.Google Scholar
  96. Morita K., Dohi T., Kitayama S, Koyama Y., and Tsijimoto A. (1987b) Stimulation-evoked Ca2+ fluxes in cultures bovine adrenal chromaffin cells are enhanced by forskolin. J. Neurochem. 48, 248–252.PubMedGoogle Scholar
  97. Nakata T., Sobue K., and Hirokawa N. (1990) Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deepetch electron microscopy and immunocytochemistry. J. Cell Biol. 110, 13–25.PubMedGoogle Scholar
  98. Nakaki T, Sasakawa N., Yamamoto S, and Kato R. (1988) Functional shift from muscarinic to nicotinic cholinergic receptors involved in inositol trisphosphate and cyclic GMP accumulation during the primary culture of adrenal chromaffin cells. Biochem. J. 251, 397–403.PubMedGoogle Scholar
  99. Negishi M., Ito S., and Hayaishi O. (1989) Prostaglandin E receptors in bovine adrenal medulla are coupled to adenylate cyclase via G, and to phosphoinositide metabolism in a pertussis toxin-insensitive manner. J. Biol. Chem. 264, 3916–3923.PubMedGoogle Scholar
  100. Neher E. and Marty A. (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 79, 6712–6716.PubMedGoogle Scholar
  101. Nichols R. A., Wu W. C-S., Haycock J. W., and Greengard P. (1989) Introduction of impermeant molecules into synaptosomes using freeze/ than permeabilisation. J. Neurochem. 52, 521–529.PubMedGoogle Scholar
  102. Nichols R. A., Sihra T. S., Czemik A. J., Nairn A., and Greengard P. (1990) Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343, 647–651.PubMedGoogle Scholar
  103. Orci L., Gabbay K. H., and Malaisse W. J. (1972) Pancreatic B-cell web: Its possible role in insulin secretion. Science 175, 1128–1130.PubMedGoogle Scholar
  104. O'Sullivan A. J. and Burgoyne R. D. (1988) The role of cytoplasmic pH in the inhibitory action of high osmolarity on secretion from adrenal chromaffin cells. Biochim. Biophys. Acta 969, 211–216.PubMedGoogle Scholar
  105. O'Sullivan A. J. and Burgoyne R. D. (1989) A comparison of bradykinin, angiotensin II and muscarinic stimulation of cultured bovine adrenal chromaffin cells. Biosci. Rep. 9, 243–252.PubMedGoogle Scholar
  106. O'Sullivan A. J. and Burgoyne R. D. (1990) Cyclic GMP modulates nicotine-stimulated secretion in cultured bovine adrenal chromaffin cells: Effects of 8-bromo-cGMP, atrial natriuretic peptide and nitroprusside (nitric oxide). J. Neurochem. 54, 1805–1808.PubMedGoogle Scholar
  107. O'Sullivan A. J., Cheek T. R., Moreton R. B, Berridge M. J., and Burgoyne R. D. (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video-imaging of fura-2. EMBO J. 8, 401–411.PubMedGoogle Scholar
  108. Penner R., Neher E., and Dreyer F. (1986) IntracelIularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324, 76–78.PubMedGoogle Scholar
  109. Perrin D. and Aunis D. (1985) Reorganization of α-fodrin induced by stimulation in secretory cells. Nature 314, 589–592.Google Scholar
  110. Perrin D., Langley O. K., and Aunis D. (1987) Anti α-fodrin inhibits secretion from permeabilized chromaffin cells. Nature 326, 498–501.PubMedGoogle Scholar
  111. Plevin R. and Boarder M. J. (1988) Stimulation of formation of inositol phosphates in primary cultures of bovine adrenal chromaffin cells by angiotensin II, histamine, bradykinin, and carbachol. J. Neurochem. 51, 634–641.PubMedGoogle Scholar
  112. Pocotte S. L, Frye R. A., Senter R. A., Terbuh D. R., Lee S. A., and Holz R. W. (1985) Effects of phorbol ester on catecholamine secretion and protein phoshphorylation in adrenal medullary cell cultures. Proc. Natl. Acad. Sci. USA 82, 930–934.PubMedGoogle Scholar
  113. Pollard H. B, Bums A. L., and Rojas E. (1988) A molecular basis for synexin-driven calcium-dependent membrane fusion. J. Exp. Biol. 139, 267–286.PubMedGoogle Scholar
  114. Rink T. J. and Knight D. E. (1988) Stimulus-secretion coupling: A perspective highlighting the contributions of Peter Baker. J. Exp. Biol. 139, 130.Google Scholar
  115. Rink T. J., Sanchez A., and Hallam T. J. (1983) Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305, 317–319.PubMedGoogle Scholar
  116. Rosario L. M., Soria B., Feuerstein G, and Pollard H. B. (1989) Voltage-sensitive calcium flux into bovine chromaffin cells occurs through dihydro-pyridine-sensitive and dihydropyridine-and SZ-conotoxin-insensitive pathways. Neurosci. 29, 735–747.Google Scholar
  117. Salminen A. and Novick P. J. (1987) A ras-like protein is required for a post-golgi event in yeast secretion. Cell 49, 527–538.PubMedGoogle Scholar
  118. Sarafian T., Aunis D., and Bader M.-F. (1987) Loss of proteins from digito-nin-permeabilised adrenal chromaffin cells essential for exocytosis. J. Biol. Chem. 262, 16,671–16,676.PubMedGoogle Scholar
  119. Satir B. H., Hamasaki T., Reichman M., and Murtaugh T. J. (1989) Species distribution of a phosphoprotein (parafusin) involved in exocytosis. Proc. Natl. Acad. Sci. USA 86, 930–932.PubMedGoogle Scholar
  120. Schafer T., Karli U. O, Gratwohl E. K.-M., Schweizer P. E., and Burger M. M. (1987a) Digitonin-permeabhized cells are exocytosis competent. J. Neurochem. 49, 1696–1707.Google Scholar
  121. Schafer T., Karli U. O., Schweizer F. E., and Burger M. M. (1987b) Docking of chromaffin granules—a necessary step in exocytosis. Biosci. Rep. 7, 269–479.PubMedGoogle Scholar
  122. Schneider A. S., Cline H. T., and Lemaire S. (1979) Rapid rise in cyclic GMP accompanies catecholamine secretion in suspensions of isolated adrenal chromaffin cells. Life Sci. 24, 1389–1394.PubMedGoogle Scholar
  123. Schweizer F. E., Schafer T., Tapparelli C., Grob M, Karli U. O., Heumann R., Thoenen H., Bookman R. J., and Burger M. M. (1989) Inhibition of exocytosis by intracellularly applied antibodies against a chromaffin granule-binding protein. Nature 339, 709–712.PubMedGoogle Scholar
  124. Slepetis R. and Kirshner N. (1982) Inhibition of 45Ca2+ uptake and catecholamine secretion by phenothiazines and pimozide in adrenal medulla cell cultures. Cell Calcium. 3, 183–190.PubMedGoogle Scholar
  125. Sontag J. M., Aunis D., and Bader M.-F. (1988) Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin O-permeabilised chromaffin cells. Eur. J. Cell Biol. 46, 316–326.PubMedGoogle Scholar
  126. Tatham P. E. and Gomperts B. D. (1989) ATP-inhibits onset of exocytosis in permeabilised mast cells, Biosci. Rep. 9, 99–109.PubMedGoogle Scholar
  127. Terbush D. R., Bittner M. A., and Holz R. W. (1988) Ca2+ influx causes rapid translocation of protein kinase C to membranes. Studies of the effects of secretagogues in adrenal chromaffin cells, J. Biol. Chem. 263, 18,873–18,879.PubMedGoogle Scholar
  128. Vilmart-Seuwen J., Kersken H., Sturzl R, and Plattner H. (1986) ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: An analysis with Paramecium cells in vivo and in vitro. J. Cell Biol. 103, 1279–1288.PubMedGoogle Scholar
  129. Volpe P., Krause K. H., Hashimoto S., Zorzato P., Pozzan T., Meldolesi J., and Lew D. P. (1988) “;Calciosome,” a cytoplasmic organelle: The ino-sit 01 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc. Natl. Acad. Sci. USA 85, 1091–1095.PubMedGoogle Scholar
  130. Von Euler U. S. and Floding I. (1955) A fluorimetric micromethod for differential estimation of adrenaline and noradrenaline. Acta Physiol. Scand. (Suppl.)ll8, 45–56.Google Scholar
  131. Wakade A. R., Malhotra R. K., and Wakade T. D. (1986) Phorbol ester facilitates 45Ca2+ accumulation and catecholamine secretion by nicotine and excess K+ but not by muscarine in rat adrenal medulla. Nature 321, 698–700.PubMedGoogle Scholar
  132. Winkler H. (1988) Occurrence and mechanism of exocytosis in adrenal medulla and sympathetic nerve, in Handbook of Experimental Pharmacology (Trendelenburg U. and Weiner N., eds.), Springer-Verlag, Berlin, pp. 43–118.Google Scholar
  133. Zieseniss E. and Plattner H. (1985) Synchronous exocytosis in Paramecium cells involves very rapid (<1 set), reversible dephosphorylation of a 65kDa phosphoprotein in exocytosis-competent strains. J. Cell Biol. 101, 2028–2035.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1992

Authors and Affiliations

  • Robert D. Burgoyne
    • 1
  1. 1.Department of PhysiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations