Methods in Cyclic Nucleotide Research

  • Kenneth J. Murray
Part of the Neuromethods book series (NM, volume 20)

Abstract

Cyclic nucleotides were discovered about 30 years ago, becoming the prototype intracellular messengers (Robison et al., 1971). Intracellular messenger signaling systems may be split into the following divisions:
  1. 1.

    Generation of the signal;

     
  2. 2.

    Removal of the signal (generally this occurs by metabolism, although Ca2+ is an obvious exception);

     
  3. 3.

    Direct mediators of the signal; and

     
  4. 4.

    Ultimate effects of the signal.

     

Keywords

Hydrolysis Morphine Adenosine Caffeine Charcoal 

References

  1. Alvarez R. and Daniels D. V. (1990) A single column method for the assay of adenylate cyclase. Anal. Biochem. 187,98–103.PubMedGoogle Scholar
  2. Balaban C. D., Billingsley M. L., and Kincaid R. L. (1989) Evidence of transsynaptic regulation of calmodulin-dependent cyclic nucleotide phosphodiesterase in cerebellar Purkinje cells. J. Neurosci. 9, 2374–2381.PubMedGoogle Scholar
  3. Barber R. and Butcher R. W. (1988) cAMP turnover in intact cells, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 50–60.Google Scholar
  4. Barsony J. and Marx S. J. (1990) Immunocytology on microwave-fixed cells reveals rapid and agonist-specific changes in subcellular accumulation patterns for cAMP or cGMP. Proc. Nutl. Acad. Sci. USA 87,1188–1192.Google Scholar
  5. Beavo J. A. (1988) Multiple isozymes of cyclic nucleotide phosphodiester-ase, in Advances in Second Messenger and Phosphoprotein Research, vol. 22 (Greengard P. and Robison G. A., eds.), Raven, New York, pp. 1–38.Google Scholar
  6. Beavo J. A. and Houslay M. D. (eds.) (1990) Molecular Pharmacology of Cell Regulation, vol. 2, John Wiley & Sons, London.Google Scholar
  7. Beavo J. A. and Reifsnyder D. H. (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol. Sci. 11, 150–155.PubMedGoogle Scholar
  8. Beavo J. A., Hardman J. G., and Sutherland E. W. (1971) Stimulation of ad-enosine 3′,5′monophosphate hydrolysis by guanosine 3′,5′-monophos-phate. J. Biol. Chem. 246,3841–3846.PubMedGoogle Scholar
  9. Beebe S. J. and Corbin J, D. (1986) Cyclic nucleotide-dependent protein ki-nases, in The Enzymes XVII (Boyer P. D. and Krebs E. G, eds.), (Academic, New York), pp. 43–111.Google Scholar
  10. Beebe S. J., Blackmore P. F., Chrisman T. D, and Corbin J. D. (1988) Use of synergistic pairs of site-selective cAMP analogs in intact cells, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 118–139.Google Scholar
  11. Beeker K., Deane D, Elton C., and Pennington S. (1988) Ethanol-induced growth inhibition in embryonic chick brain is associated with changes in cytoplasmic cyclic AMP-dependent protein kinase regulatory sub-unit. Alcohol. Alcohol. 23, 477–482.PubMedGoogle Scholar
  12. Bhatnagar D., Burton A. A., and Roskoski R., Jr. (1988) Differential sensitivity of neural and nonneural protein kinase isozymes to cyclic AMP. Biochem. Biophys. Res. Commun. 156, 801–806.PubMedGoogle Scholar
  13. Billingsley M. L., Polli J. W., Balaban C. D, and Kincaid R. L. (1990) Development expression of calmodulin-dependent cyclic nucleotide phosphodiesterase in rat brain. Dev. Brain, Res. 53, 253–263.Google Scholar
  14. Birnbaumer L., Abramowitz J., and Brown A. M. (1990) Receptor-effector coupling by G proteins. Biochem. Biophys. Acta 1031, 163–224.PubMedGoogle Scholar
  15. Bradbury J. M. and Thompson R. J. (1984) Photoaffinity labelling of central-nervous-system myelin. Biochem J. 221, 361–368.PubMedGoogle Scholar
  16. Braumann T. and Jastorff B. (1985) Physico-chemical characterization of cyclic nucleotides by reversed-phase high-performance liquid chromatography. II. Quantitative determination of hydrophobicity. J. Chromatogr. 350, 105–118.Google Scholar
  17. Braumann T., Jastorff B., and Richter-Landsberg C. (1986a) Fate of cyclic nucleotides in PC12 cell cultures: Uptake, metabolism, and effects of metabolites on nerve growth factor-induced neurite outgrowth. J. Neurochem. 47, 912–919.PubMedGoogle Scholar
  18. Braumann T, Erneux C., Petridis G., Stohrer W.-D., and Jastroff B. (1986b) Hydrolysis of cyclic nucleotides by a purified cGMP-stimulated phos-phodiesterase: Structural requirements for hydrolysis. Biochem. Biophys. Acta 871, 199–206.PubMedGoogle Scholar
  19. Bregman D. B., Bhattacharyya N., and Rubin C. S. (1989) High affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II-B. J. Biol. Chem. 264, 4648–4656.PubMedGoogle Scholar
  20. Brown B. L., Albano J. D. M., Ekins R. P., and Scherzi A. M. (1971) A simple and sensitive method for the measurement of adenosine 3′,5′-cyclic monophosphate. Biochem. J. 121, 561–572.PubMedGoogle Scholar
  21. Brunton L. L. and Heasley L. E. (1988) cAMP export and its regulation by prostaglandin A1, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 83–93.Google Scholar
  22. Buechler J. A. and Taylor S. S. (1990) Differential labeling of the catalytic subunit of cAMP-dependent protein kinase with a water-soluble carbodiimide: Identification of carboxyl groups protected by MgATP and inhibitor peptides. Biochemistry 29, 1937–1943.PubMedGoogle Scholar
  23. Butt E., van Bemmelen M., Fischer L., Walter U., and Jastorff B. (1990) Inhibition of cGMP-dependent protein kinase by (Rp)-guanosine 3′,5′-monophosphorothioates. FEBS Lett. 263, 47–50.PubMedGoogle Scholar
  24. Buxbaum J. D. and Dudai Y. (1988) A microtiter-base assay for protein kinase activity suitable for the analysis of large numbers of samples, and its application to the study of drosophila learning mutants. Anal. Biochem. 169, 209–215.PubMedGoogle Scholar
  25. Challiss R. A. J. and Nicholson C. D. (1990) Effects of selective phosphodies-terase inhibition on cyclic AMP hydrolysis in rat cerebral cortical slices. Br. J. Pharmacol. 99, 47–52.PubMedGoogle Scholar
  26. Charbonneau H., Prusti R. K., LeTrong H., Sonnenburg W. K., Mullaney P. J., Walsh K. A., and Beavo J. A. (1990) Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proc. Natl. Acad. Sci. USA 87,288–292.PubMedGoogle Scholar
  27. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayash T. K., Inoue T., Naito K., Toshioka T., and Hidaka H. (1990) Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-12-(γ-.Bromocinnamylamino)ethyl-5-isoquinolinesulfon-amide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 265, 5267–5272.PubMedGoogle Scholar
  28. Chock S. P. and Huang C. Y. (1984) An optimized continuous assay for cAMP phosphodiesterase and calmodulin. Anal. Biochem. 138, 34–43.PubMedGoogle Scholar
  29. Clegg C. H., Cadd G. G., and McKnight S. (1988) Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-depen-dent protein kinase. Proc. Natl. Acad. Sci. USA 85, 3703–3707.PubMedGoogle Scholar
  30. Clegg C. H., Ran W., Uhler M. D, and McKnight G. S. (1989) A mutation in the catalytic subunit of protein kinase A prevents myristylation but does not inhibit biological activity. J. Biol. Chem. 264, 20,140–20,146PubMedGoogle Scholar
  31. Cohen P. T. W, Brewis N. D., Hughes V, and Mann D. J. (1998) Protein serine l threonine phosphatases; an expanding family. FEBS Lett. 268, 355–359.Google Scholar
  32. Colicelli J., Birchmeier C, Michaeli T., O′Neill K., Riggs M., and Wigler M. (1989) Isolation and characterization of a mammalian gene encoding a high-affinity cAMP phosphodiesterase. Proc. Natl. Acad. Sci. USA 86, 3599–3603.PubMedGoogle Scholar
  33. Cook P. I.F., NevilIe M. E, Vrana K. E., Hartl P. T., and Roskoski R., Jr. (1982) Adenosine cyclic 3′,5′-monophosphate dependent protein kinase: Kinetic mechanism for the skeletal muscle catalytic subunit. Bicchemisty 21, 5794–5799.Google Scholar
  34. Coquil J. F., Brunelle G,, and Guedon J. (1985) Occurrence of the methyliso-butylxanthine-stimulated cyclic GMP binding protein in various rat tissues. Biochem. Biophys. Res. Commun. 127, 226–231.PubMedGoogle Scholar
  35. Corbin J. D. (1983) Determination of the cAMP-dependent protein kinase activity ratio in intact tissues, in Methods in Enzymology 99 (Corbin J. D. and Hardman J. C., eds.), (Academic, New York), pp. 227–232.Google Scholar
  36. Corbin J. D. and Hardman J. C. (eds.) (1983) Methods in Enzymology 99 (Academic, New York.Google Scholar
  37. Corbin J. D. and Johnson R. A. (eds.) (1988) Methods in Enzymology 159 (Academic, New York).Google Scholar
  38. Corbin J. D. and Reimann E. M. (1974) Assay of cyclic AMP-dependent protein kinases, in Methods in Enzymology 38 (Hardman J, G. and O′MalIey B. W., eds.), (Academic, New York), pp. 287–290.Google Scholar
  39. Corbin J. D., Keeley S. L., and Park C. R. (1975) The distribution and dissociation of cyclic adenosine 3′,5′-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J. Biol. Chem. 250, 218–225.PubMedGoogle Scholar
  40. Corbin J. D., Soderhng T. R., and Park C. R. (1973) Regulation of adenosine 3′,5′-monophosphate-dependent protein kinase. I. Preliminary characterisation of the adipose tissue enzyme in crude extracts.J. Biol. Chem. 248, 1813–1821.PubMedGoogle Scholar
  41. Corbin J, D., Ogreid D., Miller J. P., Suva R. H., Jastorf f B., and Doskeland S. O. (1986) Studies of cGMP analog specificity and function of the two intrasubunit binding sites of cGMP-dependent protein kinase. J. Biol. Chem. 261, 1208–1214.PubMedGoogle Scholar
  42. Corbin J, D., Gettys T. W., Blackmore P. F., Beebe S. J., Francis S. H., Glass D. B., Redmon J. B., Sheorain V. S., and Landiss L. R. (1988) Purification and assay of C AMP, cGME, and cyclic nucleotide analogs in cells treated with cyclic nucleotide analogs, in Methods in Enzymology 159, (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 74–82.Google Scholar
  43. Cumming R., Koide Y., Krigman M. R, Beavo J. A., and Steiner A. L. (1981) The immunofluorescent localization of regulatory and catalytic sub-units of cAMP-dependent protein kinase in neuronal and glial cell types of the central nervous system. Neuroscience 6, 953–961.PubMedGoogle Scholar
  44. Davies C. W. and Daly J. W. (1979) A simple assay of 3′,5′-cyclic nucleotide phosphodiesterase activity based on the use of the polyacrylam-ide-boronate affinity gel chromatography. J. Cyclic. Nucleotide Res. 5, 65–74.Google Scholar
  45. Davis R. L. and Kauvar L. M. (1984) Drosophila cyclic nucleotide phosphodi-esterases, in Advanm in Cyclic Nucleotide and Protein Phosphoylation Research, vol. 16 (Strada S. J. and Thompson W. J., eds.), Raven, New York, pp. 393–402.Google Scholar
  46. Davis R. L., Takayasu H., Eberwine M, and Myres J. (1989) Cloning and characterization of mammalian homologs of the drosophila dunce+ gene. Proc. Natl. Acad. Sci. USA 86, 3604–3608.PubMedGoogle Scholar
  47. De Camilli P, Moretti M, Donni S. D, Walter U., and Lohmann S. M. (1986) Heterogenous distribution of the cAMP receptor protein RI1 in the nervous system: Evidence for its intracellular accumulation on microtu-bules, microtubule-organizing centers, and in the area of the golgi complex.J. Cell. Biol. 103, 189–203.PubMedGoogle Scholar
  48. Degerman E., Belfrage P., Hauck Newman A., Rice K. C., and Manganiello V. C. (1987) Purification of the putative hormone-sensitive cyclic AMP phosphodiesterase from adipose tissue using a derivative of cilostamide as a novel affinity ligand. J. Biol. Chem. 262, 5797–5807.PubMedGoogle Scholar
  49. Degerman E, Smith C. J., Tornqvist H., Vasta V, Belfrage P., and Manganiello V. C. (1990) Evidence that insulin and isoprenaline activate the cGMP-inhibited low-KmcAMP phosphodiesterase in rat fat cells by phosphorylation. Proc. Natl. Acad. Sci. USA 87, 533–537.PubMedGoogle Scholar
  50. Donaldson J., Brown A. M., and Hill S. J. (1988) Influence of rolipram on the cyclic 3′, S′adenosine monophosphate response to histamine and aden-osine in slices of guinea-pig cerebral cortex. Biochem. Pharmacol. 37, 715–723.PubMedGoogle Scholar
  51. Doskeland S. O. and Ogreid D. (1988) Ammonium sulfate precipitation assay for the study of cyclic nucleotide binding to proteins, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 147–150.Google Scholar
  52. Dostmann W. R. G., Taylor S. S., Genieser H-.G., Jastorff B., Doskeland S. O., and Ogreid D. (1990) Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinases I and II with analogs of adenosine 3′,5′-cyclic phosphorothioates. J. Biol. Chem. 265, 10,484–10,491.PubMedGoogle Scholar
  53. Draetta G. and Klee C. B. (1988) Purification of calmodulin-stimulated phosphodiesterase by affinity chromatography on calmodulin fragment 1-77 linked to sepharose, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 573–581.Google Scholar
  54. Drummond G. I. (1983) Cyclic nucleotides in the nervous system, in Advances in Cyclic NudeofideResearch, vol. 15 (Greengard P. and Robison G. A., eds.), Raven, New York, pp.373–494.Google Scholar
  55. Drummond G. I. (1984) Cyclic Nucleotides in the Nervous System. Raven, New York.Google Scholar
  56. Dumuis A., Sebben M, and Bockaert J. (1989) The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (S-HTh) positively coupled to adenylate cyclase in neurons. Naunyn-Schmiedeberg′sArch. Pharmacol. 340, 403–410.Google Scholar
  57. Durgerian S. and Taylor S. S. (1989) The consequences of introducing an autophosphorylation site into the type I regulatory subunit of cAMP-dependent protein kinase. J. Biol. Chem. 264, 9807–9813.PubMedGoogle Scholar
  58. El-Maghrabi M. R., Claus T. H. and Pilkis S. J. (1983) Substrate-directed regulatlon of CAME-dependent phosphorylation, in Methods in Enzy-mology 99 (Corbin J. D. and Hardman J. C, eds.), (Academic, New York), pp. 212–219.Google Scholar
  59. Erlichman J., Bloomgarden D, Sarkar D, and Rubin C. S. (1983) Activation of cyclic AMP-dependent protein kinase isoenzymes: Studies using specific antisera. Arch. Biochem. Biophys. 227, 136–146.PubMedGoogle Scholar
  60. Erneux C. and Miot F. (1988) Cyclic nucleotide analogs used to study phos-phodiesterase catalytic and aIIosteric sites, in Methods in Enzymology 159 (Corbin J, D. and Johnson R. A., eds.), (Academic, New York), pp. 520–530.Google Scholar
  61. Erneux C., Couchie D., Dumont J. E., and Jastorff B. (1984) Cyclic nucleotide derivatives as probes of phosphodiesterase catalytic and regulatory sites, in Advances in Cyclic Nucleotide and Protein Phosphoylation Research, vol. 16 (Strada S. J. and Thompson W. J., eds.), Raven, New York pp. 107–118.Google Scholar
  62. Fischmeister R. and HartzeII H. C. (1987) Cyclic guanosine 3′,5′-monophos-phate regulates the calcium current in single cells from frog ventricle. J. Physiol. 387, 453–472.Google Scholar
  63. Fiscus R. R. and Murad F. (1988) cGMP-dependent protein kinase activation in intact tissues, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 150–159.Google Scholar
  64. Flockhart D. A. (1983) Removal of phosphate from proteins by the reverse reaction, in Methods in Enzymology 99 (Corbin J, D. and Hardman J. C., eds.), (Academic, New York), pp. 14–20.Google Scholar
  65. Fougier S., Nemoz G, Perigent A. P., Marivet M, Bourguignon J. J., Wermuth C, and Pacheco H. (1986) Purification of cAMP-specific phosphodiesterase from rat heart by affinity chromatography on immobihsed rolipram. Biochem. Biophys. Res. Commun. 138, 205–214.PubMedGoogle Scholar
  66. Francis S. H. and Corbin J. D. (1988) Purification of cGMP-binding protein phosphodiesterase from rat lung, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 722–729.Google Scholar
  67. Fredholm B. B. (1980) Are methylxanthine effects due to antagonism of endogenous adenosine? Trends Pharmacol. Sci. 1, 129–132.Google Scholar
  68. Garbers D. L. (1989) Guanylate cyclase, a cell surface receptor. J. Biol. Chem. 264, 9103–9106.PubMedGoogle Scholar
  69. Giembycz M. A. and Diamond J. (1990) Evaluation of kemptide, a synthetic serine-containing heptapeptide, as a phosphate acceptor for the estimation of cyclic AMP-dependent protein kinase activity in respiratory tissues. Biochem. Pharmacol. 39, 271–283.PubMedGoogle Scholar
  70. Gill G. N., Holdy K. E, Walton G. M., and Kanstein C. B. (1976) Purification and characterization of 3′,5′-cyclic GM&dependent protein kinase. Pmt. Natl. Acad. Sci. USA 73, 3918–3922.Google Scholar
  71. Gillespie P. G. and Beavo J. A. (1989) Inhibition and stimulation of photore-ceptor phosphodiesterases by dipyridamole and M&B 22,948. Mol. Pharmacol. 36, 773–781.PubMedGoogle Scholar
  72. Gilman A. G. and Murad P. (1974) Assay of cyclic nucleotides by receptor protein binding displacement, in Methods in Enzymology 38 (Hardman J. G. and O′Malley B. W., eds.), (Academic, New York), pp. 49–61.Google Scholar
  73. Glass D. B. (1990) Substrate specificity of cGMF-dependent protein kinase, in Peytiaks and Protein Phosphorylation (Kemp B. E., ed.), CRC, Boca Raton, pp. 209–238.Google Scholar
  74. Glass D. B. and Krebs E.G. (1982) Phosphorylation by guanosine 3′,5′-mono-phosphate-dependent protein kinase of synthetic peptide analogs of a site phosphorylated in histone 2b.J. Biol. Chem. 257, 1196–1200.PubMedGoogle Scholar
  75. Grant P. G., DeCamp D. L., Bailey J. M, Colman R. W., and Colman R. F. (1990) Three new potential cAMP affinity labels. Inactivation of human platelet low K, cAMP phosphodiesterase by 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3′,5′-cyclic monophosphate. Biochemistry 29, 887–894.PubMedGoogle Scholar
  76. Gruetter C. A., Kadowitz P. J., and Ignarro L. J. (1981) Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. tin. J. Physiol. Pharmacol. 59, 150–156.Google Scholar
  77. Guillory R. J. (1989) Design, implementation and pitfalls of photoaffinity labelling experiments in in vitro preparations. General Principles. Phar-mat. Ther. 41, 1–25.Google Scholar
  78. Gundlach A. L. and Urosevic A. (1989) Autoradiographic localization of particulate cyclic AMP-dependent protein kinase in mammalian brain using [3H]cyclic AMP: Implications for organization of second messenger systems. Neuroscience 29, 695–714.PubMedGoogle Scholar
  79. Haley B. E. (1977) Adenosine 3′,5′-cyclic monophosphate binding sites, in Methods in Enzymology 46 (Jakoby W. B. and Wilchek M., eds.), (Academic, New York), pp. 339–346.Google Scholar
  80. Hamet P. and Tremblay J. (1988) Platelet cGMP-binding phosphodiesterase, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 710–722.Google Scholar
  81. Hanks S. T., Quinn A. M., and Hunter T. (1988) The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241 42–51.PubMedGoogle Scholar
  82. Hansen R. S, Charbonneau H., and Beavo J. A. (1988) Purification of cal-modulin-stimulated cyclic nucleotide phosphodiesterase by monoclonal antibody affinity chromatography, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 543–557.Google Scholar
  83. Hardie D. G. (1983) Cyclic nucleotide-dependent protein kinase, in Methods of Enzymatic Analysis, vol. III (Bergmeyer H. U., ed.), Verlag Chemie, Weinheim, pp. 481–487.Google Scholar
  84. Hardman J. G. and O′Malley B. W. (eds.) (1974) Methods in Enzymology 38 (Academic, New York).Google Scholar
  85. Harker L. A. and Puster V. (1986) Pharmacology of platelet inhibitors. J. Am. Coil. Cardiol. 8, 21B–32B.Google Scholar
  86. Harrison S. A., Beier N., Martins R. J., and Beavo J. A. (1988) Isolation and comparison of bovine heart cGMP-inhibited and cGMP-stimulated phosphodiesterases, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 685–702.Google Scholar
  87. Hartl F. T. and Roskoski R., Jr. (1983) Cyclic adenosine 3′,5′-monophosphate-dependent protein kinase. J. Biol. Chem. 258, 3950–3955.PubMedGoogle Scholar
  88. Hashimoto Y., Sharma R. K., and Soderling T. R. (1989) Regulation of Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 264, 10,884–10,887.PubMedGoogle Scholar
  89. Haslam R. J. and Vanderwel M. (1989) Measurement of changes in platelet cyclic AMP in vitro and in vlvo by prelabeling techniques: Application to the detection and assay of circulating PGIz, in Methods in Enzymology 169 (Hawiger J., ed.), (Academic, New York), pp. 457–471.Google Scholar
  90. Haslam R. J., Davidson M. M. L., and Desjardins J, V. (1978) Inhibition of adenylate cyclase by adenosine analogs in preparations of broken and intact platelets. Evidence for the unidirectional control of platelet function by cyclic AMP. Biochem. J. 176, 83–95.PubMedGoogle Scholar
  91. Hathaway D. R., Adelstein R. S., and Klee C. B. (1981) Interaction of calmodulin with myosin light chain kinase and cAMP-dependent protein kinase in bovine brain, J, Bio. Gem. 256, 8183–8189.Google Scholar
  92. Hemmings H. C., Jr., Nairn A. C., McGuinness T. L., Huganir R. L., and Greengard P. (1989) Role of protein phosphorylation in neuronal signal transduction. FASEB J 3, 1583–1592.PubMedGoogle Scholar
  93. Henkel-Tigges J. and Davis R. L. (1990) Rathomologs of the drosophilu dunce gene code for cyclic AMP phosphodiesterases sensitive to rolipram and Ro 20-1724. Mol. Pharmacol. 37, 7–10.PubMedGoogle Scholar
  94. Hidaka H., Inagaki M., Nishikawa M., and Tanaka T. (1988) Selective inhibitors of calmodulin-dependent phosphodiesterase and other enzymes, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 653–660.Google Scholar
  95. Hohmann P. and Greene R. S. (1990) Retinoid induced changes in cAMP-dependent protein kinase activity detected by a new minigel assay. FEBS Lett. 261, 81–84.PubMedGoogle Scholar
  96. Jahnsen T., Hedin L, Kidd V. J., Beattie W. G, Lohmann S. M., Walter U., Durica J., Schulz T. Z, Schiltz E., Browner M, Lawrence C. B., Goldman D., Ratoosh S. L, and Richards J. S. (1986) Molecular cloning, cDNA structure, and regulation of regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells. J. Biol. Chem. 261, 12,352–12,361.PubMedGoogle Scholar
  97. Kariya T. and Dage R. C. (1988) Tissue distribution and selective inhibition of subtypes of high affinity cAMP phosphodiesterase. Bic&m. Phmnawl. 37, 3267–3270.Google Scholar
  98. Kaumann A. J., Sanders L., Brown A. M., Murray K. J., and Brown M. J. (1990) A 5-hydroxytryptamine receptor in human atrium. Br. J. Pharmacol. 100, 879–885.PubMedGoogle Scholar
  99. Kemp B. E., Cheng H.-C. and Walsh D. A. (1988) Peptide inhibitors of C AMP-dependent protein kinase, in Metfmls in Enzymology 159 (Corbin J, D. and Johnson R. A., eds.), (Academic, New York), pp. 173–183.Google Scholar
  100. Kerlavage A. R. and Taylor S. S. (1982) Site-specific cyclic nucleotide binding and dissociation of the holoenzyme of cAMP-dependent protein kinase. J. Biol. Chem. 257, 1749–1754.PubMedGoogle Scholar
  101. Kincaid R. L. and Manganiello V. C. (1988) Assays of cyclic nucleotide phosphodiesterase using radiolabeled and fluorescent substrates, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 457–470.Google Scholar
  102. Kincaid R. L. and Vaughan M. (1988) Purification and properties of calmodulin-activated cyclic nucleotide phosphodiesterase from mammalian brain, in Methods in Enzymology 159 (Corbin J, D. and Johnson R. A., eds.), (Academic, New York), pp. 557–573.Google Scholar
  103. Kincaid R. L., Balaban C. D, and Billingsley M. L. (1987) Differential localization of calmodulin-dependent enzymes in rat brain: Evidence for selective expression of cyclic nucleotide phosphodiesterase in specific neurons. Proc. Natl. Acad. Sci. USA 84, 1118–1122.PubMedGoogle Scholar
  104. Kinzel V, Hotz A., Konig N., Gagelmann M., Pyerin W, Reed J., Kubler D., Hofmann F, Obst C., Gensheimer H. P., Goldblatt D, and Shaltiel S. (1987) Chromotagraphic separation of two heterogeneous forms of the catalytic subunit of cyclic AMP-dependent protein kinase holoenzyme type I and type II from striated muscle of different mammalian species. Arch. Biochem. Biophys. 253, 341–349.PubMedGoogle Scholar
  105. Kolesnikov S. S., Zhainazorov A. B., and Kosolapov A. V. (1990) Cyclic nucle-otide-activated channels in the frog olfactory receptor plasma membrane. FEBS Leet. 266 96–98.Google Scholar
  106. Krebs E. G. (1989) Role of the cyclic AMP-dependent protein kinase in signal transduction. JAMA 262, 1815–1818.PubMedGoogle Scholar
  107. Kuno T., Ono Y., Hirai M, Hashimoto S., Shuntoh H., and Tanaka C. (1987) Molecular cloning and cDNA structure of the regulatory subunit of type I cAMP-dependent protein kinase from rat brain. Biochem. Bioyhys. Res. Commun. 146, 878–883.Google Scholar
  108. Kuno T., Shuntoh H, Sakaue M, Saijoh K., Takeda T, Fukuda K, and Tanaka C. (1988) Site-directed mutagenesis of the cAMP-binding sites of the recombinant type I regulatory subunit of cAMP-dependent protein kinase. Biwhem. Biophys. Res. Commun. 153, 1244–1250.Google Scholar
  109. Kuno T, Shuntoh H, Takeda T, Ito A., Sakaue M, Hirai M., Ando H., and Tanaka C. (1989) Activation of type I cyclic AMP-dependent protein kinases is impaired by a point mutation in cyclic AMP binding sites. Eur. J. Pharmacol. 172, 263–271.PubMedGoogle Scholar
  110. Landgrat W., Hullin R., Gobel C, and Hofmann P. (1986) Phosphorylation of cGMP-dependent protein kinase increases the affinity for cyclic AMP. Eur. J. Biochem. 154, 113–117.Google Scholar
  111. Langlands J. M. and Rodger I. W. (1990) Determination of soluble cAMP-dependent protein kinase activity in guinea-pig tracheal smooth muscle. Biochem. Pharmawl. 39, 1365–1374.Google Scholar
  112. Laurenza A., Sutkowski E. M., and Seamon K. B. (1989) Porskolin: A specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol. Sci. 10, 442–447.PubMedGoogle Scholar
  113. Leiser M., Rubin C. S, and Erlichman J. (1986) Differential binding of the regulatory subunits (RII) of cAMP-dependent protein kinase II from bovine brain and muscle to RII-binding proteins. J. Biol. Chem. 261, 1904–1908.PubMedGoogle Scholar
  114. Levy P. O., Oyen O, Sandberg M., Taskèn K., Eskild W., Hansson V., and Jahnsen T. (1988) Molecular cloning, complementary deoxyribonucleic acid structure and predicted full-length amino acid sequence of the hormone-inducible regulatory subunit of 3′,5′-cyclic adenosine mono-phosphate-dependent protein kinase from human testis. Mol. Endocrinol. 2, 1364–1373.PubMedGoogle Scholar
  115. Liebman P. A. and Evancuk A. T. (1982) Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes, in Methods in Enzymology 81 (Packer L., ed.), (Academic, New York), pp. 532–542.Google Scholar
  116. Light D. B., Corbin J. D, and Stanton B. A. (1990) Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature (Land.) 344, 336–339.Google Scholar
  117. Lincoln T. M. (1983) cGMP-dependent protein kinase, in Methods in Enzymology 99 (Corbin J. D. and Hardman J. C, eds.), (Academic, New York), pp. 62–71.Google Scholar
  118. Lincoln T. M. and Corbin J. D. (1983) Characterization and biological role of the cGMP-dependent protein kinase, in Advances in Cyclic Nucleotide Research 15 (Greengard P. and Robison G. A., eds.), Raven, New York, pp. 139–192.Google Scholar
  119. Lincoln T. M, Cornwell T. L., and Taylor A. E. (1990) cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am. J. Physiol. 258, C399–C407.PubMedGoogle Scholar
  120. Lincoln T. M., Thompson M, and Cornwell T. L. (1988) Purification and characterization of two forms of cyclic GMP-dependent protein kinase from bovine aorta. J, Biol. Chem. 263, 17,632–17,637.Google Scholar
  121. Livesey S. A. and Martin T. J. (1988) Selective activation of the cAMP-dependent protein kinase isoenzymes, in Methods in Enzymology 159 (Crobin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 105–118.Google Scholar
  122. Lohmann S. M. and Walter U. (1984) Regulation of the cellular and subcel-lular concentrations and distribution of cyclic nucleotide-dependent protein kinases. Advances in Cyclic Nucleotide and Protein Phosphoyla-tion Research 18, 63–117.Google Scholar
  123. Lohmann S. M, De Camilli P., and Walter U. (1988) Type II cAMP-depen-dent protein kinase regulatory subunit-binding proteins, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 183–193.Google Scholar
  124. Lohmann S. M., DeCamilli P., Einig I., and Walter U. (1984) High-affinity binding of the regulatory subunit (RII) of cAMP-dependent protein kinase to microtubule-associated and other cellular proteins. Proc. Nafl. Acad Sci. USA 81, 6723–6727.Google Scholar
  125. Ludvig N, Ribak, C. E., Scott, J. D., and Rubin C. S. (1990) Immunocytochemical localisation of the neural-specific regulatory subunit of the type II cyclic AMP-dependent protein kinase to postsynaptic structures in the rat brain. Brain Res. 520, 90–102.PubMedGoogle Scholar
  126. Lugnier C. and Schini V. B. (1990) Characterization of cyclic nucleotide phos-phodiesterases from cultured bovine aortic endothelial cells. Biochem. Phamacol. 39, 75–84.Google Scholar
  127. MacPhee C. H., Reifsnyder D. H, Moore T. A., Lerea K. M., and Beavo J. A. (1988) Phosphorylation results in activation of a cAMP phosphodies-terase in human platelets. J. Biol. Chem. 263, 10,353–10,358.PubMedGoogle Scholar
  128. Manganiello V., Degerman E, and Elks M. (1988) Selective inhibitors of specific phosphodiesterases in intact adipocytes, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 504–520.Google Scholar
  129. Martin S. C. and Ekman P. (1986) In vitro phosphorylation of serum albumin by two protein kinases: A potential pitfall in protein phosphorylation reactions. Anal. Biochem. 154, 395–399.PubMedGoogle Scholar
  130. Matsuda Y., Nakanishi S, Nagasawa K., and Kase H. (1990) Inhibition by new anthraquinone compounds, K-259-2 and KS-619-1, of calmodulin-dependent cyclic nucleotide phosphodiesterase. Biochem. Pharmacol. 39, 841–849.PubMedGoogle Scholar
  131. Maurer R. A. (1989) Both isoforms of the cAMP-dependent protein kinase catalytic subunit can activate transcription of the prolactin gene. J. Biol. Chem. 264 6870–6873.PubMedGoogle Scholar
  132. Maurice D. H. and Haslam R. J. (1990) Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: Inhibition of cyclic AMP breakdown by cyclic GMP. Mol. Pharmawl. 37, 671–681.Google Scholar
  133. McKnight G. S., Clegg C. H, Uhler M. D, Chrivia J. C., Cadd G. G., Correll L. A., and Otten A. D. (1988a) Analysis of the cAMP-dependent protein kinase system using molecular genetic approaches, in Recent Progress in Hormone Research 44 (Clark J. H., ed.), (Academic, New York), pp.307–335Google Scholar
  134. McKnight G. S., Uhler M. D., Clegg C. H., Correll L. A., and Cadd G. (1988b) Application of molecular genetic techniques to the cAMP-dependent protein kinase system, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 299–311.Google Scholar
  135. Middleton J. P., Dunham C. B., Onorato J. J., Sens D. A., and Dennis V. W. (1989) Protein kinase A, cytosolic calcium, and phosphate uptake in human proximal renal cells. Am. J. Physiol. 257, P631–P638.Google Scholar
  136. Moyer J. A., Sigg E. B., and Silver P. J. (1986) Antidepressants and protein kinases: Desipramine treatment affects pineal gland cAMP-dependent protein kinase activity. Eur. J Pharmacol. 121, 57–64.PubMedGoogle Scholar
  137. Mulsch A., Busse R, Liebau S., and Forstermann U. (1988) LY 83583 interferes with the release of endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J Pharmacol. Exytl. Ther. 247, 283–288.Google Scholar
  138. Murashima S., Tanaka T., Hockman S, and Manganiello V. (1990) Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain purification of a distinct cGMP-stimulated isoenzyme. Biochemisfy 29, 5285–5292.Google Scholar
  139. Murray K. J. (1990) Cyclic AMP and mechanisms of vasodilation. Pharmac. Ther. 47, 329–345.Google Scholar
  140. Murray K. J. and Warrington B. H. (1990) Protein kinases, in Comprehensive Medicinal Chemistry, vol. 2 (Hansch C, Sammes P. G., and Taylor J. B., eds.), Pergamon, Oxford, pp. 531–552.Google Scholar
  141. Murray K. J., Reeves M. L., and England P. J. (1989) Protein phosphoryla-tion and compartments of cyclic AMP in the control of cardiac contraction. Mol. Cell. Biochem. 89, 175–179.PubMedGoogle Scholar
  142. Murray K. J., England P. J., Hallam T. J., Maguire J., Moores K., Reeves M. L., Simpson A. W. M, and Rink T. J. (1990a) The effects of siguazodan, a selective phosphodiesterase inhibitor, on human platelet function. Br. J. Pharmawl. 99, 612–616.Google Scholar
  143. Murray K. J., England P. J., Lynham J. A., Mills D., Schmitz-Peiffer C., and Reeves M. L. (1990b) Use of a synthetic dodecapeptide (malantide) to measure the cyclic AMP-dependent protein kinase activity ratio in a variety of tissues. Biochem. J 267, 703–708.PubMedGoogle Scholar
  144. Nairn A. C., Hemmings H. C., Jr., and Greengard P. (1985) Protein kinases in the brain. Annu. Rev. Biochem. 54, 931–976.PubMedGoogle Scholar
  145. Nemoz G., Moueqqit M., Prigent A-F., and Pacheco H. (1989) Isolation of similar rolipram-inhibitible cyclic-AMP-specific phosphodiesterases from rat brain and heart. Eur. J. Biochem. 184, 511–520.PubMedGoogle Scholar
  146. Nerbonne J. M., Richard S., Nargeot J., and Lester H. A. (1984) New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations. Nature (Loud.) 310, 74–76.Google Scholar
  147. Nestler E. J. and Greengard P. (1989) Protein phosphorylation and the regulation of neuronal function, in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects (Siegel G. J., ed.), Raven, New York, pp. 373–398.Google Scholar
  148. Nestler E. J. and Tallman J. F. (1988) Chronic morphine treatment increases cyclic AMP-dependent protein kinase activity in the rat locus coer-uleus. Mol. Pharmacol. 33, 127–132.PubMedGoogle Scholar
  149. Nestler E. J., Terwilliger R. Z, and Duman R. S. (1989) Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J. Neurochem. 53, 1644–1647.PubMedGoogle Scholar
  150. Nicholson C. D., Jackman S. A., and Wilke R. (1989) The ability of denbuffyl-line to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site. Br. J Pharmacol. 97, 889–897.PubMedGoogle Scholar
  151. Obar R. A., Dingus J., Bayley H, and Vallee R. B. (1989) The RI1 subunit of cAMP-dependent protein kinase binds to a common amino-terminal domain in microtubule-associated proteins 2A, 2B, and 2C. Neuron 3, 639–645.PubMedGoogle Scholar
  152. Ogreid D, Doskeland S. O., Gorman K. B., and Steinberg R. A. (1988) Mutations that prevent cyclic nucleotide binding to binding sites A or B of type I cyclic AMP-dependent protein kinase. J. Biol. Chetn. 263, 17,397–17,404.Google Scholar
  153. Ogreid D, Ekanger R, Suva R. H, Miller J. P., and Doskeland S. O. (1989) Comparison of the two classes of binding sites (A and B) of type I and type II cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. Eur. J. Biochem. 181, 19–31.PubMedGoogle Scholar
  154. Ogreid D., Ekanger R., Suva R. H., Miller J. P., Strum P., Corbin J. D., and Doskeland S. O. (1985) Activation of protein kinase isozymes by cyclic nucleotide analogs used singly or in combination. Eur. J Biochem. 150, 219–227.PubMedGoogle Scholar
  155. Olsen S. R. and Uhler M. D. (1989) Affinity purification of the Co and Cp isoforms of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 264, 18,662–18,666.PubMedGoogle Scholar
  156. Oyen O., Myklebust F., Scott J. D., Hansson V., and Jahnsen T. (1989) Human testis cDNA for the regulatory subunit RII, of cAMP-depen-dent protein kinase encodes an alternate amino-terminal region. FEBS Lett. 246, 57–64.PubMedGoogle Scholar
  157. Palmer G. C. (1981) Significance of phosphodiesterase in the brain. Life Sci. 28, 2785–2798.PubMedGoogle Scholar
  158. Palmer W. K, McPherson J. M. and Walsh D. A. (1980) Critical controls in the evaluation of cAMP-dependent protein kinase activity ratios as indices of hormonal action. J. Biol. Gem. 255, 2663–2666.Google Scholar
  159. Pang D. C, Cantor E., Hagedorn A., Erhardt P. and Wiggins J. (1988) Tissue specificity of cAMP-phosphodiesterase inhibitors: Rolipram, Amrinone, Mihinone, Enoximone, Piroximone, and Imazodan. Drug Dev. Res. 14, 141–149.Google Scholar
  160. Parker Botelho L. H., Rothermel J. D. Coombs R. V. and Jastorff B. (1988) cAMP analog antagonists of cAMP action, in Methods in Enzymology 159 (FC.bin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 159–172.Google Scholar
  161. Pyne N. J., Cooper M. E. and Houslay M. D. (1986) Identification and characterization of both the cytosolic and particulate forms of cyclic GMP-stimulated cyclic AMP phosphodiesterase from rat liver. Biochem. J 234, 325–334.PubMedGoogle Scholar
  162. Rannels S. R. and Corbin J. D. (1983) Using analogs to study selectivity and cooperativity of cyclic nucleotide binding sites, in Methods in Enzymology 99 (Corbin J, D. and Hardman J. C., eds.), (Academic, New York), pp. 168–175.Google Scholar
  163. Rannels S. R., Beasley A., and Corbin J. D. (1983) Regulatory subunits of bovine heart and rabbit skeletal muscle cAMP’-dependent protein kinase isozymes, in Methods in Enzymology 99 (Corbin J. D. and Hardman J. C, eds.), (Academic, New York), pp. 55–62.Google Scholar
  164. Reeves M. L., Leigh B. K, and England P. J. (1987) The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Biochem. J 241, 535–541.PubMedGoogle Scholar
  165. Reimann E. M. (1986) Conversion of bovine cardiac adenosine cyclic 3′,5′-phosphate dependent protein kinase to a heterodimer by removal of 45 residues at the N-terminus of the regulatory subunit. Biochemistry 25, 119–125.PubMedGoogle Scholar
  166. Reimann E. M. and Beham R. A. (1983) Catalytic subunit of cAMP-depen-dent protein kinase, in Methods in Enzymology 99 (Corbin J. D. and Hardman J. C., eds.), (Academic, New York), pp. 51–55.Google Scholar
  167. Ringheim G. E. and Taylor S. S. (1990) Dissecting the domain structure of the regulatory subunit of cAMP-dependent protein kinase I and elucidating the role of MgATP. J Biol. Chem. 265, 4800–4808.PubMedGoogle Scholar
  168. Ringheim G. E., Saraswat L. D., Bubis J., and Taylor S. S. (1988) Deletion of cAMP-binding site B in the regulatory subunit of cAMP-dependent protein kinase alters the photoaffinity labeling of site A. J, Biol. Chem. 263, 18,247–18,252.Google Scholar
  169. Robicsek S. A., Krzanowski J. J., Szentivanyi A., and Poison J. B. (1989) High pressure liquid chromatography of cyclic nucleotide phosphodiesterase from purified human T-lymphocytes. Bicchem. Biophys. Res. Commun. 163, 554–560.Google Scholar
  170. Robison G. A., Butcher R. W., and Sutherland E. W. (1971) Cyclic AMP (Academic, New York).Google Scholar
  171. Roskoski R., Jr. (1983) Assays of protein kinase, in Methods in Enzymology 99 (Corbin J. D. and Hardman J. C., eds.), (Academic, New York), pp. 3–6.Google Scholar
  172. Rubin C. S., Rangel-Aldao R, Sarkar D, Erlichman J., and Fleischer N. (1979) Characterization and comparison of membrane-associated and cytosolic CAME-dependent protein kinases. J. Biol Chem. 254, 3797–3805.PubMedGoogle Scholar
  173. Rubino H. M., Dammerman M., Shafit-Zagardo B., and Erlichman J. (1989) Localization and characterization of the binding site for the regulatory subunit of type II CAME-dependent protein kinase on MAP2. Neuron 3, 631–638.PubMedGoogle Scholar
  174. Sahal K. and Fujita-Yamaguchi Y. (1987) Protein kinase assay by paper-tri-chloroacetic acid method: High performance using phosphocellulose paper and washing an ensemble of samples on flat sheets. Anal. Biochem. 167, 23–30.PubMedGoogle Scholar
  175. Salomon Y., Londos C., and Rodbell, M. (1974) A highly sensitive adenylate cyclase assay. Anal. Biochem. 58, 541–548PubMedGoogle Scholar
  176. Sandberg M, Levy F. O., øyen O., Hansson V., and Jahnsen T. (1988) Molecular cloning, cDNA structure and deduced amino acid sequence for the hormone-induced regulatory subunit (RI+) of cAMP-dependent protein kinase from rat ovarian granulosa cells. Biochem. Biophys. Res. Commun. 154, 705–711.PubMedGoogle Scholar
  177. Sandberg M., Taskén K., øyen O., Hansson V., and Jahnsen T (1987) Molecular cloning, cDNA structure and deduced amino acid sequence for a type I regulatory subunit of cAMP-dependent protein kinase from human testis. Biochem. Biophys. Res. Commun. 149, 939–945.PubMedGoogle Scholar
  178. Santa-Coloma T. A., Bley M. A., and Charreau E. H. (1987) Improvement on the competitive binding assay for the measurement of cyclic AMP by using ammonium sulphate precipitation. Biochem. J 245, 923,924.Google Scholar
  179. Sarkar D, Erlichman J., and Rubin C. S. (1984) Identification of a calmodulin-binding protein that co-purifies with the regulatory subunit of brain protein kinase II. J. Biol. Chem. 259, 9840–9846.PubMedGoogle Scholar
  180. Schlender K. K., Tyma J. L., and Reimann E. M. (1983) Preparation of partially purified protein kinase inhibitor, in Methods in Enzymology 99 (Corbin J, D. and Hardman J. C., eds.), (Academic, New York), pp. 77–80.Google Scholar
  181. Schultz G. and Bohme E. (1984) Guanylate cylase, in Methods of Enzymatrc Analysis, vol. 3 (Bergmeyer H. U, ed.), Verlag Chemie, Weinheim, pp. 379–389.Google Scholar
  182. Schultz G. and Jacobs K. H. (1984) Adenylate cyclase, in Methods of Enzymatic Analysis, vol. 3 (Bergmeyer H. U., ed.), Verlag Chemie, Weinheim, pp. 369–378.Google Scholar
  183. Schulz S., Chinkers M., and Garbers D. L. (1989) The guanylate cyclase/ receptor family of proteins. FASEB J. 3, 2026–2035.PubMedGoogle Scholar
  184. Schwabe U, Miyake M., Ohga Y, and Daly J. W. (1976) 4(3Zyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62711): A potent inhibitor of adenosine cyclic 3′,5′monophosphate phosphodiesterases in homo-genates and tissue slices from rat brain. Mol. Pharmacol. 12, 900–910.PubMedGoogle Scholar
  185. Schwartz J, P. and Costa E. (1980) Protein kinase translocation following P-adrenergic receptor activation in C6 glioma cells. J. Biol. Chem. 255, 2943–2948.PubMedGoogle Scholar
  186. Schwoch G., Lohmann S. M., Walter U, and Jung U. (1985) Determination of cyclic AMP-dependent protein kinase subunits by an immunoas-say reveals a different subcellular distribution of the enzyme in rat parotid than does determination of the enzyme activity. J. Cyclic Nuck-otia!e and Protein Phosphoylation Research 10, 247–258.Google Scholar
  187. Scott J. D., Glaccum M. B., Zoller M. J., Uhler M. D., Helfman D. M, McKnight G. S, and Krebs E. G. (1987) The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain. Proc, Natl. Acud. Sci. USA 84, 5192–5196.Google Scholar
  188. Segal J. and Ingbar S. H. (1989) 3,5, 3′-Triiodothyronine increases cellular adenosine 3′,5′-monophosphate concentration and sugar uptake in rat thymocytes by stimulating adenylate cyclase activity: Studies with the adenylate cyclase inhibitor MDL12330A. Endocrinology 124, 2166–2171.PubMedGoogle Scholar
  189. Sharma R. K. and Wang J. H. (1985) Differential regulation of bovine brain &mod&n-dependent cyclic nucleotide phosphodiesterase isozymes by cyclic AMP-dependent protein kinase and &mod&n-dependent phosphatase. Proc. Natl. Acad. Sci. USA 82, 2603–2607.PubMedGoogle Scholar
  190. Sharma R. K. and Wang J, H. (1988) Isolation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 582–594.Google Scholar
  191. Sharma R. K., Adachi A.-M., Adachi K., and Wang J. H. (1984) Demonstration of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes by monoclonal antibodies. J. Biol. Chem. 259, 9248–9254.PubMedGoogle Scholar
  192. Sharps E. S. and McCarl R. L. (1982) A high-performance liquid chromatographic method to measure 32P incorporation into phosphorylated metabolites in cultured cells. Anal. Biochem. 124, 421–424.PubMedGoogle Scholar
  193. Shenolikar S., Thompson W. J., and Strada S. J. (1985) Characterization of a Ca2+-calmodulin-stimulated cyclic GMP phosphodiesterase from bovine brain. Biochemistry 24, 672–678.PubMedGoogle Scholar
  194. Shimizu H. J., Daly J. W., and Creveling C. R. (1969) A radio-isotopic method for measuring the formation of cAMP in incubated brain slices. J. Neurochem. 16, 1609–1619.PubMedGoogle Scholar
  195. Showers M. O. and Maurer R. A. (1986) A cloned bovine cDNA encodes an alternate form of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 261, 16,288–16,291.PubMedGoogle Scholar
  196. Silver P. J. (1989) Biochemical aspects of inhibition of cardiovascular low (K,) cyclic adenosine monophosphate phosphodiesterase. Am. J. Cardiol. 63, 2A–8A.PubMedGoogle Scholar
  197. Slice L. W. and Taylor S. S. (1989) Expression of the catalytic subunit of cAMP-dependent protein kinase in escherichia coli. J Biol. Chem. 264, 20,940–20,946.PubMedGoogle Scholar
  198. Stanley C, Brown A. M., and Hill S. J, (1989) Effect of isozyme-selective inhibitors of phosphodiesterase on histamine-stimulated cyclic AMP accumulation in guinea-pig hippocampus. J. Neurochem. 52, 671–676.PubMedGoogle Scholar
  199. Stein J. C. and Rubin C. S. (1985) Isolation and sequence of a tryptic peptide containing the autophosphorylation site of the regulatory subunit of bovine brain protein kinase II. J. Biol. Chem. 260, 10,991–10,995.PubMedGoogle Scholar
  200. Stein J. C., Farooq M., Norton W. T., and Rubin C. S. (1987) Differential expression of isoforms of the regulatory subunit of type II cAMP-dependent protein kinase in rat neurons, astrocytes, and oligodendro-cytes. J. Biol. Chem. 262, 3002–3006.PubMedGoogle Scholar
  201. Steiner A. L., Parker C. W., and Kipnis D. M. (1972) Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J. Biol. Gem. 247, 1106–1113.Google Scholar
  202. Strada S. J. and Thompson W. J. (eds.) (1984) Advances in Cyclic Nucleotide and Protein Phosphorylation Research, vol. 16. Raven, New York.Google Scholar
  203. Stroop S. D, Charbonneau H., and Beavo J, A. (1989) Direct photolabeling of the cGMP-stimulated cyclic nucleotide phosphodiesterase. J. Biol. Chem. 264, 13,718–13,725.PubMedGoogle Scholar
  204. Sugden P. H. and Corbin J. D. (1976) Adenosine 3′,5′-cyclic monophosphate-binding proteins in bovine and rat tissues. Biochem. J. 159, 423–437.PubMedGoogle Scholar
  205. Sulakhe P. V., Gupta R. C., and Jagadeesh G. (1986) Brain adenylate cyclase, in Neuromefloods, vol. 5, Neurotransmitfer Enzymes (Boulton A. A., Baker G. B., and Yu P. H., eds.), Humana, Clifton, NJ, pp. 503–517.Google Scholar
  206. Sutherland E. W., Robison G. A., and Butcher, R. W. (1968) Some aspects of the biological role of adenosine 3′,5′ monophosphate. Circulation 37, 279–306.Google Scholar
  207. Swillens S., Boeynaems J.-M., and Dumont J. E. (1988) Theoretical considerations of the regulatory steps in the cAMP cascade system, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 19–27.Google Scholar
  208. Swinnen J. V., Joseph D. R., and Conti M. (1989a) Molecular cloning of rat homologues of the drosophila melanogaster dunce cAMP phosphodiesterase: Evidence for a family of genes. Proc. Natl. Acud. Sci. USA 86, 5325–5329.Google Scholar
  209. Swinnen J. V., Joseph D. R., and Conti M. (1989b) The mRNA encoding a high-affinity cAMP phosphodiesterase is regulated by hormones and cAMP. Proc. Natl. Acad. Sci. USA 86, 8197–8201.PubMedGoogle Scholar
  210. Takio K., Smith S. B., Krebs E. G., Walsh K. A., and Titani K. (1984) Amino acid sequence of the regulatory subunit of bovine type II adenosine cyclic 3′,5′-phosphate dependent protein kinase. Biochemistry 23, 4200–4206.PubMedGoogle Scholar
  211. Taylor S. S. (1989) cAMP-dependent protein kinase. J. Biol. Chem. 264, 8443–8446.PubMedGoogle Scholar
  212. Taylor S. S, Beuchler J. A, and Yonemoto W. (1990) cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes. Ann. Rev. Bicchem. 59, 971–1005.Google Scholar
  213. Taylor S. S, Kerlavage A. R, and Zoller M. J. (1983) Affinity labeling of cAMP-dependent protein kinases, in Methods in Enzymdogy 99 (Corbin J. D. and Hardman J. C., eds.), (Academic, New York), pp. 140–153.Google Scholar
  214. Theurkauf W. E. and Vallee R. B. (1982) Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol. Chem. 257, 3284–3290.PubMedGoogle Scholar
  215. Thompson D. A. and Khorana H. G. (1990) Guanosine 3′,5′-cyclic nucleotide binding proteins of bovine retina identified by photoaffinity labeling. Proc. Natl. Acad. Sci. USA 87, 2201–2205.PubMedGoogle Scholar
  216. Thompson W. J. and Appleman M. M. (1971) Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 10, 311–316.PubMedGoogle Scholar
  217. Thompson W. J., Brooker G, and Appleman M. M. (1974) Assay of cyclic nucleotide phosphodiesterases with radioactive substrates, in Methods in Enzymology 38 (Hardman J. G. and O′Malley B. W., eds.), (Academic, New York), pp. 205–212.Google Scholar
  218. Titani K., Sasagawa T., Ericsson L. H., Kumar S, Smith S. B., Krebs E. G., and Walsh K. A. (1984) Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3′,5′-phosphate dependent protein kinase. Biochemistry 23, 4193–4199.PubMedGoogle Scholar
  219. Tremblay J., Gerzer R., and Hamet P. (1988) Cyclic GMP in cell function, in Advances in Second Messenger and Phosphuprotein Research 22 (Greengard P. and Robison G. A., eds.), Raven, New York, pp. 319–383.Google Scholar
  220. Ueno S. and Ueck M. (1988) Cyclic nucleotide phosphodiesterase activity: Histochemical and cytochemical methods, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 477–489.Google Scholar
  221. Uhler M. D, Chrivia J. C., and McKnight G. S. (1986) Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 261, 15,360–15,363.PubMedGoogle Scholar
  222. Walsh D. A, Angelos K. L, Van Patten S. M, Glass D. B, and Garetto L. P. (1990) The inhibitor protein of cAMPdependent protein kinase, in Peptides and Protein Phosphorylation (Kemp B. E., ed.), CRC, Boca Raton, pp.43–84.Google Scholar
  223. Walter U. and Greengard P. (1983) Photoaffinity labeling of the regulatory subunit of cAMP-dependent protein kinase, in Methods in Enzymology 99 (Corbin J. D. and Hardman J. C., eds.), (Academic, New York), pp, 154–162.Google Scholar
  224. Walter U., Kanof P., Schulman H., and Greengard P. (1978) Adenosine 3′,5′-monophosphate receptor proteins in mammalian brain. J. Biol. Chem. 253, 6275–6280.PubMedGoogle Scholar
  225. Watterson D. M. and Lukas T. J. (1988) Analysis of phosphodiesterase reaction mixtures by high-performance liquid chromatography, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 471–477.Google Scholar
  226. Weber I. T, Shabb J. B., and Corbin J. D. (1989) Predicted structures of the cGMP binding domains of the cGMP-dependent protein kinase: A key alanine/threonine difference in evolutionary divergence of cAMP and cGMP binding sites. Biochemistry 28, 6122–6127.PubMedGoogle Scholar
  227. Weber I. T., Steitz T. A., Bubis J., and Taylor S. S. (1987) Predicted structures of CAME binding domains of type I and II regulatory subunits of C AMP-dependent protein kinase. Biochemistry 26, 343–351.PubMedGoogle Scholar
  228. Weldon S. L., Mumby M. C., and Taylor S. S. (1985) The regulatory subunit of neuronal cAMP-dependent protein kinase II represents a unique gene product. J. Biol. Chem. 260, 6440–6448.PubMedGoogle Scholar
  229. Wells J. N. and Hardman J. G. (1977) Cyclic nucleotide phosphodiesterases, in Advances in Cyclic NucIeotides Research, vol. 8 (Greengard P. and Robison G. A., eds.), Raven, New York, pp. 119–143.Google Scholar
  230. Wells J. N and Kramer G. L. (1981) Phosphodiesterase inhibitors as tools in cyclic nucleotide research: A precautionary comment. Mol. Cell. Endominol. 23, 1–9.Google Scholar
  231. Wells J. N. and Miller J. R. (1988) Methybcanthine inhibitors of phosphodiesterases, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 489–496.Google Scholar
  232. Wernet W, Flockerzi V, and Hofmann P. (1989) The cDNA of the two isoforms of bovine CGMPdependent protein lcinase. FEBS Leet. 251, 191–196.Google Scholar
  233. Whalin M. E., Strada, S. J., and Thompson W. J. (1988) Purification and partial characterization of membrane-associated type II (cGMP-activatable) cyclic nucleotide phosphodiesterase from rabbit brain. Biochem. Biophys. Acta 972, 79–94.PubMedGoogle Scholar
  234. Whitehouse S. and Walsh D. A. (1983) Inhibitor protein of the cAMP-dependent protein kinase: Characteristics and purification, in Methods in Enzymology 99 (Corbin J. D. and Hardman J. C., eds.), (Academic, New York), pp. 80–93.Google Scholar
  235. Wolfe L., Corbin J. D., and Francis S. H. (1989a) Characterization of a novel isozyme of cGMP-dependent protein kinase from bovine aorta. J. Bzol. Chem. 264, 7734–7741.Google Scholar
  236. Wolfe L., Francis S. H, and Corbin J. D. (1989b) Properties of a cGMP-dependent monomeric protein kinase from bovine aorta. J. Biol. Chem. 264, 4157–4162.PubMedGoogle Scholar
  237. Yamazaki A., Bitensky M. W, and Casnellie J. E. (1988) Photoaffinity labeling of high-affinity cGMP-specific noncatalytic binding sites on cGMP phosphodiesterase of rod outer segments, in Methods in Enzymology 159 (Corbin J. D. and Johnson R. A., eds.), (Academic, New York), pp. 730–736.Google Scholar
  238. Yusta B., Ortiz-Caro J., Pascual A., and Aranda A. (1988) Comparison of the effects of forskolin and dibutyryl cyclic AMP in neuroblastoma cells: Evidence that some of the actions of dibutyryl cyclic AMP are mediated by butyrate.J. Neurochem. 51, 1808–1818.PubMedGoogle Scholar
  239. Zetterqvist O., Ragnarsson U., and Engstrom L. (1990) Substrate specificity of cyclic AMP-dependent protein kinase, in Peptides and Protein Phos-phoholylation (Kemp B. E., ed.), CRC, Boca Raton, pp.171–188.Google Scholar

Copyright information

© The Humana Press Inc. 1992

Authors and Affiliations

  • Kenneth J. Murray

There are no affiliations available

Personalised recommendations