Skip to main content

Voltage-Gated Ion Channels

Electrophysiological Approaches

  • Protocol
Protocols in Molecular Neurobiology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 13))

  • 1728 Accesses

Abstract

Ion channels are membrane-spanning protein molecules. They form pores or channels, through which ions flow down their electro- chemical gradients. Channels are characterized by two properties, selectivity and gating. Thus, the pore selects for one or a few ion species, allowing only these to permeate, and the pore can open and close in response to changes in the membrane voltage field, or to the binding of chemical transmitters. Because movement of ions through the pore can be measured by the electrical current they carry, it has been possible to study the functioning of these proteins with high resolution. Channel openings and closings, reflecting changes in protein con- formation, can be detected on the time scale of a few tens of microseconds in some cases, and over the past 10 years, methods allowing study of events in a singlechannel protein molecule have become widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole, K. S. (1949) Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 3 253–258.

    CAS  Google Scholar 

  2. Marmont, G. (1949) Studies on the axon membrane; I. A new method. J. Cell. Camp. Physiol. 34, 351–382.

    Article  CAS  Google Scholar 

  3. Hodgkin, A. L., Huxley, A. F., and Katz, B. (1952) Measurement of currentvoltage relations in the membrane of the giant axon of Loligo.J. Physiol. 116, 424–448.

    Google Scholar 

  4. Hille, B. (1984) Ionic Channels of Excitable Membranes, Sinauer, Sunderland.

    Google Scholar 

  5. Colquhoun, D. and Hawkes, A. G. (1977) Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Prot. Royal Soc. London B 199, 231–262.

    Article  CAS  Google Scholar 

  6. Colquhoun, D. and Hawkes, A. G. (1982) On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos. Trans. Royal Soc. B 300, 1–59.

    Article  CAS  Google Scholar 

  7. Colquhoun, D. and Hawkes, A. L. (1983) The principles of the stochastic interpretation of ion channel mechanisms, in Single Channel Recording (Sakmann B. and Neher E., eds.), Plenum, New York, pp. 135–175.

    Google Scholar 

  8. Standen, N. B. (1987) Separation and analysis of ionic currents, in Microelectrode Techniques. The Plymouth Workshop Handbook (Standen, N. B., Gray, P. T. A., and Whitaker, M. J., eds.), Company of Biologists, Cambridge, pp. 2940.

    Google Scholar 

  9. Neher, E. and Stevens, C. F. (1977) Conductance fluctuations and ionic pores in membranes. Ann. Rev. Biophys. Bioengineenng 6, 345–381.

    Article  CAS  Google Scholar 

  10. Cull-Candy, S. G. (1984) New ways of looking atsynaptic channels: noise analysis and patch-clamp recording. Recenl Adv. Physol. 10, 1–28.

    Google Scholar 

  11. Halliwell, J. V., Plant, T. D., and Standen, N. B. (1987) Voltage clamp techniques, in Microeletlrode Techniques. The Plymouth Workshop Handbook (Standen, N. B., Gray, P. T. A., and Whitaker, M. J., eds.), Company of Biologists, Cambridge, pp. 13–28.

    Google Scholar 

  12. Neher, E. and Sakmann, B. (1976) Single channel currents recorded from membrane of denenated frog muscle Iibres. Nature 260, 799–802.

    Article  PubMed  CAS  Google Scholar 

  13. Hamill, 0. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  14. Horn, R. and Marty, A. (1988) Muscaninc activation of ioinc currents measured by a new whole-cell recording method.J. Gen. Physiol. 92, 145–159.

    Article  PubMed  CAS  Google Scholar 

  15. Sakmann, B. and Neher, E., eds. (1983) Single-Chunnel Recording. Plenum, New York.

    Google Scholar 

  16. Ogden, D. C. and Stanfield, P. R. (1987) Introduction to single channel recording, in Microeletrode Technique, The Plymouth Workshop Handbook (Standen, N. B., Gray, P. T. A., and Whitaker, M. J., eds.), Company of Biologists, Cambridge, pp. 63–81.

    Google Scholar 

  17. Miller, C. (ed.) (1986) Ion Channel Reconstiution. Plenum, New York.

    Google Scholar 

  18. Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117, 500–544.

    PubMed  CAS  Google Scholar 

  19. Chiu, S. Y(1977) Inactivation of sodium channels: second order kinetics in myelinated nerve.J. Physiol. 273, 573–596.

    PubMed  CAS  Google Scholar 

  20. Stühmer, W., Con& F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S. (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603.

    Article  PubMed  Google Scholar 

  21. Hagiwara, S. and Ohmori, H. (1983) Studies of single calcium channel currents in rat clonal pituitary cells.J. Physiol. 336, 649–661.

    PubMed  CAS  Google Scholar 

  22. Colquhoun, D. and Sakmann, B. (1985) Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle endp1ate.J. Physiol. 369, 501–557.

    PubMed  CAS  Google Scholar 

  23. McManus, O. B., Blatz, A. L., and Magleby, K. L. (1987) Samplmg, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise. Pflúgers Arch. 410, 530–553.

    Article  PubMed  CAS  Google Scholar 

  24. Colquhoun, D. (1987) The interpretation of single channel recordings, in Microelectrode Technizques. The Plymouth Workshop Handbook (Standen, N. B., Gray, P. T. A., and Whitaker, M.J., eds.), Company of Biologists, Cambridge, pp. 105–135.

    Google Scholar 

  25. Standen, N. B., Stanfield, P. R., Ward, T. A., and Wilson, S. W. (1984) A new preparation for recording single-channel currents from skeletal muscle. Proc. Royal Soc. B 217, 1–10.

    Google Scholar 

  26. Spruce, A. E., Standen, N. B., and Stanfield, P. R. (1989) Rubidium ions and the gating of delayed rectifier potassium channels of frog skeletal muscle. J. Physiol. 411, 597–610.

    PubMed  CAS  Google Scholar 

  27. Zagotta, W. N. and Aldrich, R. W. (1990) Voltage-dependent gating of Shaker A-type potassium channels in Drosophila musc1e.J. Gen. Physiol. 95, 29–60.

    Article  PubMed  CAS  Google Scholar 

  28. Magleby, K. L. and Pallotta, B. S. (1983) Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat musc1e.J. Physiol. 344, 585–604.

    PubMed  CAS  Google Scholar 

  29. Magleby, K. L. and Pallotta, B. S. (1983) Burst kinetics of single calcium-activated potassiium channel in cultured rat muscle.J. Physiol. 344, 605–623.

    PubMed  CAS  Google Scholar 

  30. Noda, M., Shiiizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K, Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. (1984) Primary structure of EIectrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127.

    Article  PubMed  CAS  Google Scholar 

  31. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K, Kojma, M., Matsuo, H., Hirose, T., and Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318.

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y. (1988) Multiple potassium-channel components are produced by altemative splicing at the Shuker locus in Drosphila. Nature 331, 137–142.

    Article  Google Scholar 

  33. Stúhmer, W., Ruppersberg, J. P., Schroter, R. H., Sakmann, B., Stocker, M., Ciese, K. P., Perschke, A., Baumann, A., and Pongs, 0. (1989) Molecular basis of functional diversity of voltagegated potassium channels in mammalian bmin. EMBO J. 8, 3235–3244.

    PubMed  Google Scholar 

  34. Leonard, R.J., Karschin, A., Jayashree-Aiyar, S., Davidson, N., Tanouye, M. A., Thomas, L., Thomas, G., and Lester, H. A. (1989) Expression of Drosophila shaker potassium channels in mammalian cells infected with recombinant vaccinia virus. Proc. Nat. Acad. Sci. USA 86, 7629–76

    Article  PubMed  CAS  Google Scholar 

  35. Noda, M., Suzuki, H., Numa, S., and Stühmer, W. (1989) A single point mutation confers tetrodotoxm and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 259, 213–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Standen, N.B., Stanfield, P.R. (1992). Voltage-Gated Ion Channels. In: Longstaff, A., Revest, P. (eds) Protocols in Molecular Neurobiology. Methods in Molecular Biology™, vol 13. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-199-3:325

Download citation

  • DOI: https://doi.org/10.1385/0-89603-199-3:325

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-199-9

  • Online ISBN: 978-1-59259-500-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics