Skip to main content

Identification of a Ligand-Gated Ion Channel by Photoaffinity Labeling and Microsequencing

  • Protocol
  • 1720 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 13))

Abstract

It is generally agreed that ion channels are operationally composed of two functional domains: The selectivity filter comprises the part of the protein that determines which ion may pass and which is retained; the gate determines under which conditions the selected ions may pass. Named according to the mechanisms that regulate the gate, the two groups of ion channels are today known as the ligandgated and the voltagegated channels.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Papazian, D. M., Schwarz, R. L., Tempel, B. L., Jan, Y. N., and Jan, L. Y. (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749–753.

    Article  PubMed  CAS  Google Scholar 

  2. Pongs, O., Kecskemethy, N., Müller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., Canal, I., Llamazares, S., and Ferrus, A. (1988) Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J. 7, 1087–1096.

    PubMed  CAS  Google Scholar 

  3. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Rayanao, T., Ikeda, T., Takahashi, H., Nakayama, H., Ranoka, Y., Miniamino, N., Rangawa, R., Natsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127.

    Article  PubMed  CAS  Google Scholar 

  4. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Rangawa, K., Rohima, M., Matsuo, H., Hirose, T., and Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318.

    Article  PubMed  CAS  Google Scholar 

  5. Claudia, T., Ballivet, M., Patrick, J., and Heinemann, S. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor subunit. Proc. Nutl Acad. Sai. USA 80, 1111–1115.

    Article  Google Scholar 

  6. Schofield, P. R., Darlison, M. G., Fqita, N., Burt, D. R., Stephenson, F. A., Rodriques, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencourse, T. A., Seeburg, P. H., and Barnard, E. A. (1987) Sequence and functional expression of the GABAA receptor shows a ligandgated receptor super-family. Nature 328, 221–227.

    Article  PubMed  CAS  Google Scholar 

  7. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, L., Gundelfinger, E. D., and Betz, H., (1987) The strychninebinding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptor. Nature 328, 215–220.

    Article  PubMed  CAS  Google Scholar 

  8. Hucho, F. and Hilgenfeld, R. (1989) The selectivity filter of a Iigand-gated ion channel. FEBS Lett. 257, 17–23.

    Article  PubMed  CAS  Google Scholar 

  9. Changeux, J.-P., Devillers=Thiéy, A., and Chemouilli, P. (1984) Acetylcho line receptor: an allosteric protein. Science 225, 1335–1345.

    Article  PubMed  CAS  Google Scholar 

  10. Maelicke, A. (1988) Structure and function of the nicotinic acetylcholine receptor, in Handbook of Expenmental Pharmacology, vol. 86 (V. P. Whittaker, ed.), Springer-Verlag, Berlin/Heidelberg, pp. 267–313.

    Google Scholar 

  11. Hucho, F. (1986) The nicotinic acetylcholine receptor and its ion channel. Eur.J. Biochem. 158, 211–226.

    Article  PubMed  CAS  Google Scholar 

  12. Toyoshima, C. and Unwin, N. (1988) Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336, 247–250.

    Article  PubMed  CAS  Google Scholar 

  13. Kunath, W., Giersig, M., and Hucho, F. (1989) The electron microscopy of the mcotinic acetylcholine receptor. Electron Microsc.Rev. 2, 349–466.

    Article  PubMed  CAS  Google Scholar 

  14. Hille, B. (1984) Ionic Channels of Excitable Membranes. Sinauer, Sunderland.

    Google Scholar 

  15. Levitzki, A. (1985) Reconstiution of membrane receptor systems. Biochim. Bwphys. Acta 822, 127–153.

    CAS  Google Scholar 

  16. Guy, H. R. and Hucho, F. (1987) The ion channel of the nicotinic acetylcholine receptor. TINS 10, 8, 318–321.

    CAS  Google Scholar 

  17. Maelicke, A., ed. (1988) Molecular biology of neurotransmitter receptors and ion channels (NATO AS1 Series H), Cell Biology, vol. 32. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  18. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Rikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, S28–S32.

    Article  Google Scholar 

  19. Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Ronno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita Y., and Numa, S. (1986) Location of a δ-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324, 670–674.

    Article  PubMed  CAS  Google Scholar 

  20. Hucho, F., Oberthur, W., and Lottspeich, F. (1986) The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett. 205, 137–142.

    Article  PubMed  CAS  Google Scholar 

  21. Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., and Numa, S. (1988) Rings of negatively-charged amino acids determine the acetylcholime receptor channel conductance. Nature 335, 645–648.

    Article  PubMed  CAS  Google Scholar 

  22. Dani, J.A. (1986) Ion-channel entrances influence permeation—net charge, size, shape and binding considerations. Biophys. J.49, 607–618.

    Article  PubMed  CAS  Google Scholar 

  23. Oberthur, W., Muhn, P., Baumann, H., Lottspetch, F., Wittmann-Liebold, B., and Hucho, F. (1986) The reaction site of a noncompetitive antagonist in the δ-subunit of the nicohnic acetylcholine receptor. EMBOJ. 5, 8, 1815–1819.

    CAS  Google Scholar 

  24. Hucho, F. and Oberthúr, W. (1988) Phottoaffinity labelling and localization by microsequencing of an ion channel protein, in Modern Methods in Protein Chemistry, vol. 3 (Tschesche, H., ed.), Walter der Gruyter, Berlin.

    Google Scholar 

  25. Kiefer, H., Lindstrom, J., Lemmox, E. S., and Singer S. J. (1970) Proc. Natl. Acad. Sci. USA 67, 1688–1694.

    Article  PubMed  CAS  Google Scholar 

  26. Hucho, F., Layer, P., kiefer, H. R., and Bandini, G. (1976) Photoaffinity labeling and quatemary structure of the acetylcholine receptor from Torpedo californica.Proc. Natl Acad. Sci. USA 73, 2624–2628.

    Article  PubMed  CAS  Google Scholar 

  27. Hucho, F. (1979) Photoaflinity derivatives of α-bungarotoxin and α-Naja naja siamensis toxin. FEBS Lett. 103, 27–32.

    Article  PubMed  CAS  Google Scholar 

  28. Witzemann, V., Muchmore, D., and Raftery, M. A. (1979) Affinity-directed cross-linking of membrane-bound acetylcholine recetor polypeptides with photolabile α-bungarotoxin derivatives. Biochemzstly 24, 5511–5518.

    Article  Google Scholar 

  29. Tsetlin, V., Pluzhnikov, K., Karelin, A., and Ivanov, V. (1983) Acetylcholine receptor interaction with the neurotoxin II photoactivatable derivatives, in Toxins as Tools in Neurochemistry (Hucho, F. and Ovchinnikov, Yu, eds.), Walter de Cruyter, Berlin.

    Google Scholar 

  30. Dennis, M., Giraudat, J., Kotzyba-Hibert, F., Doeldner, M., Hirth, C., Chang, J.-Y., Lazure, C., Chrétien, A., and Changeux, J.-P. (1988) Amino acids of the Torpedo marmorata acetylcholine binding site. Biochemistry 27, 2346–2357.

    Article  PubMed  CAS  Google Scholar 

  31. Changeux, J.-P. (1981) The acetylcholine receptor: an allosteric membrane protein. Hurvty Lect. 75, 85–254.

    CAS  Google Scholar 

  32. Lauffer, L. and Hucho, F. (1982) Tnphenylmethylphosphonium is an ion channel ligand of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 79, 2406–240.

    Article  PubMed  CAS  Google Scholar 

  33. Spivak, C. E. and Albuquerque, E. X. (1985) Triphenylmethylphosphonium blocks the nicotinic acetylcholine receptor noncompetitively. Mol. Pharmacology 27, 246–255.

    CAS  Google Scholar 

  34. Muhn, P. and Hucho, F. (1973) Covalent labeling of the acetylcholine receptor from Torpedo electric tissue with the channel blocker [3H]-tnphenyhmethylphosphonium by ultraviolet irradiation. Biochemistry 22, 421–425.

    Article  Google Scholar 

  35. Oberthür, W. and Hucho, F. (1988) Photoaffinity labeling of functional states of the nicotinic acetylcholine receptor.J. Prot. Chem. 7, 141–150.

    Article  Google Scholar 

  36. Fahr, A. and Hucho, F. (1986) A stopped-flow apparatus for photoaffinity labeling studies in the milliseconds time range. Application in investigations of the nicotinic acetylcholine receptor.J. Neurosci. Meth. 16, 29–38.

    Article  CAS  Google Scholar 

  37. Muhn, P., Fahr, A., and Hucho, F. (1984) Rapid laser flash photoaffinity labeling of binding sites for a noncompetitive inhibitor of the acetylcholine receptor. Biochmistry 23, 2725–2730.

    Article  CAS  Google Scholar 

  38. Cox, R. N., Kaldany, R.-R., Brandt, P.W., Ferren, B., Hudson, R. A., and Karlin, A. (1984) A continuous-flow, rapid-mixing, photolabeling technique applied to the acetylcholine receptor. Anal. Biochem. 136, 476–486.

    Article  PubMed  CAS  Google Scholar 

  39. Cox, R. N., Kaldany, R.-R., DiPaola, M., and Karlin, A. (1985) Time-resolved photolabeling by quinacrine azide of a noncompetitive inhibitor site of the nicotinic acetylcholine receptor in a transient, agonist-induced state.J. Biol. Chem. 260, 7186–7193.

    PubMed  CAS  Google Scholar 

  40. Heidmann, T. and Changeux, J.-P. (1984) Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations. Proc. Natl. Acad. Sci USA 81, 1897–1901.

    Article  PubMed  CAS  Google Scholar 

  41. Hertling-Jaweed, S., Bandini, G., and Hucho, F. (1990) Purification of nice tinic acetylcholine receptors, in Receptor Biochemistry: A practical approach, (E. Hulme, ed.), Oxford University Press, Oxford, UK.

    Google Scholar 

  42. Laemmli, U. R. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  43. Gross, E. and Winthrop, B. (1962) Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pacreatic ribonuc1ease.J. Biol Chem. 237, 1856-1860.

    Google Scholar 

  44. Fahr, A., Lauffer, L., Schmidt, D., Heyn, M. P., and Hucho, F. (1985) Covalent labeling of functional states of the acetylcholine receptor. Eur.J Biochem. 147, 483–487.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Hucho, F. (1992). Identification of a Ligand-Gated Ion Channel by Photoaffinity Labeling and Microsequencing. In: Longstaff, A., Revest, P. (eds) Protocols in Molecular Neurobiology. Methods in Molecular Biology™, vol 13. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-199-3:307

Download citation

  • DOI: https://doi.org/10.1385/0-89603-199-3:307

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-199-9

  • Online ISBN: 978-1-59259-500-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics