Skip to main content

Use of Affinity Chromatography in Purification of A1 Adenosine Receptors from Rat Brain Membranes

  • Protocol
Protocols in Molecular Neurobiology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 13))

  • 1697 Accesses

Abstract

Purification of receptor proteins has always been an important and challenging task in advancing the structural characterization and also in providing sequence data for the molecular cloning of the recep- tors. Some of the difficulties in the purification of receptors are:

  1. 1.

    Low concentrations of receptors in the tissue;

  2. 2.

    Solubilization of intact receptors from cell membranes; and

  3. 3.

    Development of an efficient affinity chromatography system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hofmann, F., Flockerzi, V., Nastainczyk, W., Ruth, P., and Schneider, T. (1990) The molecular structure and regulation of muscular calcium channels. Curr. Top. Cell. Regul. 31, 225–239.

    Google Scholar 

  2. Glossmann, H. and Striessmg, J. (1988) Calcium channels. Vitamins and Hormones 44, 155–328.

    Article  PubMed  CAS  Google Scholar 

  3. Catterall, W. A., Seagar, M.J., and Takahashi, M. (1988) Molecular properties of dihydropyridinesensitive calcium channels in skeletal musc1e.J. Biol. Chem. 263, 3535–3538.

    PubMed  CAS  Google Scholar 

  4. Fosset, M., Jaimovich, E., Delpont, E., and Lazdunski, M. (1983) [3H]Nitrendipine receptors in skeletal musc1e.J. Biol. Chem. 258, 6086–6092.

    PubMed  CAS  Google Scholar 

  5. Rios, E. and Ptzarró, G. (1988) Voltage sensors and calcium channels of excitation-contraction coupling. News Physiol. Sci. 3, 223–227.

    Google Scholar 

  6. Leung, A.T., Imagawa, T., Block, B., Franzini-Armstrong, C., and Campbell, K. P.(1988) Biochemical and ultrastructural characterization of the 1,4 dihydropyridine receptor from rabbit skeletal muscle. J. Biol. Chim. 263, 994–1001.

    CAS  Google Scholar 

  7. Adams, B. A., Tanabe, T., Mikami, A., Numa, S., and Beam, K. G. (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346, 569–572.

    Article  PubMed  CAS  Google Scholar 

  8. Tanabe, T., Beam, K. G., Adams, B. A., Nudome, T., and Numa, S. (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation contraction coupling. Nature 346, 567–569.

    Article  PubMed  CAS  Google Scholar 

  9. Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalié, A., and Trautwein, W. (1986) The purified dihydropyridine binding site from skeletal muscle T-tubules is a functional calcium channel. Nature 323, 66–68.

    Article  PubMed  CAS  Google Scholar 

  10. Perez-Reyes, E., Kim, H. S., Lacerda, A. E., Horne, W., Wei, X., Rampe, D., Campbell, K. P., Brown, A. M., and Birnbaumer, L. (1989) Induction of calcium currents by the expression of the α1 subunit of the dihydropyridine receptor from skeletal muscle. Nature 340, 233–236.

    Article  PubMed  CAS  Google Scholar 

  11. Róhrkasten, A., Meyer, H. E., Nastainczyk, W., Sieber, M., and Hofmann, F. (1988) cAMPdependent protein kinase rapidly phosphorylates Ser 687 of the rabbit skeletal muscle receptor for calcinm channel blockers. J Biol. Chem. 263, 15325–15329.

    PubMed  Google Scholar 

  12. Jahn, H., Nastainczyk, W., Róhrkasten, A., Schneider, T., and Hofmann, F. (1988) Site-specific phosphorylation of the purified receptor for calcium-channel blockers by CAMP-and cCMPdependent protein kinases, protein kinase C, cahnodulmdependent protem kinase II and casein kinase II. Eur. J. Biochem. 178, 535–542.

    Article  PubMed  CAS  Google Scholar 

  13. Hymel, L., Striessnig, J., Glossmann H., and Schindler, H. (1988) Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylationdependent oligomeric calcium channels in planar biayers. Proc. Natl. Acad. Sci. USA 85, 4290–4294.

    Article  PubMed  CAS  Google Scholar 

  14. Nunolki, K., Florio, V., and Catterall, W. (1989) Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc. Natl. Acad. Sci. USA 86, 6816–6820.

    Article  Google Scholar 

  15. Tanabe, T., Takeshima, H., Mikami, A,, Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nuture 328, 313–318.

    Article  CAS  Google Scholar 

  16. Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y, Takeshima, H., Narumiya, S., and Numa, S. (1989) Prim;uy structure and functional expression of the cardiac dihy&opyridine-sensitive calcium channel. Nature 340, 230–233.

    Article  PubMed  CAS  Google Scholar 

  17. Biel, M., Ruth, P., Bosse, E., Hullin, R., Stühmer, W., Flockerzi, V., and Hofmann, F. (1990) Primary structure and functional expression of a high voltage activated calcium channel fiom rabbit lung. FEBS Lett. 269, 409–412.

    Article  PubMed  CAS  Google Scholar 

  18. Ruth, P., Rohrkasten, A., Biel, M., Bosse, E., Regulla, S., Meyer, H. E., Flockerzi, V., and Hofmann, F. (1989) Primary structure of the subunit of the DHP-sensitive calcium channel of skeletal muscle. Science 245, 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  19. Bosse, E., Regulla, S., Biel, M., Ruth, P., Meyer, H. E., Flockerzi, V., and Hofmann, F. (1990) The cDNA and deduced amino acid sequence of the subunit of the Ltype calcium channel from rabbit skeletal muscle. FEBS Lett. 267, 153–156.

    Article  PubMed  CAS  Google Scholar 

  20. Jay, S. D., Ellis, S. B., McCue, A. F., Williams, M. E., Vedvick, T. S., Harpold, M. M., and Campbell, K. P. (1990) Primary structure of the γsubunit of the DHP-sensitive calcium channel from skeletal muscle. Science 248, 490–492.

    Article  PubMed  CAS  Google Scholar 

  21. Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leung, A. T., Campbell, K. P. McKenna, E., Koch, W. J., Hui, A., Schwartz, A., and Harpold, M. M. (1988) Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel. Science 241, 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  22. DeJongh, K. S., Warner, C., and Catterall, W. A. (1990) Subunits of punfied calcium channels. α2 and δ are encoded by the same gene. J. Biol. Chem. 265, 14738–14741.

    CAS  Google Scholar 

  23. Flockerzi, V., Oeken, H.-J., and Hofmann, F. (1986) Purification of a functional receptor for calcium channel blockers from rabbit skeletal muscle microsomes. Eur.J. Biochem. 161, 217–224.

    Article  PubMed  CAS  Google Scholar 

  24. Sieber, M., Nastainczyk, W., Zubor, V., Wernet, W., and Hofmann, F. (1987) The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur.J. Biochem 167, 117–122.

    Article  PubMed  CAS  Google Scholar 

  25. Glossmann, H., Ferry, D. R., Striessnig, J., Goll, A., and Moosburger, K. (1987) Resolving the structure of the Ca2+ channel by photoaffinity labeling. Trends Pharmacol. Sci. 8, 95–100.

    Article  CAS  Google Scholar 

  26. Takahashi, M., Seagar, M.J., Jones, J. F., Reber, B. F. X., and Catterall, W. A. (1987) Subunit structure of dihydropyridine-sensitive calcium channel from skeletal muscle. Prot. Natl.Acad. Sci. USA 84, 5478–5482.

    Article  CAS  Google Scholar 

  27. Schneider, T., Regulla, S., and Hofmann, F. (1990) The devapamil binding site of the purified skeletal muscle CaCB receptor is modulated by micromolar and milimolar calcium. Eur.J. Biochem. 200, 245–253.

    Article  Google Scholar 

  28. Kim, H. S., Wei, X., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., and Birnbaumer, L. (1990) Studies on the structural requirements for the actuty of the skeletal muscle dihydropyridine receptor/slow Ca2+ channel. J. Biol. Chem. 265, 11858–11863.

    PubMed  CAS  Google Scholar 

  29. Regulla, S., Schneider T., Nastainczyk W., Meyer H. E., and Hofmann, F. (1991) Identificadon of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel α1 sub unit. EMBO J. 10, 45–49.

    PubMed  CAS  Google Scholar 

  30. Schneider, T. and Hofmann, F. (1988) The bovine cardiac receptor for calcium channel blockers is a 195 kDa protein. Eur.J. Biochem. 174, 369–375.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Nakata, H. (1992). Use of Affinity Chromatography in Purification of A1 Adenosine Receptors from Rat Brain Membranes. In: Longstaff, A., Revest, P. (eds) Protocols in Molecular Neurobiology. Methods in Molecular Biology™, vol 13. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-199-3:261

Download citation

  • DOI: https://doi.org/10.1385/0-89603-199-3:261

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-199-9

  • Online ISBN: 978-1-59259-500-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics