Skip to main content

The Identification of Neuropeptide Gene Regulatory Elements in Transgenic Mice

  • Protocol
  • 1702 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 13))

Abstract

The typical mammalian genome contains 3 × lo9bp of DNA. This amount of DNA is believed to include 3-4 × lo4 unique protein- encoding genes. Even complex, highly specialized cells, such as neurons, express a small fraction, perhaps 20%, of all the possible genes, how- ever. A major problem in neurobiology, therefore, is to characterize the mechanisms involved in neural-specific gene expression. Significant progress has been made in our understanding of the factors that restrict the expression of genes to particular cell lineages. A particularly good example is the growth hormone (GH) gene. Growth hormone belongs to a gene family that includes prolactin and chorionic somatomammotropin. Despite a high degree of homology between these genes derived from a single common ancestral gene, GH is exclusively expressed in one cell type in the mammal, the pitu- itary somatotroph. The first step in defining the molecular basis of somatotroph-specific gene expression was the identification of the minimal nucleotide sequences within the GH gene that confer strict pituitary-specific expression. Utilizing pituitaryderived cell lines trans- fected with reporter genes that contained putative cell-specific human or rat GH gene regulatory sequences, several groups of investigators delineated two binding sites in the promoter region that are essential

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lefevre, C., Imagawa, M., Dana, S., Grindlay, J., Bodner, M., and Karin, M. (1987) Tissue-specific expression of the human growth hormone gene is conferred in part by binding of a specific trans-acting factor. Embo. J. 6, 971–981.

    PubMed  CAS  Google Scholar 

  2. West, B. L., Catanzaro, D. F., Mellon, H., Cattini, P. A., Baxter, J. D., and Reudelhuber, T. L. (1987) Interaction of a tissue-specific factor with an essential rat growth hormone gene promoter element. Mol. Cell. Biol. 7, 1193–1197.

    PubMed  CAS  Google Scholar 

  3. Nelson, C, Grenshaw, E. B., III, France, R., Lira, S. A., Albert, V. R., Evans, R. M., and Rosenfeld, M. G. (1986) Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactm and growth hormone genes. Nature 322, 557–562.

    Article  PubMed  CAS  Google Scholar 

  4. Bodner, M. and Karm, M. (1987) Activation of cell-specific expression of rat growth hormone promoter in extracts of nonexpressing cells. Cell 50, 267–275.

    Article  PubMed  CAS  Google Scholar 

  5. Lira, S. A., Crenshaw, E. B.,III, Glass, C. K., Swanson, L. W., and Rosenfeld, M. G. (1988) Identification of rat growth hormone genomic sequences targeting pituitary expression in transgenic mice. Proc. Natl. Acad. Sci USA 85, 4755–4759.

    Article  PubMed  CAS  Google Scholar 

  6. Swanson, L. W., Simmons, D. M., Arriza, J., Hammer, R., Brinster, R., Rosenfeld, M. G., and Evans, R. M. (1985) Novel developmental specificity in the nervous system of transgenic animals expressing growth hormone fusion genes. Nature 317, 363–366.

    Article  PubMed  CAS  Google Scholar 

  7. Russo, A. F., Crenshaw, E. B., III, Lira, S. A., Simmons, D. M., Swanson, L. W., and Rosenfeld, M. G. (1988) Neuronal expression of chimeric genes in transgenic mice. Neuron 1, 311–320.

    Article  PubMed  CAS  Google Scholar 

  8. Low, M. J., Lechan, R. M., Hammer, R. E., Brinster, R. L., Habener, J. F., Mandel, G., and Goodman, R. H. (1986) Gonadotroph-specific expression of metallothionein fusion genes in pituitaries of transgenic mice. science 231, 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  9. Low, M. J., Goodman, R. H., and Ebert, K. M. (1989) Cryptic human growth hormone gene sequences direct gonadotroph-specific expression in transgenie mice. Mol. Endocrinol. 3, 2028–2033.

    Article  PubMed  CAS  Google Scholar 

  10. Nelson, C., Albert, V. R., Elsholtz, H. P., Lu, L. I. W., and Rosenfeld, M. G. (1988) Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science 239, 1400–1405.

    Article  PubMed  CAS  Google Scholar 

  11. Bodner, M., Castrillo, J. L., Theill, L. E., Deerinck, T., Ellisman, M., and Karin, M. (1988) The pituitary-specific tmnscription factor GHF-1 is a homeobox-containing protein. Cell, 55, 519–529.

    Article  Google Scholar 

  12. Ingraham, H. A., Chen, R., Mangalam, H. J., Elsholtz, H. P., Flynn, S. E., Lin, C. R., Simmons, D. M., Swanson, L., and Rosenfeld, M. G. (1988) A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55, 519–529.

    Article  PubMed  CAS  Google Scholar 

  13. Herr, W., Sturm, R. A., Clerc, R. G., Corcosan, L. M., Baltimore, D., Sharp, P. A., Ingraham, H. A., Rosenfeld, M. G., Finney, M., Ruvkun, G., and Hotvitz, R. (1988) The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans uno-86 gene products. Genes Dev. 2, 1513–1516.

    Article  PubMed  CAS  Google Scholar 

  14. He, X., Treaty, M. N., Simmons, D. M., Ingraham, H. A., Swanson, L. W., and Rosenfeld, M. G. (1989) Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 40, 35–42.

    Article  Google Scholar 

  15. Dollé, P., Castrillo, J. L., Theill, L. E., Deernick, T., Ellisman, M., and Karin, M. ( 1990) Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spautially with the onset of growth hormone gene acuivity. Cell 60, 809–820.

    Article  PubMed  Google Scholar 

  16. Jaenisch, R. (1988) Transgenic animals. Science 240, 1468–1473.

    Article  PubMed  CAS  Google Scholar 

  17. Brinster, R. L. and Palmiter, R. D. (1986) Introduction of genes into the germ line of animals. Harvey Lectures 80, 1–38.

    Google Scholar 

  18. Hogan, B., Costantini, F., and Lacy, E. (1986) Manipdating the Mouse Embtyo. Cold Spring Harbor Laboratory, Cold Spring Harbor,NY.

    Google Scholar 

  19. Kumar, R., Fairchild-Huntress, V., and Low, M. J. (1992) Gonadotropespecific expression of the human follicle stimulating hormone beta subunit gene in pituitaries of tmnsgemc mice. Mol. Endocrinol. 6, 81–90.

    Article  PubMed  CAS  Google Scholar 

  20. Palmiter, R. D. and Brinster, R. L. (1986) Germ-line transformation of mice. Ann. Rev. Genet. 20, 465–499.

    Article  PubMed  CAS  Google Scholar 

  21. Chada, K., Magram, J., and Costantini, F. (1986) An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature 319, 685–689.

    Article  PubMed  CAS  Google Scholar 

  22. Hammer, R. E., Krumlauf, R., Camper, S. A., Brinster, R. L., and Tilghman, S. M. (1987) Diversity of alpha-fetoprotein gene expression in mice is generated by a combination of separate enhancer elements. Science 2, 53–58.

    Article  Google Scholar 

  23. Rubinstein, M., Goodman, R. H., and Low, M. J. (1992) Targeted expres sion of somatostatin in vasopressinergic magnocellular hypothalamic neurons of transgenic mice. Mol. Cd. Neurosci. (in press).

    Google Scholar 

  24. Gordon, J. I. (1989) Intestinal epithelial differentiation: new insights from chimeric and tmnsgenic mice. J. Cell Biol 108, 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  25. Efiat, S., Teitelman, G., Anwar, M., Ruggerio, D., and Hanahan, D. (1988) Glucagon gene regulatory region directs oncoprotem expression to neurons and pancreatic alpha cells. Neuron 1, 605–613.

    Article  Google Scholar 

  26. Hanahan, D. (1985) Heritable formation of pancreatic β-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122.

    Article  PubMed  CAS  Google Scholar 

  27. Behringer, R. A., Mathews, L. S., Pahmiter, R. D., and Brinster, R. L. (1988) Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Gene-s Dev. 2, 453–461.

    Article  CAS  Google Scholar 

  28. Khillan, J. S., Schmidt, A., Overbeek, P. A., de Crombrugghe, B., and Westphal, H. (1986) Developmental and &sue-specific expression directed by the alpha2 type 1 collagen promoter in transgenic mice. Proc. Natl. Acad. Sci. USA 83, 725–729.

    Article  PubMed  CAS  Google Scholar 

  29. Goring, D. R., Rossant, J., Clapoff, S., Breitman, M. L., and TSUI, L-C. (1987) In situ detection of β-galactosidase in lenses of transgenic mice with a gammacrystallin/ lac Zgene. Snence 235, 456–458.

    Article  CAS  Google Scholar 

  30. DiLella, A. G., Hope, D. A., Chen, H., Trumbauer, M., Schwartz, R. J., and Smith, R. G. (1988) Utility of firefly luciferase as a reporter gene for pro moter activity in transgenic mice. Nucleic Acids Res. 16, 4159.

    Article  PubMed  CAS  Google Scholar 

  31. Zakany, J., Tuggle, C. K., Patel, M. D., and Nguyen-Huu, M. C. (1988) Spaual regulation of homeobox gene fusions in the embryoinc central nervous system of transgenic mice. Neuron 1, 679–691.

    Article  PubMed  CAS  Google Scholar 

  32. Hammer, G. D., Fairchild-Huntress, V., and Low, M. J. (1990) Pituitaryspecific and hormonally regulated gene expression directed by the rat proopiomelanocortin promoter in transgenic mice. Mol. Erdminol. 4, 1689–1697.

    CAS  Google Scholar 

  33. Hall, C. V., Jacob, P. E., Rmgold, G. M., and Lee, F. (1983) Expression and regulation of Escherichia coli. luc Zgene fusions in mammalian cells. J. Mol. Appl. Gen. 2, 101–109.

    CAS  Google Scholar 

  34. Pipas, J. M. (1988) SV40 Large T antigen mutant data base. In vitro Cell. Devel.Biol 24, 1147.

    Article  CAS  Google Scholar 

  35. Sambrook, J., Fritsch, E. F., and Maniatis, T. ( 1989) Molecular Clonmng: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor,NY.

    Google Scholar 

  36. Labarca, C. and Paigen, K. (1980) A simple, rapid, and sensitive DNA assay procedure. Anal. Biochm. 102, 344–352.

    Article  CAS  Google Scholar 

  37. James, J. (1976) Light Microscopic Techniques in Biology and Medicine. Martinus Nijhoff, The Hague.

    Book  Google Scholar 

  38. DePamphilis, M. L., Herman, S. A, Martinez-Salas, E., Chahifour,L. E., Wirak, D. O., Cupo, D. Y., and Miranda, M. (1988) Microinjecting DNA into mouse ova to study DNA replication and gene expression and to produce transgenic animals. Bio. Techniques 6, 662–680.

    CAS  Google Scholar 

  39. Stevens, M. E., Meneses, J. J., and Pedersen, R. A. (1989) Expression of a mouse metallothtionein-Escherichia coli β-galactosidase fusion gene (MT-βgal) in early mouse embryos. Exp. Cell Res. 183, 319–325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Low, M.J. (1992). The Identification of Neuropeptide Gene Regulatory Elements in Transgenic Mice. In: Longstaff, A., Revest, P. (eds) Protocols in Molecular Neurobiology. Methods in Molecular Biology™, vol 13. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-199-3:181

Download citation

  • DOI: https://doi.org/10.1385/0-89603-199-3:181

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-199-9

  • Online ISBN: 978-1-59259-500-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics