An Animal Model of Attention Deficit

  • Joram Feldon
  • Ina Weiner
Part of the Neuromethods book series (NM, volume 18)


Attentional dysfunction has been implicated in a variety of psychopathological conditions (Cutting, 1985). Two major syndromes in which such dysfunction is considered to play a central role are attention-defidt hyperactivity disorder (ADHD) and schizophrenia. It is not clear to what extent, if at all, attentional deficits described in these disorders share a common mechanism. However, both schizophrenia and ADHD have been linked to dopaminergic (DA) dysfunction, and, if this neurotransmitter system subserves attentional processes, at least partial commonality of mechanism may exist. Indeed, in view of the lack of clarity surrounding the diagnostic criteria for ADHD and schizophrenia and the repeated calls for their nosological reappraisal, the continuing focus in both of these syndromes on the two dysfunctions, attentional and dopaminergic, is rather remarkable. It appears, then, that an animal model of attentional (dys)function that is related to DA (dys)function could benefit the understanding of both disorders. This chapter presents such a model.


Latent Inhibition Attentional Process Irrelevant Stimulus Conditioned Emotional Response Latent Inhibition Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackil J., Mellgren R. L., Halgren C, and Frommer, S. P. (1969) Effects of CS preexposure on avoidance learning in rats with hippocampal lesions. J. Comp. Physiol. Psychol. 69, 739–747.PubMedCrossRefGoogle Scholar
  2. Anscombe F. (1987) The disorder of consciousness in schizophrenia. Schiz.Bull. 2, 241–260.Google Scholar
  3. Asarnow R. F., Marder S. R., Mintz J., Van Putten T., and Zimmerman K. E. (1988) Differential effect of low and conventional doses of fluphenazine on schizophrenic outpatients with good or poor information-processing abilities. Arch. Gen. Psychiat. 45, 822–826.PubMedGoogle Scholar
  4. Baruch I., Hemsley D., and Gray J. A. (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J. Nerv. Ment. Dis. 176, 598–606.PubMedCrossRefGoogle Scholar
  5. Bashore T., Rebec G. V., and Groves P. M. (1978) Alterations of spontaneous neuronal activity in the caudate-putamen, nucleus accumbens, and amygdaloid comple:of rat produced by d-amphetamine. Pharmacol. Biochem. Behav. 8, 467–474.PubMedCrossRefGoogle Scholar
  6. Beninger R. J. (1983) The role of dopamine in locomotor activity and learning. Brain Res. Rev, 6, 173–196.CrossRefGoogle Scholar
  7. Braff D. L. and Saccuzzo D. P. (1982) Effect of antipsychotic medication on speed of information processing in schizophrenic patients. Am. J. Psychiat. 139, 1127–1130.PubMedGoogle Scholar
  8. Brookes S., Rawlins J. N. P., and Gray J. A (1983) Hippocampal lesions do not alter the partial punishment effect. Exy. Brain Res. 52, 34–40.Google Scholar
  9. Carlsson A. (1988) The current status of the dopamine hypothesis of schizophrenia.Neuropsychopharmacology 1, 179–186.PubMedCrossRefGoogle Scholar
  10. Christison G. W., Atwater G. E., Dunn L. A., and Kilts C. D. (1988) Haloperidol enhancement of latent inhibition: Relation to therapeutic action? Biol. Psychiat. 23, 746–749PubMedCrossRefGoogle Scholar
  11. Cohen P. and Borst V. (1987) Psychological models of schizophrenic impairments,in Search for the Causes of Schizophrenia (Hafner H., Gattaz W. F., and Janzavik W., eds.), Springer-Verlag, Berlin.Google Scholar
  12. Cornblatt B. A., Lenzenweger M. F., Dworkin P. H., and Erlenmeyer-Kimling L. (1983) Positive and negative schizophrenic symptoms, attention, and information processing. Schiz. Bull. 11, 397–408.Google Scholar
  13. Creese I. and Iversen S. D. (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res. 83, 419–436.PubMedCrossRefGoogle Scholar
  14. Cutting J. (1985) The Psychology of Schizophrenia. Church and Livingstone, Edinburgh.Google Scholar
  15. Denenberg V. H. (1962) An attempt to isolate critical periods of development in the rat. J. Corny. Physiol. Psychol. 55, 813–815.CrossRefGoogle Scholar
  16. Deutch A. J., Tarn S-Y, and Roth R. H. (1985) Footshock and conditioned stress increase 3,4-dihydroxyphenylactic acid (DOPAC) in the ventral tegmental area but not the substantia nigra. Brain Res. 333, 143–146.PubMedCrossRefGoogle Scholar
  17. Dyme I. Z., Sahakian. J., Golinko B., and Rabe E. (1982) Perseveration induced by methylphenidate in children: Preliminary findings. Prog.Neuropsychopharmacol. Biol. Psychiat. 6, 269–273.CrossRefGoogle Scholar
  18. Erdelyi M. H. (1974) A new look at the new look: Perceptual defense and vigilance. Psychol. Rev. 81, 1–25PubMedCrossRefGoogle Scholar
  19. Erskine M. S., Stern J. M., and Levine S. (1975) Effects of prepubertal handling on shock-induced fighting and ACTH in male and female rats. Physiol. Behav. 14, 413–420PubMedCrossRefGoogle Scholar
  20. Feldon J. and Weiner I. (1988) Long term attentional deficit in nonhandled males: Possible involvement of the dopaminergic sytem. Psychopharmacology 95, 231–236.PubMedGoogle Scholar
  21. Feldon J. and Weiner I. (1989) Abolition of the acquisition but not the expression of latent inhibition by chlordiazepoxide in rats. Pharmacol.Biochem. Behav. 32, 123–127.PubMedCrossRefGoogle Scholar
  22. Feldon J. and Weiner I. (in press) The latent inhibition model of schizophrenic attention disorder: Haloperidol and sulphide enhance rats’ ability to ignore irrelevant stimuli. Biol. Psychiatry. Google Scholar
  23. Gittelman P. (1983) Experimental and clinical studies of stimulant use in hyperactive children and children with other behavioral disorders, in Stimulants: Neurochemical, Behavioral and Clinical Perspectives (Creese I., ed.), Raven, New York.Google Scholar
  24. Gittelman-Klein R. (1987) Pharmaco-therapy of childhood hyperactivity: An update, in Psychopharmacology: The Third Generation of Progress (Meltzer H. Y., ed.), Raven, New York.Google Scholar
  25. Greenberg G. and Bursdal C. (1982) Animal colony practices in North American academic institutions: A survey. J. Gen. Psychol. 106, 165–173.Google Scholar
  26. Groves P. M. and Rebec G. V. (1976) Biochemistry and behavior: Some central actions of amphetamines and antipsychotic drugs. Ann. Rev. Psychol. 27, 91–127.CrossRefGoogle Scholar
  27. Groves P. M. and Tepper J. M. (1983) Neuronal mechanisms of action of amphetamine, in Stimulants: Neurochemical, Behavioral and Clinical Perspectives (Creese I., ed.), Raven, New York.Google Scholar
  28. Herman J. P., Guillonneau D., Dantzer R., Scatton B., Smerdijan-Rouquier L., and Le Moal M. (1982) Different effects of inescapable footshocks and stimuli previously paired with footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30, 2207–2214.PubMedCrossRefGoogle Scholar
  29. Hitzemann R., Wu J., Horn D., and Loh H. (1980) Brain locations controlling the behavioral effects of chronic amphetamine intoxication. Psychopharmacology 72, 92–101.CrossRefGoogle Scholar
  30. Iversen S. D. (1987) Is it possible to model psychotic states in animals? J.Psychopharmacol. 1, 154–176.CrossRefGoogle Scholar
  31. Jacklin C. N. (1989) Female and male: Issues of gender. Am. Psychol. 44, 127–133.PubMedCrossRefGoogle Scholar
  32. Joyce E. M. and Iversen S. D. (1984) Dissociable effects of 6-OHDA-induced lesions of neostriatum on anorexia, locomotor activity and stereotypy: The role of behavioural competition. Psychopharmacology 83, 363–366.PubMedCrossRefGoogle Scholar
  33. Kelly P. H., Seviour P. W., and Iversen S. D. (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res, 94, 507–522.PubMedCrossRefGoogle Scholar
  34. Kinsbourne M. (1983) Toward a model for the attention deficit disorder, in The Minnesota Symposia on Child Psychology (Perlmutter M., ed.), Erlbaum, Hillsdale, NJ.Google Scholar
  35. Koob G. P., Riley S. J., Smith C, and Robbins T. W. (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity and amphetamine anorexia in the rat J. Comp. Physiol. Psychol. 92, 917–927.PubMedCrossRefGoogle Scholar
  36. Kornetzky C. (1972) The use of simple test of attention as a measure of drug effects in schizophrenic patients. Psychopharmacologia 24, 99–106.CrossRefGoogle Scholar
  37. LaBerge D. (1976) Perceptual learning and attention, in Handbook of Learning and Cognitive Processes vol. 4 (Estes W. K., ed.), Erlbaum, Hillsdale, NJ.Google Scholar
  38. Levine S. (1960) Stimulation in infancy. Sci. Am. 202, 80–86.CrossRefGoogle Scholar
  39. Levine S. and Lewis G. W. (1959) The relative importance of experimenter contact in an effect produced by extra-stimulation in infancy. J. Comp. Physiol. Psychol. 52, 368,369.Google Scholar
  40. Lewine R. L., Burbach D., and Meltzer H. Y. (1984) Effect of diagnostic criteria on the ratio of male to female schizophrenic patients. Am. J. Psychiat. 141, 84–87.PubMedGoogle Scholar
  41. Lubow R. E. (1973) Latent inhibition. Psychol. Bull. 79, 398–407.PubMedCrossRefGoogle Scholar
  42. Lubow R. E. (1989) Latent Inhibition and Conditioned Attention Theory, Cambridge University Press, New York.CrossRefGoogle Scholar
  43. Lubow R. E., Weiner I., and Feldon J. (1982) An animal model of attention, in Behavioral Models and the Analysis of Drug Action (Spiegelstein M. Y. and Levy A., eds.), Elsevier, New York.Google Scholar
  44. Lubow R. E., Weiner I., and Schnur P. (1981) Conditioned attention theory,in The Psycholocfy of Learning and Motivation vol. 15 (Bower G. H., ed.), Academic, New York.Google Scholar
  45. Lubow R. E., Weiner I., Schlossberg A., and Baruch I. (1987) Latent inhibition and schizophrenia. Bull Psychon. Soc. 25, 464–467.Google Scholar
  46. Mackintosh N. J. (1973) Stimulus selection: Learning to ignore stimuli that predict no change in reinforcement, in Constraints on Learning: Limitations and Predispositions (Hinde R. A. and Hinde J. S., eds.), Academic, Cambridge.Google Scholar
  47. Mackintosh N. J. (1975) A theory of attention: Variations in the associability of stimuli with reinforcement. Psychol. Rev. 82, 276–298.CrossRefGoogle Scholar
  48. Mackintosh N. J. (1983) Conditioning and Associative Learning. Oxford University Press, New York.Google Scholar
  49. McKinney W. T. (1988) Models of Mental Disorders: A New Comparative Psychiatry. Plenum, New York.Google Scholar
  50. McKinney W. T. and Bunney W. F. (1969) Animal models of depression. I.Review of evidence: Implications for research. Arch. Gen. Psychiat. 21, 240–248.PubMedGoogle Scholar
  51. Moore J. W. (1979) Brain processes and conditioning, in Mechanisms of Learning and Motivation: A Memorial Volume for Jerzy Konorski (Dickinson A. and Boakes R. A., eds.), Erlbaum, Hillsdale, NJ.Google Scholar
  52. Moore J. W. and Stickney K. J. (1980) Formation of attentional-associative networks in real time: Role of the hippocampus and implications for conditioning. Physiol. Psychol. 8, 207–217.Google Scholar
  53. Oades R. D. (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci. Biobehav. Rev. 9, 261–282.PubMedCrossRefGoogle Scholar
  54. Oades R. D. (1987) Attention deficit disorder with hyperactivity (ADDH).The contribution of catecholaminergic activity. Prog. Neurobiol. 29, 365–391.PubMedCrossRefGoogle Scholar
  55. Oades R. D. (1989) Attention deficit disorder and hyperkinetic syndrome:Biological perspectives, in Attention Deficit Disorder: Clinical and Basic Research (Sagvolden T. and Archer T., eds.), Erlbaum, Hillsdale, NJ.Google Scholar
  56. Ohad D., Lubow R. E., Weiner I., and Feldon J. (1987) The effects of amphetamine on blocking. Psychobiology 15, 137–143.Google Scholar
  57. Oltmanns T. F., Ohayon J., and Neale J. M. (1978) The effect of antipsychotic medication and diagnostic criteria on distractability in schizophrenia. J. Psychiatr. Res. 14, 81–91.PubMedCrossRefGoogle Scholar
  58. Pich E. M. and Samanin R. (1986) Disinhibitory effect of buspirone and low doses of sulpiride and haloperidol in two experimental anxiety models in rats: Possible role of dopamine. Psychopharmacology 89, 125–130.PubMedCrossRefGoogle Scholar
  59. Pijnenburg A. J. J., Honig W. M. M., and van Rossum J. M. (1975) Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat. Psychopharmacology 41, 87–95.CrossRefGoogle Scholar
  60. Porrino L. J., Ludgnani G., Dow-Edwards D., and Sokoloff L. (1984) Correlation of dose-dependent effects of acute amphetamine administration on behavior and local cerebral metabolism in rats. Brain Res. 307 311–320.PubMedCrossRefGoogle Scholar
  61. Rapoport J. L., Buchsbaum M. S., Weingartner H., Zahn T. P., Ludlow C. M.,and Mikkelsen E. J. (1980) Dextroamphetamine: Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Arch. Gen. Psychiat. 37, 933–943.PubMedGoogle Scholar
  62. Rawlins J. N. P., Feldon J., and Gray J. A. (1980) The effects of hippocampectomy and of fimbia section upon the partial reinforcement extinction effect in rats. Exp. Brain Res. 38, 273–283.PubMedCrossRefGoogle Scholar
  63. Rebec C. V. and Zimmerman K. S. (1980) Opposite effects of d-amphet-amine on spontaneous neuronal activity in the neostriatum and nucleus accumbens. Brain Res. 201, 485–491.PubMedCrossRefGoogle Scholar
  64. Reiss S. and Wagner A. (1972) CS habituation produces a “latent inhibition effect” but no active “conditioned inhibition.” Learn. Moth. 3, 237–245.CrossRefGoogle Scholar
  65. Rescorla R. A. (1969) Pavlovian conditioned inhibition. Psychol. Bull 72, 77–94.CrossRefGoogle Scholar
  66. Rescorla R. A. (1971) Summation and retardation tests of latent inhibition.J. Corny. Physiol. Psychol. 75, 77–81.CrossRefGoogle Scholar
  67. Rifkin A. and Siris S. (1987) Drug treament of acute schizophrenia, in Psychopharmacology: The Third Generation of Progress (Meltzer H. Y., ed.), Raven, New York.Google Scholar
  68. Robbins T. W. and Everitt B. J. (1982) Functional studies of the central catecholamines. Int. Rev. Neurobiol. 23, 303–365.PubMedCrossRefGoogle Scholar
  69. Robbins T. W., Jones G. H., and Sahakian B. J. (1989) Central stimulants,transmitters and attentional disorder: A perspective from animal studies, in Attention Deficit Disorder: Clinical and Basic Research (Sagvolden T. and Archer T., eds.), Erlbaum, Hillsdale, NJ.Google Scholar
  70. Robbins T. W. and Sahakian B. J. (1979) “Paradoxical” effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioral pharmacology. Neuropharmacology 18, 931–950.PubMedCrossRefGoogle Scholar
  71. Robbins T. W. and Sahakian B. J. (1983) Behavioral effects of psychomotor stimulant drugs: Clinical and neuropsychological implications, in Stimulants: Neurochemical, Behavioral and Clinical Perspectives (Creese I., ed.), Raven, New York.Google Scholar
  72. Robinson T. E. and Becker J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 157–198.CrossRefGoogle Scholar
  73. Rutter M. (1989) Attention deficit disorder/hyperkinetic syndrome: Conceptual and research issues regarding diagnosis and classification,in Attention Deficit Disorder: Clinical and Basic Research (Sagvolden T. and Archer T., eds.), Erlbaum, Hillsdale, NJ.Google Scholar
  74. Sagvolden T., Wultz B., Moser E. I., Moser M. B., and Morkrid L. (1989) Results from a comparative neuropsychological research program indicate altered reinforcement mechanisms in children with ADD, in Attention Deficit Disorder: Clinical and Basic Research (Sagvolden T. and Archer T., eds.), Erlbaum, Hillsdale, NJ.Google Scholar
  75. Schaefer T. (1963) Early experience in its effects in later behavioral processes in rats: II: A critical factor in the early handling phenomenon. Trans. NY Acad. Sci. 25, 871–889.Google Scholar
  76. Schmajuk N. A. and Moore J. W. (1985) Real-time attentional models for classical conditioning and the hippocampus. Physiol. Psychol. 13, 278–290.Google Scholar
  77. Schmajuk N. A. and Moore J. W. (1988) The hippocampus and the classically conditioned nictitating membrane response: A real-time attentional-associative model. Psychobiology 16, 20–35.Google Scholar
  78. Schreiber H., Bell R., Wood G., Carlson R., Wright L., Kufner M., and Villescas R. (1978) Early handling and maternal behavior: Effect on d-amphet-amine responsiveness in rats. Pharmacol. Biochem. Behav. 9, 785–789.PubMedCrossRefGoogle Scholar
  79. Sergeant J. and van der Meere J. J. (1989) The diagnostic significance of attentional processing: Its significance for ADDH classification—a future DSM, in Attention Deficit Disorder: Clinical and Basic Research (Sagvolden T. and Archer T., eds.), Erlbaum, Hillsdale, NJ.Google Scholar
  80. Shiffrin R. M. (1976) Capacity limitations in information processing, attention and memory, in Handbook of Learning and Cognitive Processes vol. 4 (Estes W. K., ed.), Erlbaum, Hulsdale, NJ.Google Scholar
  81. Shiffrin R. M. and Schneider W. (1977) Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–190.CrossRefGoogle Scholar
  82. Solomon P. R. (1980) Temporal versus spatial information processing theories of hippocampal function. Psychol. Bull. 86, 1272–1279.CrossRefGoogle Scholar
  83. Solomon P. and Moore J. W. (1975) Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation.J. Comp. Physiol Psychol. 89, 1192–1203.PubMedCrossRefGoogle Scholar
  84. Solomon P. and Staton D. M. (1982) Differential effects of microinjections of d-amphetamine into the nucleus accumbens or the caudate putamen on the rat’s ability to ignore an irelevant stimulus. Biol. Psychiat 17, 743–756.PubMedGoogle Scholar
  85. Solomon P., Lohr C, and Moore J. W. (1974) Latent inhibition of the rabbit’s nictitating response: Summation tests for active inhibition as a function of a number of CS preexposures. Bull. Psychon. Soc. 4, 557–559.Google Scholar
  86. Solomon F., Crider., Winkelman J. W., Turi A., Kamer R. M., and Kaplan L. J. (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: Relationship to schizophrenic attention disorder. Biol. Psychiat, 16, 519–537.PubMedGoogle Scholar
  87. Spohn H. E., Lacoursiere R. B., Thompson K., and Coyne L. (1977) Phenothiazine effects on psychological and psychopharmacological dysfunction in chronic schizophrenics. Arch. Gen. Psychiat. 34, 633–644.PubMedGoogle Scholar
  88. Staton D. M. and Solomon P. (1984) Microinjections of d-amphetamine into the nucleus accumbens and caudate-putamen differentially affect stereotypy and locomotion in the rat. Physiol. Psychol. 12, 159–162.Google Scholar
  89. Swerdlow N. W.and Koob G. F. (1987) Dopamine, schizophrenia, mania and depression: Toward a unified hypothesis of cortico-striato-pallidothalamic function. Behav. Brain Set. 10, 215–247.CrossRefGoogle Scholar
  90. Taylor E. A. (1986) The causes and development of hyperactive behavior, in The Overactive Child (Taylor A., ed.), MacKeith, London.Google Scholar
  91. Taylor E. A. (1989) On the epidemiology of hyperactivity, in Attention Deficit Disorder: Clinical and Basic Research (Sagvolden T. and Archer T., eds.), Erlbaum, Hiusdale, NJ.Google Scholar
  92. Taylor J. and Robbins T. W. (1984) Enhanced behavioral control by conditioned reinforcers following micronjections of d-amphetamine into the nucleus accumbens. Psychovharmacology 84, 405–412.CrossRefGoogle Scholar
  93. Taylor J. and Robbins T. W. (1986) 6-Hydroxydopamine lesions of the nucleus accumbens but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychovharmacology 90, 390–397.Google Scholar
  94. Underwood G. (1978) Attentional selectivity and behavioral control, in Strategies of Information Processing (Underwood G., ed.), Academic, London.Google Scholar
  95. van Kammen D. P. and Boronow J. J. (1988) Dextro-amphetamine diminishes negative symptoms in schizophrenia. Int. Clin. Psychopharmacol. 3, 111–121.PubMedCrossRefGoogle Scholar
  96. Varley C. K. (1984) Attention deficit disorder (the hyperactivity syndrome):A review of selected issues. J. Dev. Behav. Pediatr. 5, 254–258.PubMedGoogle Scholar
  97. Weinberg J. and Levine S. (1977) Early handling influences in behavioral and physiological responses during active avoidance. Dev. Psychobiol. 10, 161–169.PubMedCrossRefGoogle Scholar
  98. Weinberg J., Krahn E. A., and Levine S. (1978) Differential effects of handling on exploration in male and female rats. Dev. Psychobiol. 11, 251–259.PubMedCrossRefGoogle Scholar
  99. Weiner I. (1990) Neural substrates of latent inhibition: The switching model.PsycholBull. 108, 442–461.Google Scholar
  100. Weiner I. and Feldon J. (1987) Facilitation of latent inhibition by haloperidol.Psychoyharmacology 91, 248–253.Google Scholar
  101. Weiner I., Feldon J., and Katz Y. (1987a) Facilitation of the expression but not the acquisition of latent inhibition by haloperidol in rats. Pharmacol. Biochem. Behav. 26, 241–246.PubMedCrossRefGoogle Scholar
  102. Weiner I., Feldon J., and Ziv-Harris D. (1987b) Early handling and latent inhibition in the conditioned suppression paradigm. Dev. Psychobiol. 20, 233–240.PubMedCrossRefGoogle Scholar
  103. Weiner I., Israeli-Telerant A., and Feldon J. (1987d) Latent inhibition is not affected by acute or chronic administration of 6 mg/kg dl-amphetamine.Psychopharmacology 91, 345–351.PubMedCrossRefGoogle Scholar
  104. Weiner I., Lubow R. E., and Feldon J. (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats.Psychoyharmacology 83, 194–199.CrossRefGoogle Scholar
  105. Weiner I., Lubow R.E., and Feldon J. (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol.Biochem. Behav. 30, 871–878.PubMedCrossRefGoogle Scholar
  106. Weiner I., Halevy G., Alroy G., and Feldon J. (1987c) The effects of early handling on the partial reinforcement extinction effect and the partial punishment effect in male and female rats. Q. J. Exp. Psychol. 39B, 245–263.Google Scholar
  107. Weiner I., Schnabel I., Lubow R. E., and Feldon J. (1985) The effects of early handling on latent inhibition in male and female fats. Dev. Psychobiol. 18, 291–298.PubMedCrossRefGoogle Scholar
  108. Weiner I., Shofel A., and Feldon J. (in press) Disruption of latent inhibition by low dose of amphetamine is antagonized by haloperidol and apomorphine. J. Psychopharmacol. Google Scholar
  109. Weitzman A., Weitz R., Szekely G., Tiano S., and Belmaker R. H. (1984)Combination of neuroleptic and stimulant treatment in attention deficit disorder with hyperactivity. Am. Acad. Child Psychiat. 23, 295–298.CrossRefGoogle Scholar
  110. Wells P. A. (1976) Sex difference in response to early handling in the rat. J.Psychosorn. Res. 20, 259–266.CrossRefGoogle Scholar
  111. Werry J. S. and Aman M. G. (1975) Methylphenidate and haloperidol in children. Arch. Gen. Psychiat. 32, 790–795.PubMedGoogle Scholar
  112. White F. J. and Wang R. Y. (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons.Science 221, 1054–1056.PubMedCrossRefGoogle Scholar
  113. Worms P., Broekkamp C. L. E., and Lloyd K. G. (1983) Behavioral effects of neuroleptics, in Neuroleptics: Neurochemical, Behavioral and Clinical Perspectives(Coyle J. T. and Enna S. J., eds.), Raven, New York.Google Scholar

Copyright information

© The Humana Press Inc. 1991

Authors and Affiliations

  • Joram Feldon
    • 1
  • Ina Weiner
    • 1
  1. 1.Department of PsychologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations