Skip to main content

The Retroviral Life Cycle and the Molecular Construction of Retrovirus Vectors

  • Protocol
Practical Molecular Virology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 8))

Abstract

The discovery of a filterable agent that allowed the transmission of cancers in chickens (1) was the first identification of the viruses now known as retroviruses. Subsequently, genes transmitted by some retroviruses were identified as transforming oncogenes. These findings suggested that retroviruses may be used as genetic vectors, since retroviral oncogenes (v-onc) are altered forms of “highjacked” normal cellular genes (2), and the retroviruses that transform cells in culture are often defective for replication because the v-onc genes have been substituted in place of one or more of the essential replicative genes (3). Such defective oncogenic retroviruses can be propagated only in the presence of a wild-type “helper” virus, which supplies the functional gene products of the virus. Retroviruses can now be modified to become vehicles for the delivery and expression of cloned genes into a wide variety of cells, for both experimental and therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rous, P. (1911) A sarcoma of the fowl transmissible by an agent separable from the tumour cells. J. Exp. Med. 13, 397–411

    Article  PubMed  CAS  Google Scholar 

  2. Stehelin, D., Varmus, H. E., Bishop, J. M., and Vogt, P. K. (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173.

    Article  PubMed  CAS  Google Scholar 

  3. Neil, J C., Hughes, D, McFarlane, R., Wilkie, N M., Oinions, D. E., Lees, G., and Jarrett, O. (1984) Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occurring T-cell leukaemias. Nature 308, 814–820.

    Article  PubMed  CAS  Google Scholar 

  4. Friedmann, T. (1989) Progress toward human gene therapy. Science 244, 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  5. Gluzman, Y. and Hughes, S. H. (1988) Viral Vectors (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).

    Google Scholar 

  6. Panganiban, A. T. and Fiore, D. (1988) Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241, 1064–1069.

    Article  PubMed  CAS  Google Scholar 

  7. Varmus, H. E. (1983) Retroviruses, in Mobile Genetic Elements. (Shapiro, J., ed), Academic, NY, pp. 411–503.

    Google Scholar 

  8. Mann, R., Mulligan, R. C., and Baltimore, D. (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.

    Article  PubMed  CAS  Google Scholar 

  9. Mann, R. and Baltimore, D. (1985) Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J Virol. 54, 401–407.

    PubMed  CAS  Google Scholar 

  10. Weiss, R. A., Teich, N., Varmus, J, and Coffin, J., eds. (1982,1985) Molecular Biology of Tumor Viruses, RNA Tumor Viruses (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), vols. 1, 2.

    Google Scholar 

  11. Bender, M. A., Palmer, T. D., Gelinas, R. E., and Miller, A D. (1987) Evıdence that the packaging signal of Moloney murine leukaemia virus extends into the gag region J. Virol 61, 1639–1646

    PubMed  CAS  Google Scholar 

  12. Varmus, H. E. (1988) Retroviruses. Science 240, 1427–1435.

    Article  PubMed  CAS  Google Scholar 

  13. Panganiban, A. T. and Varmus, H. M. (1983) The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306, 155–160.

    Article  PubMed  CAS  Google Scholar 

  14. Keller, G., Paige, P., Gilboa, E., and Wagner, E. F. (1985) Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318, 149–154.

    Google Scholar 

  15. Korman, A. J., Frantz, J. D., Strominger, J. L., and Mulligan, R. C. (1987) Expression of human class II major histocompatibihty complex antigens using retrovirus vectors. Proc. Natl. Acad. Scı. USA 84, 2150–2154.

    Article  PubMed  CAS  Google Scholar 

  16. Emerman, M. and Temin, H. M. (1984) Genes with promoters in retrovirus vectors can be independently suppressed by an epigenic mechanism. Cell 9, 459–467

    Article  Google Scholar 

  17. Dzierzak, E. A., Papayannopoulou, T., and Mulligan, R. C. (1988) Lineage-specific expression of a human β-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature 331, 35–41.

    Article  PubMed  CAS  Google Scholar 

  18. Grosveld, F., van Assendelft, G. B., Greaves, D. R., and Kollias, G (1987) Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51, 975–985.

    Article  PubMed  CAS  Google Scholar 

  19. Shin, C.-C., Stoye, J. P., and Coffin, J. M. (1988) Highly preferred targets for retrovirus integration. Cell 53, 531–537.

    Article  Google Scholar 

  20. Yu, S.-F., von Ruden, T., Kantoff, P W., Garber, C., Seiberg, M., Ruther, U., Anderson, W. F., Wagner, E. F., and Gilboa, E. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3194–3198.

    Article  PubMed  CAS  Google Scholar 

  21. Cone, R. D., Weber-Benarous, A., Baorto, D., and Mulligan, R. C. (1987) Regulated expression of a complete human beta globin gene encoded by a transmissible retrovirus vector. Mol. Cell. Biol. 7, 887–897.

    PubMed  CAS  Google Scholar 

  22. Yee, J. K., Moores, J. C., Jolly, D. J., Wolff, J. A., Respess, J. G., and Friedmann, T. (1987) Gene expression from transcriptionally disabled retroviral vectors. Proc. Natl. Acad. Sci. USA 84, 5197–5201.

    Article  PubMed  CAS  Google Scholar 

  23. Hawley, R. G., Covarrubias, L., Hawley, T., and Mintz, B. (1987) Handicapped retroviral vectors efficiently transduce foreign genes into haematopoietic stem cells. Proc. Natl Acad. Sci. USA 84, 2406–2410.

    Article  PubMed  CAS  Google Scholar 

  24. Von Melchner, H. and Ruley, H. E. (1989) Identification of cellular promoters by using a retrovirus promoter trap. J. Virol 63, 3227–3233.

    Google Scholar 

  25. Xu, Li., Yee, J.-K., Wolff, J A., and Friedmann, T. (1989) Factors affecting long-term stability of Moloney murine leukaemia virus-based vectors. Virology 171, 331–341

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 The Humana Press Inc., Clifton, NJ

About this protocol

Cite this protocol

Vile, R. (1991). The Retroviral Life Cycle and the Molecular Construction of Retrovirus Vectors. In: Collins, M.K.L. (eds) Practical Molecular Virology. Methods in Molecular Biology, vol 8. Humana Press. https://doi.org/10.1385/0-89603-191-8:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-191-8:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-191-3

  • Online ISBN: 978-1-59259-495-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics