Skip to main content

Extracellular Single-Unit Recording Methods

  • Protocol
Neurophysiological Techniques

Part of the book series: Neuromethods ((NM,volume 15))

Abstract

Since their refinement in the early 1950s, extracellular, single-unit recording methods have been used to obtain a wealth of data about the properties of CNS structures. The applications of the technique have been diverse: extracellular microelectrodes have been used to map the potential fields of single discharging neurons in order to answer fundamental questions about the excitability of CNS dendrites (Frank and Fuortes, 1955; Fatt, 1957; Nelson and Frank, 1964), and more recently they have been used to study the behaviorally related discharge patterns of CNS neurons in the awake, moving animal (e.g., Evarts, 1968; Mountcastle et al., 1975). To an appreciable extent, the exciting new neuroanatomical tracing methods that have been developed over the past decade (cf Jones and Wise, 1977) have supplanted extracellular recording methods as a technique for tracing CNS connectivity patterns. However, the single-unit recording method is the technique of choice for studies of the responses of central neurons to sensory stimuli and of their behaviorally related firing patterns in the alert, moving animal. Moreover, many applications remain for the tracing of functional network connections on a microanatomical scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amassian V. E. (1953) Evoked single cortical unit activity in the somatic sensory areas. Electroencephalogr. Clin. Neurophysiol. 5, 415–438.

    Article  PubMed  CAS  Google Scholar 

  • Amatnieck E. (1958) Measurement of bioelectric potentials with microelectrodes and neutralized input capacity amplifiers. IRE Trans. Med. Electronics PGME-10, 3–14.

    Article  Google Scholar 

  • Anderson C. W. and Cushman M. R. (1981) A simple and rapid method for making carbon fiber microelectrodes. J. Neurosci. Methods 4, 435–436.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong-James M. and Millar J. (1979) Carbon fibre microelectrodes. J. Neurosci. Methods 1, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Bak A. F. (1958) A unity gain cathode follower. Electroencephalogr. Clin. Neurophysiol. 10, 745–748.

    Article  PubMed  CAS  Google Scholar 

  • Bak A. F. (1967) Testing metal microelectrodes. Electroencephalogr. Clin. Neurophysiol. 22, 186187.

    Google Scholar 

  • Bak M. J. and Schmidt E. M. (1976) An analog delay circuit for on-line visual confirmation of discriminated neuroelectric signals. IEEE Trans. Biomed. Eng. BME-18, 155–157.

    Google Scholar 

  • Bak M. J. and Schmidt E. M. (1977) An improved time-amplitude window discriminator. IEEE Trans. Bromed. Eng. BME-24, 486–489.

    Article  Google Scholar 

  • Baldwin H. A., Frenk S., and Lettvin J. Y. (1965) Glass-coated tungsten microelectrodes. Science 148, 1462–1464.

    Article  PubMed  CAS  Google Scholar 

  • Barrett J. N. and Graubard K. (1970) Fluorescent staining of cat motoneurons in vivo with bevelled micropipettes. Brain Res. 18, 565–568.

    Article  PubMed  CAS  Google Scholar 

  • BeMent S. L., Wise K. D., Anderson D. J., Najafi K., and Drake K. L. (1986) Solid-state electrodes for multichannel multiplexed intracortical neuronal recordings. IEEE Trans. Biomed. Eng. BME-33, 230–241.

    Article  Google Scholar 

  • Braga P. C., Dall’oglio G., and Fraschini F. (1977) Microelectrode tip in five seconds. A new simple, rapid, inexpensive method. Electroencephalogr. Clin. Neurophysiol. 42, 840–842.

    Article  PubMed  CAS  Google Scholar 

  • Brown K. T. and Flaming P. G. (1974) Bevelling of fine micropipettes by a rapid precision method. Science 185, 693–695.

    Article  PubMed  CAS  Google Scholar 

  • Bultitude K. H. (1958) Quart. J. Microscop. Sci. 99, 61.

    Google Scholar 

  • Burns B. D. and Robson J. G. “Weightless” microelectrodes for recording extracellular unit action potentials from the central nervous system, Nature 186, 246–247.

    Google Scholar 

  • Darian-Smith I., Pillips G., and Ryan R. D. (1963) Functional organization in trigeminal main sensory and rostra1 spinal nuclei of the cat. J. Physiol. (Lond.) 168, 129–146.

    CAS  Google Scholar 

  • DeValois R. I. and Pease P. L. (1973) Extracellular unit recording, in Bioelectric Recording Techniques, Part A, (Thompson R. F. and Patterson M. M. eds.) Academic, New York, pp. 95–135.

    Google Scholar 

  • Edell D. J. (1984) Basic design considerations for chronically implantable neural information sensors. IEEE Solid State Sensors Conf. 44–46.

    Google Scholar 

  • Evarts E. V. (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31, 14–27.

    PubMed  CAS  Google Scholar 

  • Fatt I’. (1957) Electric potentials occurring around a neuron during its antidromic activation. J. Neurophysiol. 20, 27–60.

    PubMed  CAS  Google Scholar 

  • Fontani G. (1981) A technique for long term recording from single neurons in unrestrained behaving animals. Physiol. Behav. 26: 331–333.

    Article  PubMed  CAS  Google Scholar 

  • Fox K., Armstrong-James M., and Millar J. (1980) The electrical characteristics of carbon fibre microelectrodes. J. Neurosci. Methods 3, 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Frank, K. and Becker M. C. (1964) Microelectrodes for recording and stimulation, in Physical Techniques in Biological Research, vol. 5, part A (Nastuk W., ed.), Academic, New York, pp. 22–87.

    Google Scholar 

  • Frank K. and Fuortes M. G. F. (1955) Potentials recorded from the spinal cord with microelectrodes. J. Physiol. (Land.) 130, 625–654.

    CAS  Google Scholar 

  • Freeman J. A. (1969) A simple method of producing in quantity metal microelectrodes with desired taper and impedance. Electroencephalogr. Clin. Neurophysiol. 26, 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Freeman J. A. and Nicholson C. (1975) Experimental optimization of current source-density techmque for anuran cerebellum. J. Neurophysiol. 38, 369–382.

    PubMed  CAS  Google Scholar 

  • Freygang W. H. and Frank K. (1959) Extracellular potentials from single spinal motoneurons. J. Gen. Physiol. 42, 749–760.

    Article  PubMed  Google Scholar 

  • Fuller J. H. and Schlag J. D. (1976) Determination of antidromic excitation by the collision test: Problems of mterpretation. Brain Res. 112, 283–298.

    Article  PubMed  CAS  Google Scholar 

  • Fuortes M. G. F., Frank K., and Becker M. C. (1957) Steps in the production of motoneuron spikes. J. Gen. Physiol. 40, 735–752.

    Article  PubMed  CAS  Google Scholar 

  • Geddes L. A., Baker L. E., and Moore A. G. (1969) Optimum electrolytic chloriding of silver electrodes. Med. Biol. Eng. 7, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos A. P., Schwartz A. B., and Kettner R. E. (1986) Neural population coding of movement direction. Science 233, 1416–1419.

    Article  PubMed  CAS  Google Scholar 

  • Gesteland R. C., Howland B., Lettvin J. Y., and Pitts W. H. (1959) Comments on microelectrodes. Proc. IRE 47, 1856–1862.

    Article  Google Scholar 

  • Gielen F. L. H. and Bergveld P. (1982) Comparison of electrode impedance of Pt, PtIr (10%) and Ir-AIROF electrodes used m electrophysiological experiments, Med. Biol. Eng. Comput. 20, 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S. R., Bak M. J., Oakley J. C., Schmidt E. M., and Van Buren J. M. (1975) An instrument for stable single ceil recording from pulsating human cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 39, 667–670.

    Article  PubMed  CAS  Google Scholar 

  • Green J, D. (1958) A simple microelectrode for recording from the central nervous system. Nature 182, 962.

    Article  PubMed  CAS  Google Scholar 

  • Grubbs D. S. and Worley D. S. (1983) New techniques for reducing the impedance of silver-silver chloride electrodes. Med Biol. Eng. Comput. 21, 232–234.

    Article  PubMed  CAS  Google Scholar 

  • Hubel D. H. (1957) Tungsten microelectrode for recording from single units. Science 125, 549–550.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey D. R. (1966) Regions of the medulla oblongata mediating carotid sinus reflexes: An electrophysiological study. Ph.D. thesis, University of Washington.

    Google Scholar 

  • Humphrey D. R. (1968) Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials. Electroencephalogr. Clin. Neurophysiol. 25, 421–442.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey D. R. (1976) Neural networks and systems modelmg. in Biological Foundations of Biomedical Engineering, (Kline J., ed.), Little, Brown and Co., Boston, pp. 639–672.

    Google Scholar 

  • Humphrey D. R. (1979) Extracellular, single-unit recording methods, in Electrophysiological Techniques (Humphrey D. R., ed.), Society for Neuroscience, Bethesda, pp. 199–261.

    Google Scholar 

  • Humphrey D. R. and Corrie W. S. (1978) Properties of the pyramidal tract neuron system within a functionally defined subregion of primate motor cortex. J. Neurophysiol. 41, 216–243.

    PubMed  CAS  Google Scholar 

  • Humphrey D. R., Corrie W. S., and Rietz R. R. (1978) Properties of the pyramidal tract neuron system within the precentral wrist and hand area of primate motor cortex. J, Physiol (Paris) 74, 215–226.

    CAS  Google Scholar 

  • Jones E. G. and Wise S. P. (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J. Comp. Neurol. 175, 391–438.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach J. A. and Gerstein G. L. (1986) A rapid method for production of sharp tips on preinsulated microwires. J, Neurosci. Methods 16, 283–288.

    Article  CAS  Google Scholar 

  • Kernell, D. (1966) Input resistance, electrical excitability and size of ventral horn cells in cat spinal cord. Science 152, 1637–1640.

    Article  PubMed  CAS  Google Scholar 

  • Kopac M. J. (1964) Micromanipulators: Principles of design, operation and application, in Physical Techniques in Biological Research, vol. 5 (Nastuk W., ed.) Academic, New York, pp. 191–233.

    Google Scholar 

  • Kupperstein M. and Whittington D. A. (1981) A practical 24 channel microelectrode for neural recording in vivo. IEEE Trans. Biomed. Eng. BME-28, 288–293.

    Article  Google Scholar 

  • Lee B. B. G. and Stean J. P. B. (1969) Micro-electrode tip position marking in nervous tissue: A new dye method. Electroencephalogr. Clin. Neurophysiol. 27, 610–613.

    Article  PubMed  CAS  Google Scholar 

  • Levrck W. R. (1972) Another tungsten microelectrode. Med. Biol. Eng. 10, 510–515.

    Article  Google Scholar 

  • Levick W. R. and Cleland B. G. (1974) Selectivity of microelectrodes in recordings from cat retinal ganglion cells. J. Neurophysiol. 37, 1387–1393.

    PubMed  CAS  Google Scholar 

  • Loeb G. E., Bak M. J, Salcman M, and Schmrdt E. M. (1977) Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans. Biomed. Eng. BME-24, 121–128.

    Article  CAS  Google Scholar 

  • Lorente de Nó R. (1947) Action potential of the motoneurones of the hypoglossus nucleus. J. Cell. Camp. Physiol. 29, 207–288.

    Article  Google Scholar 

  • MacNichol E. F. Jr. and Svaetichin G. (1958) Am. J. Ophthalmol. 46, 26.

    PubMed  CAS  Google Scholar 

  • McNaughton B. L., O′Keefe J., and Barnes C. A. (1983) The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records.J. Neurosci. Methods 8, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Merrill D. G. and Ainsworth A. (1972) Glass-coated platinum-plated tungsten microelectrodes. Med. Biol. Eng. 10, 662–672.

    Article  PubMed  CAS  Google Scholar 

  • Millar J. and Williams G. V. (1988) Ultra-low noise silver-plated carbon frbre microelectrodes. J. Neurosci. Methods 25, 50–62.

    Google Scholar 

  • Mishelevich D. J. (1970) On-line real-time digrtal computer separation of extracellular neuroelectric signals. IEEE Trans. Biomed. Electronics BME-17, 147–150.

    Article  Google Scholar 

  • Mountcastle V. B., Lynch J. C., Georgopoulus A.,Sakata H., andAcuna C. (1975) Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908.

    PubMed  CAS  Google Scholar 

  • Nastuk W. (1953) The electrical activity of the muscle cell membrane at the neuromuscular Junction. J. Cell. Camp. Physiol. 42, 249–272.

    Article  CAS  Google Scholar 

  • Nelson P. G. and Frank K. (1964) Extracellular potential fields of single spinal motoneurons. J. Neurophysiol. 27, 913–927.

    PubMed  CAS  Google Scholar 

  • Olds J. (1965) Operant conditionmg of single unit responses. Proc. XXIII Int Congr. Physiol Union (Tokyo) 4, 372–380

    Google Scholar 

  • Palmer C. (1976) A microwire technique for long term recording of single units in the brains of unrestrained animals. J. Physiol. (Lond.) 263, 99P–101P.

    CAS  Google Scholar 

  • Palmer C., Bak M. G., Dold G. M., and Schmidt E. M. (1979) Stable simultaneous single unit recordings from groups of motor cortical neurons in the unanesthetized and unrestrained cat. Soc. Neurosci. Abstr. 5, 381.

    Google Scholar 

  • Pickard R. S. (1979a) Printed circuit microelectrodes. Trends Neurosci. 2, 259–261.

    Article  Google Scholar 

  • Pickard R. S. (1979b) A review of printed circuit microelectrodes and their production. J, Neurosci. Methods 1, 301–318.

    Article  CAS  Google Scholar 

  • Rall W. (1962) Electrophysiology of a dendritic neuron model. Biophys.J. 2, 145–167.

    Article  PubMed  CAS  Google Scholar 

  • Roseithal F., Woodbury W. J., and Patton H. D. (1966) Dipole characteristics of pyramidal cell activity in cat postcruciate cortex. J. Neurophysiol. 29, 612–625.

    Google Scholar 

  • Robinson D. A. (1968) The electrical properties of metal microelectrodes. Proc. IEEE 56, 1065–1071.

    Article  CAS  Google Scholar 

  • Salcman M. and Bak M. J. (1976) A new chronic recording intracortical microelectrode. Med. Biol. Eng. 14, 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Schanne O. F., Lavallee M., Laprade R., and Gagne S. (1968) Electrical properties of glass microelectrodes. Proc. IEEE 56, 1072–1082.

    Article  CAS  Google Scholar 

  • Schlag J. (1978) Electrophysiological mapping techniques, in Neuroanatomical Research Techniques (Robertson R. T., ed.), Academic, New York, pp. 385406.

    Google Scholar 

  • Schmidt E. M. (1971) An instrument for separation of multiple-unit neuroelectric signals. IEEE Trans. Biomed. Eng. BME-18, 155–157.

    Article  Google Scholar 

  • Schmidt E. M. (1984a) Instruments for separation of neuroelectric data: A review. J. Neurosci. Methods 12, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E. M. (1984b) Computer separation of multi-unit neuroelectic data: A review. J. Neurosci. Methods 12, 95–111.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E. M., Bak M. J., and McIntosh J. S. (1976) Long-term chronic recording from cortical neurons. Exp. Neurol. 52, 496–506.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E. M., McIntosh J. S., and Bak M. J. (1988) Long-term implants of Parylene-C coated microelectrodes. Med. & Biol. Eng. & Comput.26: 96–101.

    Article  CAS  Google Scholar 

  • Schoenfeld, R. L. (1964) Bioelectric amplifiers. In Physical Techniques in Biological Research. vol. V, Part A, (Nastuk W., ed.), Academic, New York, pp. 277–352.

    Google Scholar 

  • Snodderly D, M. Jr, (1973) Extracellular single unit recording, in Bioelectric Recording Techniques, Part A, Cellular Processes and Brain Potentials (Thompson R. F. and Patterson M. M., eds.), Academic, New York, pp. 137–163.

    Google Scholar 

  • Stone J. (1973) Sampling properties of microelectrodes assessed in cat retina. J. Neurophysiol. 36, 1071–1079.

    PubMed  CAS  Google Scholar 

  • Strumwasser F.(1958) Long-term recording from single neurons in brain of unrestrained mammals. Science 127, 469–470.

    Google Scholar 

  • Suzuki H. and Azuma M. (1976) A glass-insulated “Elgiloy” microelectrode for recordmg unit activity in chronic monkey experiments. Electroencephalogr. Clin. Neurophysiol. 41, 93–95.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H. and Azuma M. (1987) A reliable marking technique for identification of recording and stimulating sites in the brain. J. Electrophysiok Tech. 14, 121–124.

    Google Scholar 

  • Takahashi K. (1965) Slow and fast groups of pyramidal tract cells and their respective membrane properties. J. Neurophysiol. 28, 908–924.

    PubMed  CAS  Google Scholar 

  • Tasaki K., Tsukahara Y., Ito S., Wayner M. J., Yu W. Y. (1968) A simple, direct and rapid method for filling microelectrodes. Physiol. Behav 3, 1009–1010.

    Article  Google Scholar 

  • Thomas R. C. and Wilson V. J. (1965) Precise localization of Renshaw cells with a new marking technique. Nature 206, 211–213.

    Article  PubMed  CAS  Google Scholar 

  • Towe A. L. (1973) Sampling single neuron activity, in Bioelectric Recording Techniques Part A Cellular Processes and Brain Potentials (Thompson R. F. and Patterson M. M., eds.), Academic, New York, pp. 79–93.

    Google Scholar 

  • Towe A. L. and Harding G. (1970) Extracellular microelectrode sampling bias. Exp. Neurol. 29, 366–381.

    Article  PubMed  CAS  Google Scholar 

  • Towe A. L., Patton H. D., and Kennedy T. T. (1963) Properties of the pyramidal system in the cat. Exp. Neurol. 8, 220–238.

    Article  Google Scholar 

  • Tweedle, C. D, (1978) Single-cell straining techniques, in Neuroanatomical Research Techniues (Robertson R. T., ed.) Academic, New York, pp. 142–174.

    Google Scholar 

  • Wolbarsht M. L., MacNichol E. F., and Wagner H. G. (1960) Glass insulated platinum microelectrode. Science 132, 1309–1310.

    Article  PubMed  CAS  Google Scholar 

  • Wise K. D., Angell J. B., and Starr A. (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. BME-17, 238–247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc

About this protocol

Cite this protocol

Humphrey, D.R., Schmidt, E.M. (1990). Extracellular Single-Unit Recording Methods. In: Boulton, A.A., Baker, G.B., Vanderwolf, C.H. (eds) Neurophysiological Techniques. Neuromethods, vol 15. Humana Press. https://doi.org/10.1385/0-89603-185-3:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-185-3:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-185-2

  • Online ISBN: 978-1-59259-620-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics