Skip to main content

Preparation of High-Molecular-Weight DNA for Use in DNA Transfection

Secondary Transfections for Cloning Active Genes by Direct Phenotypic Selection

  • Protocol
Gene Transfer and Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 7))

  • 1534 Accesses

Abstract

Calcium phosphate mediated transfection of genomic DNA samples into mammalian recipient cells can be used to isolate specific genes of interest. In theory, for any phenotype for which there is a suitable selection in cell culture, a gene sequence encoding that phenotype can be transferred and will complement the selection. If the donor sequences are derived from a different species of origin, the presence of the donor DNA in the recipient cell can be confirmed by Southern blotting, using a repeat DNA sequence probe from the donor species. Wigler and coworkers (1) found that in each cycle of transfection, the donor sequences represent approx 0.1% of the recipient cell’s DNA. Therefore, after a second cycle of transfection using DNA from the first-cycle transfectant, the selected recipient cell will contain essentially a single gene and adjacent sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wigler, M., Sweet, R., Sim, G. K., Wold, B., Pellicer, A., Lacy, E., Maniaus, T., Silverstein, S., and Axel, R. (1977) Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell16, 777–785.

    Article  Google Scholar 

  2. Westerveld, A., Hjoeijamakers,J. H.J., Duin, M., de Wit, J., OdiJk, H., Pasternik, A., and Bootsma, D. (1984) Molecular cloning of a human DNA repair gene. Nature 310, 425–429.

    Article  PubMed  CAS  Google Scholar 

  3. Szybalski, W., Szybalska, E. H., and Ragni, G. (1962) Genetic studies with human cell lines. Natl. CancerMonogr. 7, 75–79.

    Google Scholar 

  4. Southern, P. J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promotor. Mol. A#. C&net. 1, 327–341.

    CAS  Google Scholar 

  5. Shih, C., Shilo, B. Z., Goldfarb, M. P., Dannenberg, A., and Wemberg, R. A. (1979) Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc. Natl. Acad. Sn. USA 76, 5714–5718.

    Article  CAS  Google Scholar 

  6. Blair, D. G., Cooper, C. S., Oskarsson, M. K., Eader, L. A., and Vande Woude, G. F. (1982) New method for detecting cellular transforming genes. Science 218, 1122–1125.

    Article  PubMed  CAS  Google Scholar 

  7. Benade, L. E., Talbot, N., Tagliaferri, P., Hardy, C., Card, J,, Noda, M., Najam, N., and Bassin, R. H. (1986) Ouabain sensitivity is linked to ras transformation in human HOS cells. Biochem. Biophys. Res. Commun. 136, 807–814.

    Article  PubMed  CAS  Google Scholar 

  8. Noda, M., Kitayama, H., Matsuzaki, T., Sugimoto, Y, Okayama, H., Bassin, R. H., and Ikawa, Y. (1989) Detection of genes with a potential for suppressing the transformed phenotype associated with activated rasgenes. Proc. Natl. Acad. Sa-L USA 86, 162–166.

    Article  CAS  Google Scholar 

  9. Schafer, R., Iyer, J., Iten, E., and Nirkko, A. C. (1988) Partial reversion of the transformed phenotype in Hras-transfected tumorigenic cells by transfer of a human gene. Proc. Natl. Acad. Sci. USA 85, 1590–1594.

    Article  Google Scholar 

  10. Southern, P.J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. MoL Aj$d Gmd. 1, 327–341.

    CAS  Google Scholar 

  11. Pinney, D. E., Pearson White, S. H., Konieczny, S. F., Latham, K. E., and Emerson, C. P., Jr. (1988) Myogenic lineage determination and differentiation: Evidence for a regulatory gene pathway. Cell53, 781–793.

    Article  CAS  Google Scholar 

  12. Littman, D. R., Thomas, Y., Maddon, P. J., Chess, L., and Axel, R. (1985) The isolation and sequence of the gene encoding T8: A molecule defining functional classes of T lymphocytes. Cell 40, 237–246.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 The Humana Press Inc., Clifton, NJ

About this protocol

Cite this protocol

Tainsky, M.A. (1991). Preparation of High-Molecular-Weight DNA for Use in DNA Transfection . In: Murray, E.J. (eds) Gene Transfer and Expression Protocols. Methods in Molecular Biology, vol 7. Humana Press. https://doi.org/10.1385/0-89603-178-0:91

Download citation

  • DOI: https://doi.org/10.1385/0-89603-178-0:91

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-178-4

  • Online ISBN: 978-1-59259-494-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics