Skip to main content

Multisystem Regulation of Performance Deficits Induced by Stressors

An Animal Model of Depression

  • Protocol
Animal Models in Psychiatry, II

Part of the book series: Neuromethods ((NM,volume 19))

Abstract

When an organism is exposed to a stressor, a series of behavioral changes occur that are thought to be of adaptive value. Among other things, the response style of an organism will narrow to those innate responses highest in the animal’s defensive repertoire (see belles, 1970) or to responses previously acquired in aversive situations. In addition, several neurochemical changes occur that may blunt the physical or psychological impact of the stressor, increase arousal or vigilance, or increase the animal’s ability to initiate and sustain defensive responses (see reviews in Zacharko and Anisman, 1989; Maier and Seligman, 1976; Weiss and Simson, 1985). However, there maybe occasions where these responses may have adverse consequences. For instance, when the response required to escape from the stressor is not part of the organism’s repertoire, the persistent adoption of these response styles may be counterproductive. Likewise, excessive utilization may reduce neurotransmitter stores, rendering the animal less able to deal with environmental demands. It has been our contention that many of the behavioral and physiological disturbances associated with acute and chronic uncontrollable stressors stem from the failure of adaptive neurochemical mechanisms. This chapter will outline some of the biochemical and behavioral consequences of stressors, particularly as they relate to an animal model of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie E. D. and Jacobs B. L. (1988) Systemic naloxone administration potentiates locus coeruleus noradrenergic neuronal activity under stressful but not non-stressful conditions. Brain Res. 441, 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie E. D., Levine E. S., and Jacobs B. L. (1988) Microinjected morphine suppresses the activity of locus coeruleus noradrenergic neurons in freely moving cats. Neurosci. Lett. 86, 334–339.

    Article  PubMed  CAS  Google Scholar 

  • Abramson L. Y., Seligman M. E. P., and Teasdale J. D. (1978) Learned helplessness in humans: Critique and reformulation. J. Abnorm. Psychol. 87, 49–74.

    Article  PubMed  CAS  Google Scholar 

  • Adell A., Garcia-Marquez C, Armario A., and Gelpi E. (1988) Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. J. Neurochem. 50, 1678–1681.

    Article  PubMed  CAS  Google Scholar 

  • Ader R. and Cohen N. (1982) Behaviorally conditioned immunosuppression and murine systemic lupus erythematosus. Science 215, 1534–1536.

    Article  PubMed  CAS  Google Scholar 

  • Ader R. and Cohen N. (1985) CNS-immune system interactions: Conditioning phenomena. Behav. Brain Sci. 8, 379–394.

    Article  Google Scholar 

  • Algeri S., Calderini G., Lomuscio G., Vantini G., Toffano G., and Ponzio, F. (1982) Changes with age in rat central monaminergic system responses to cold stress. Neurobiol. Aging 3, 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Anisman H. and Sklar L. S. (1979) Catecholamine depletion on reexposure to stress: Mediation of the escape deficits produced by inescapable shock. J. Corny. Physiol. Psychol. 93, 610–625.

    Article  CAS  Google Scholar 

  • Anisman H. and Zacharko R. M. (1986) Behavioral and neurochemical consequences associated with stressors, in Stress-Induced Analgesia (Kelley D., ed.), Ann. NY Acud. Sci. 467, pp. 205–225.

    Google Scholar 

  • Anisman H. and Zacharko R. M. (1990) Multiple neurochemical and behavioral consequences of stressors: Implications for depression. Pharmacol. Therap. 46, 119–136.

    Article  CAS  Google Scholar 

  • Anisman H., deCantanzaro D., and Remington G. (1978) Escape performance following exposure to inescapable shock: Deficits in motor response maintenance. J. Exp. Psychol: Anim. Behav. Proc. 4, 197–218.

    Article  Google Scholar 

  • Anisman H., Glazier S. J., and Sklar L. S. (1981a) Cholinergic influences on escape deficits produced by uncontrollable stress. Psychopharmacology 74, 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Anisman H., Kokkinidis L., and Sklar, L. S. (1981b) Contribution of neurochemical change to stress-induced behavioral deficits, in Theory in Psychopharmacology (Cooper S. J., ed.), Academic, London, pp. 65–102.

    Google Scholar 

  • Anisman H., Hamilton M., and Zacharko R. M. (1984) Cue and response choice acquisition and reversal after exposure to uncontrollable shock: Induction of response perseveration. J. Exp. Psychol. 10, 229–243.

    Google Scholar 

  • Anisman H., Pizzino A., and Sklar L. S. (1980) Coping with stress, norep-inephrine depletion and escape performance. Brain Res. 191, 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Anisman H., Remington G., and Sklar L. S. (1979) Effects of inescapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance. Psychopharmacologv 61, 107–124.

    Article  CAS  Google Scholar 

  • Anisman H., Hahn B., Hoffman D., and Zacharko R. M. (1985) Stressor invoked exacerbation of amphetamine-elicited Perseveration. Pharmacol Biochem. Behav. 23, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Anisman H., Irwin J., Bowers W., Ahluwalia P., and Zacharko R. M. (1986) Variations of norepinephrine concentrations following chronic stressor application. Pharmacol. Biochem. Behav. 26, 653–659.

    Article  Google Scholar 

  • Antelman S. M. and Chiodo L. A. (1983) Amphetamine as a stressor, in Stimulants: Neurochemical, Behavioral and Clinical Perspectives (Creese I., ed.), Raven, New York, pp. 269–300.

    Google Scholar 

  • Antelman S. M., Eichler A. J., Black C, and Kocan D. (1980) Interchangeability of stress and amphetamine in sensitization. Science 207, 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G. and Bloom F. E. (1981) Norepinephrine-containing locus coerulus neurons in behaving rats exhibit pronounced responses to nonnoxious environmental stimuli. J. Neurosci. 1, 887–900.

    PubMed  CAS  Google Scholar 

  • Aston-Jones G., Foote S. L, and Bloom F. E. (1984) Anatomy and physiology of locus coeruleus neurons: Functional implications, in Norepinephrine: Clinical Aspects (Ziegler M. G. and Lake C. R., eds.), Williams and Wilkins, Baltimore, MA, pp. 92–116.

    Google Scholar 

  • Atweh S. F. and Kuhar M. J. (1977) Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res. 129, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Baillie P., Wolfe C, MacNeil G., Kasian M., and Zacharko R. M. (1988) Anti-depressant specificity in the reversal of performance deficits in intracranial self-stimulation from mesolimbic and mesocortical sites in the DBA/2J mouse strain. Soc. Neurosci. Abstr. 14, 45.

    Google Scholar 

  • Bannon M. J., Elliott P. J., Alpert J. E., Goedert M., Iversen S. D., and Iversen L. L. (1983) Role of endogenous substance P in stress-induced activation of mesocortical dopamine neurones. Nature 306, 791–792.

    Article  PubMed  CAS  Google Scholar 

  • Bartrop R W., Lazarus L., Luckhurst E., Kiloh L. G., and Penney R. (1977) Depressed lymphocyte function after bereavement. Lancet 1, 834–836.

    Article  PubMed  CAS  Google Scholar 

  • Beley A., Beley P., Rochette L., and Bralet J. (1976) Influence de lexposition au froid sur la syntese de la dopamine cerebrale. J. Physiol. (Paris) 42, 1029–1034.

    Google Scholar 

  • Berkenbosch F., van Oers J., Del Rey A., Tolders F., and Besedovsky H. (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238, 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Besedovsky H. O., Sorkin E., Felix D., and Haas H. (1977) Hypothalamic changes during the immune response. Eur. J. Immunol. 7, 325–328.

    Article  Google Scholar 

  • Besedovsky H. O., Del Rey A., Sorkin E., Lotz W., and Schwulera U. (1985) Lymphoid cells produce an immunoregulatory glucocorticoid increasing factor (GIF) acting though the pituitary gland. Clin. Exp. Immunol. 59, 622–628.

    PubMed  CAS  Google Scholar 

  • Besedovsky H., Del Rey A., Sorkin E., Da Prada M., Burri, R., and Honegger C. (1983) The immune response evokes changes in noradrenergic neurons. Science 221, 564–566.

    Article  PubMed  CAS  Google Scholar 

  • Birch P. J., Anderson S. M. P., and Fillenz M. (1986) Mild chronic stress leads to desensitisation of presynaptic autoreceptors and a long-lasting increase in noradrenaline synthesis in rat cortical synaptosomes. Neurochem. Int. 9, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Bird S. J. and Kuhar M. J. (1977) Iontophoretic application of opiates to the locus coeruleus. Brain Res. 122, 523–533.

    Article  PubMed  CAS  Google Scholar 

  • Blalock J. E. (1984) The immune system as a sensory organ. J. Immunol. 132, 1067–1070.

    PubMed  CAS  Google Scholar 

  • Blalock J. E., Bost K. L., and Smith E. M. (1985) Neuroendocrine peptide hormones and their receptors in the immune system: Production, processing and action. J. Neuroimmunol. 10, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Bolles R. C. (1970) Species-specific defense reaction and avoidance learning. Psychol. Rev. 77, 32–48.

    Article  Google Scholar 

  • Bourne H. R., Lichtenstein L. M., Melmon K., Henney C. S., Weinstein Y., and Shearer G. M. (1974) Modulation of inflammation and immunity by cyclic AMP. Science 184, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Bovjberg D., Ader, R., and Cohen N. (1982) Behaviorally conditioned suppression of a graft-vs-host response. Proc. Natl. Acud. Sci. USA. 79, 583–585.

    Article  Google Scholar 

  • Bowers W. J., Zacharko R. M., and Anisman H. (1987) Evaluation of stressor effects on intracranial self-stimulation from the nucleus accumbens and the substantia nigra in a current intensity paradigm. Behav. Brain Res. 23, 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Bowers W. J., Hamilton M., Zacharko R. M., and Anisman H. (1984) Differential effects of pimozide on response-rate and choice accuracy in a self-stimulation paradigm in mice. Pharmacol. Biochem. Behav. 22, 521–526.

    Article  Google Scholar 

  • Bulloch K. and Moore R. Y. (1981) Innervation of the thymus gland by brain stem and spinal cord in the mouse and rat. Am. J. Anat. 162, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Cabib S., Pugliosi-Allegra S., and Oliverio A. (1984) Chronic stress enhances apomorphine-induced stereotyped behavior in mice: Involvement of endogenous opioids. Brain Res. 298, 138–140.

    Article  PubMed  CAS  Google Scholar 

  • Cabib S., Kempf E., Schleef C, Oliverio A., and Puglisi-Allegra S. (1988a) Effects of immobilization stress on dopamine and its metabolites in different brain regions of the mouse: Role of genotype and stress duration. Brain Res. 441, 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Cabib S., Kempf E., Schleef C, Mele A., and Puglisi-Allegra S. (1988b) Different effects of acute and chronic stress on two dopamine mediated behaviors in the mouse. Physiol. Behav. 43, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Carlson S. L, Felten D. L., Livnat S., and Felten S. Y. (1987) Alterations of monoamines in specific central autonomic nuclei following immunization in mice. Brain Behav. Immunity 1, 52–63.

    Article  CAS  Google Scholar 

  • Cassens G., Roffman M, Kuruc A., Orsulak P. J., and Schildkraut, T. J. (1980) Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock. Science 209, 1138–1140.

    Article  PubMed  CAS  Google Scholar 

  • Chance W. T., White A. C, Krynock G. M., and Rosecrans J. A. (1978) Conditional fear-induced antinocicpetion and decreased binding of [3H] N-Leu-enkephalin to rat brain. Brain Res. 141, 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Chang S. S. and Rasmussen A. F., Jr. (1965) Stress indued suppression of interferon production in virus-infected mice. Nature 205, 623–625.

    Article  Google Scholar 

  • Charney D. S., Menkes D. B., and Heninger G. R. (1981) Receptor sensitivity and the mechanism of action of antidepressant drugs. Arch. Gen. Psychiat. 38, 1160–1180.

    Article  PubMed  CAS  Google Scholar 

  • Claustre Y., Rivy J., Dennis T., and Scatton B. (1986) Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in the rat. J. Pharmacol. Exp. Ther. 238, 693–700.

    PubMed  CAS  Google Scholar 

  • Cross R. J. and Roszman T. L. (1988) Central catecholamine depletion impairs in vivo immunity but not in vitro lymphocyte activation. J. Neuroimmunol. 19, 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Cross R. J., Brooks W. H., Roszman T. L., and Markesbery W. R. (1982) Hy-pothalamic-immune interactions. J. Neurol Sci. 53, 557–566.

    Article  PubMed  CAS  Google Scholar 

  • Cross R. J., Markesbery W. R., Brooks W. H., and Roszman T. L. (1980) I. The acute effects of anterior hypothalamic lesions on the immune response. Brain Res. 196, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Cross R. J., Jackson J. C, Brooks W. H., Sparks D. L., Markesbery W. R., and Roszman T. L. (1986) Neuroimmunomodulation: Impairment of humoral immune responsiveness by 6-hydroxydopamine treatment. Immunology 57, 145–152.

    PubMed  CAS  Google Scholar 

  • Curzon G. (1989) 5-Hydroxytryptamine and corticosterone in an animal model of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 13, 305–310.

    Article  CAS  Google Scholar 

  • Dantzer R. and Kelley K. W. (1989) Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sci. 44, 1995–2008.

    Article  PubMed  CAS  Google Scholar 

  • Deutch A. Y., Tarn S-Y., and Roth R. H. (1985) Footshock amd conditioned stress increase 3,4-dihydroxyphenylacetic add (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res. 333, 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Deutch A. Y., Bean A. J., Bissette G., Nemeroff C.B., Robbins R. J., and Roth R. H. (1987) Stress-induced alterations in neurotensin, somatostatin and corticotropin-releasing factor in mesotelencephalic dopamine brain regions. Brain Res. 417, 350–354.

    Article  PubMed  CAS  Google Scholar 

  • Dunn A. J. (1988a) Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism paralleling the increased plasma corticosterone. Life Sci. 43, 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Dunn A. J. (1988b) Changes in plasma and brain tryptophan and brain serotonin and 5-hydroxyindoleacetic acid after footshock stress. Life Sci. 42, 1847–1853.

    Article  PubMed  CAS  Google Scholar 

  • Dunn A. J. and File S. A. (1983) Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens and striatum. Physiol, Behav. 31, 511–513.

    Article  CAS  Google Scholar 

  • Esterling B. and Rabin B. S. (1987) Stress-induced alteration of T-lymphocyte subsets and humoral immunity in mice. Behav. Neurosci. 101, 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Fadda F., Argiolas A., Melis M. R., Tissari A. H., Onali P. L., and Gessa G. L. (1978) Stress induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in nucleus accumbens: Reversal by diazepam. Life Sci. 23, 2219–2224.

    Article  PubMed  CAS  Google Scholar 

  • Fekete M. I. K., Szentendrei T., Kanyicska B., and Palkovits M. (1981) Effects of anxiolytic drugs on the catecholamine and DOPAC (3,4-dihydroxyphenylacetic acid) levels in brain cortical areas and on corticosterone and prolactin secretion in rats subjected to stress. Psychoneuroendocrinology 6, 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Felten D. L., Overhage J. M., Felten S. Y., and Schmedtje J. F. (1981) Nor-adrenergic sympathetic innervation of lymphoid tissue in rabbit appendix: Further evidence for a link between the nervous and immune systems. Brain Res. Bull. 7, 595–612.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger H. C. and Phillips A. G. (1981) Increased intracranial self-stimulation in rats after long term administration of desipramine. Science 124, 683,684.

    Article  Google Scholar 

  • Finley J. C. W., Lindstrom P., and Petrusz P. (1981) Immunocytochemical localization of β-endorphin-containing neurons in the rat brain. Neuroendocrinology 33, 28–42.

    Article  PubMed  Google Scholar 

  • Folch H. and Waksman B. H. (1974) The splenic suppressor cell: I. Activity of thymus dependent adherence cells. Changes with age and stress. J. Immunol. 113, 127–137.

    PubMed  CAS  Google Scholar 

  • Foote S. L., Bloom F. E., and Aston-Jones G. (1983) Nucleus locus coeruleus: New evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844–914.

    PubMed  CAS  Google Scholar 

  • Fratta W., Yang T., Hong J., and Costa E. (1977) Stability of met-enkephalin content in brain structures of morphine-dependent or foot shock-stressed rats. Nature 268, 452,453.

    Article  Google Scholar 

  • Gambert S. R., Garthwaite T. L., Pontzer T. H., and Hagen T. C. (1981) Fasting associated with decrease in hypothalamic β-endorphin. Science 210, 1271,1272.

    Article  Google Scholar 

  • Gamzu E., Vincent G., Tare N., Benjamin W., Farrar J., and Sullivan A. C. (1984) Effects of stress on immune function in mice and rats. Soc. Neuwsci. Abst. 10, 724.

    Google Scholar 

  • Gilmore W. and Weiner L. P. (1988) β-endorphin enhances interleukin-2 (IL-2) production in murine lymphocytes. J. Neuroimmunol. 18, 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Glazer H. I. and Weiss J. M. (1976a) Long-term and transitory interference effects. J. Exp. Psychol: Anim. Behav. Proc. 2, 191–201.

    Article  Google Scholar 

  • Glazer H. I. and Weiss J. M. (1976b) Long-term interference effect: An alternative to “Learned Helplessness.” J. Exp. Psychol: Anim. Behav. Proc. 2, 202–213.

    Article  Google Scholar 

  • Grota L. J., Moynihan J. A., Schmidt, S. G., Schactman T.R., Cohen N., and Ader R. (1989) Inescapable footshock stress prolongs survival in Mrl-lpr/lpr autoimmune mice. Soc. Neursci. Abst. 15, 298.

    Google Scholar 

  • Guillemin R., Vargo T., Rossier W. J., Minick S., Ling N., Rivier C, Vale W., and Bloom F. (1977) Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197, 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  • Guyenet P. G. and Aghajanian G. K. (1979) ACh, substance P and met-enkephalin in the locus coeruleus: Pharmacological evidence for independent sites of action. Eur. J. Pharmacol. 53, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Hall N. R. and Goldstein A. L. (1981) Neurotransmitters and the immune system, in Psychoneuroimmunology (Ader R., ed.), Academic, New York, pp. 521–538.

    Google Scholar 

  • Hamilton M., Zacharko R. M., and Anisman H. (1986) Influence of p-chloroamphetamine and methysergide on the escape deficits provoked by inescapable shock. Psychopharmacology 90, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Heinsbroek R., van Haaren F., Feenstra M., and van de Poll N. (1989) Changes in dopamine and noradrenaline activity in the frontal cortex produced by controllable and uncontrollable shock. Behav. Pharmacol. 1, 61.

    Google Scholar 

  • Hellhammer D. H., Hingtgen J. N., Wade S. E., Shea, P. A., and Aprison M. H. (1983) Serotonergic changes in specific areas of rat brain associated activity-stress gastric lesions. Psychosom. Med. 45, 115–122.

    PubMed  CAS  Google Scholar 

  • Herman J. P., Stinus L., and Le Moal M. (1984) Repeated stress increases locomotor response to amphetamine. Psychopharmacology 84, 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Herman J. P., Guillonneau D., Dantzer R., Scatton B., Semerdjian-Rouquier L., and LeMoal M. (1982) Differential effects of inescapable footshock and stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30, 2207–2214.

    Article  PubMed  CAS  Google Scholar 

  • Herve D., Tassin J. P., Barthelemy C, Blanc G., Lavielle S., and Glowinski J. (1979) Differences in the reactivity of the mesocortical dopaminergic neurons to stress in the Balb/C and C57/BL6 mice, Life Sci. 25, 1659–1664.

    Article  PubMed  CAS  Google Scholar 

  • Heyes M. P., Garnett E. S., and Coates G. (1988) Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sci. 42, 1537–1542.

    Article  PubMed  CAS  Google Scholar 

  • Ida Y., Tanaka M., Kohno Y., Nakagawa R., Iimori K., Tsuda A., Hoaki Y., and Nagasaki N. (1982) Effects of age and stress on regional noradrenaline metabolism in the rat brai. Neurobiol. Aging 3, 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Ida Y., Tanaka M., Tsuda A., Kohno Y., Hoaki Y., Nakagawa R., Iimori K., and Nagaskai N. (1984) Recovery of stress-induced increases in noradrenaline turnover is delayed in specific brain regions of old rats. Life Sci. 34, 2537–2563.

    Article  Google Scholar 

  • Iimori K., Tanaka M., Kohno Y., Ida Y., Nakagawa R., Hoaki Y., Tsuda A., and Nagasaki N. (1982) Psychological stress enhances noradrenaline turnover in specific brain regions in rats. Pharmacol. Biochem. Behav. 16, 637–640.

    Article  PubMed  CAS  Google Scholar 

  • Irwin J., Ahluwalia P., and Anisman H. (1986a) Sensitization of norepinephrine activity following acute and chronic footshock. Brain Res. 379, 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Irwin J., Ahluwalia P., Zacharko R. M., and Anisman H. (1986b) Central norepinephrine and plasma corticosterone following acute and chronic stressors: Influence of social isolation and handling. Pharmacol. Biochem. Behav. 24, 1151–1154.

    Article  PubMed  CAS  Google Scholar 

  • Irwin J., Suissa A., and Anisman H. (1980) Differential effects of inescapable shock on escape performance and discrimination learning in a water escape task. J. Exp. Psychol.: Anim. Behav. 6, 21–40.

    Article  CAS  Google Scholar 

  • Jackson R. L., Alexander R. H., and Maier S. F. (1980) Learned helplessness, inactivity and associative deficits: Effects of inescapable shock on response choice escape learning. J. Exp. Psychol: Anim. Behav. Proc. 6, 1–20.

    Article  CAS  Google Scholar 

  • Janowsky D. S. and Sulser, S. F. (1987) Alpha and beta adrenoceptors in brain, in Psychopharmacology: The Third Generation of Progress (Meltzer H. Y., ed.), Raven, New York, pp. 249–256.

    Google Scholar 

  • Johnson R. P., Sar, M. and Stumpf W. (1980) A topographic localization of enkephalin on the dopamine neurons of the rat substantia nigra and ventral tegmental area demonstrated by combined histofluorescenceimmunocytochemistry. Brain Res. 194, 566–571.

    Article  PubMed  CAS  Google Scholar 

  • Johnson H. M., Smith E. M., Torres B. A., and Blalock J. E. (1982) Regulation of the in vitro antibody response by neuroendocrine hormones. Proc. Natl. Acad. Sci. USA 79, 4171–4174.

    Article  PubMed  CAS  Google Scholar 

  • Joseph M. H. and Kennett G. A. (1981) Brain tryptophan and 5-HT function in stress. Br. J. Pharmacol. 73, 267–271.

    Google Scholar 

  • Kabiersch A., Del Rey A., Honegger C. G., and Besedovsky H. O. (1988) Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav. Immun. 2, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas P. W. and Abhold R. (1987) Enkephalin release into the ventral tegmental area in response to stress: Modulation of mesocortical dopamine. Brain Res. 414, 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas P.W., Richardson-Carlson R., and Van Orden G. (1986) Cross sensitization between foot shock stress and enkephalin-induced motor activity. Biol. Psychiat. 21, 939–950.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas P.W., Duffy P., Dilts R. and Abhold R. (1988) Enkephalin modulation of A10 dopamine neurons: A role in dopamine sensitization, in The Mesocorticolimbic Dopamine System (Kalivas P. W. and Nemeroff C. B., eds.), Ann. NY Acad. Sci. 537, pp. 405–414.

    Google Scholar 

  • Kalivas P. W., Widerlov E., Stanley D., Breese G. R., and Prange A. J. (1983) Enkephalin action on the mesolimbic dopamine system: A dopamine-dependent and a dopamine independent increase in locomotor activity. J. Pharmacol. Exp. Ther. 227, 229–237.

    PubMed  CAS  Google Scholar 

  • Kamata K., Yoshida S., and Kameyama T. (1986) Antagonism of footshock stress-induced inhibition of intracranial self-stimulation by naloxone or methamphetamine. Brain Res. 371, 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Kasian M. and Zacharko R. M. (1989) Strain differences in responding for self-stimulation from the ventral tegmentum following acute and chronic shock. Soc. Neurosci. Abst 15, 1135.

    Google Scholar 

  • Kasian M., Anisman H., and Zacharko R. M. (1989) Alterations of intracranial self-stimulation from the A10 region of C57BL/6J, DBA/2J, and BALB/cByJ mice exposed to uncontrollable footshock (in preparation).

    Google Scholar 

  • Kasian M., Zacharko R. M., and Anisman H. (1987) Regional variations in stressor-provoked alterations of intracranial self-stimulation from the ventral tegrnental area. Soc. Neurosci. Abst. 13, 1551.

    Google Scholar 

  • Keller S. E., Weiss J. M., Schleifer S. J., Miller N. E., and Stein M. (1981) Suppression of immunity by stress: Effect of a graded series of stressors on lymphocyte stimulation in the rat. Science 213, 1397–1400.

    Article  PubMed  CAS  Google Scholar 

  • Keller S. E., Weiss J. M., Schleifer S. J., Miller N. E., and Stein M. (1983) Stress-induced suppression of immunity in adrenalectomized rats. Science 221, 1301–1304.

    Article  PubMed  CAS  Google Scholar 

  • Kennett G. A. and Joseph M. H. (1981) The functional importance of increased brain tryptophan in the serotonergic response to restraint stress. Neuropharmacology 20, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Kiecolt-Glaser J. K., Garner W., Speicher C, Penn G. M., Holliday J., and Glaser R. (1984) Psychosocial modifiers of immunocompetence in medical students. Psychosom. Med. 46, 15–24.

    PubMed  CAS  Google Scholar 

  • Knepel W., Nutto D., and Anhut H. (1983) β-endorphin controls vasopressin release during foot shock-induced stress in the rat. Reg. Peptides 7, 9–19.

    Article  CAS  Google Scholar 

  • Kobayashi R. M., Palkovits M, Kizer J. S., Jacobowitz D. M., and Kopin I. J. (1976) Selective alterations of catecholamines and tyrosine hydroxylase activity in the hypothalamus following acute and chronic stress, in Catecholamines and Stress (Usdin E., Kvetnansky R., and Kopin I. J., eds.), Pergamon, Oxford, pp. 29–38.

    Google Scholar 

  • Kramarcy N. R., Delanoy R. L., and Dunn A. J. (1984) Footshock treatment activates catecholamine synthesis in slices of mouse brain regions. Brain Res. 290, 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R., Palkovits M., Mitro A., Torda T., and Mikulaj L. (1977) Catecholamines in individual hypothalamic nuclei of acutely and repeatedly stressed rats. Neuroendocrinology 23, 257–267

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R., Mitro A., Palkovits M., Brownstein M., Torda T., Vigas M., and Mikulaj L. (1976) Catecholamines in individual hypothalamic nuclei in stressed rats, in Catecholamines and Stress (Usdin E., Kvetnansky R., and Kopin I. J., eds.), Pergamon, Oxford, pp. 39–50

    Google Scholar 

  • Laudenslager M. L., Ryan S. M., Drugan R. C, Hyson R. L., and Maier S. F. (1983) Coping and immunosuppression: Inescapable but not escapable shock suppresses lymphocyte proliferation. Science 221, 568–570.

    Article  PubMed  CAS  Google Scholar 

  • Laudenslager M. L., Fleshner M., Hofstadter P., Held P. E., Simons L., and Maier S. F. (1988) Suppression of specific antibody production by inescapable shock: Stability under varying conditions. Brain. Behav. Immun. 2, 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Laveille S., Tassin J., Thierry A., Blanc G., Herve D., Barthelemy C, and Glowinski J. (1978) Blockade by benzodiazepines of the selective high increase in dopamine turnover induced by stress in mesocortical dopaminergic neurons of the rat. Brain Res. 168, 585–594.

    Article  Google Scholar 

  • Leger L., Charnay Y., Chayvialle J. A., Berod A., Dray F., Pujol J. F., Jouvet M., and Dubois P. M. (1983) Localization of substance P-and enkephalin-like immunoreactivity in relation to catecholamine containing cell bodies in the cat dorsolateral pontine tegmentum: An immunofluorescence study. Neuroscience 8, 525–546.

    Article  PubMed  CAS  Google Scholar 

  • Lewis M. E., Khachaturian H., and Watson S. J. (1985) Combined autoradio-graphic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain. Peptides 6, 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Lopez de Ceballo M., Guisado E., Sanchez-Blazquez P., Garzo J., and Del Rio J. (1983) Long term social isolation in the rat induces opposite changes in binding to α1-and α2-adrenoreceptors in the brain and vas deferens. Neurosci. Lett. 39, 217–222.

    Article  Google Scholar 

  • Lysle D. T., Cunnick J. E., Fowler H., and Rabin B. S. (1988) Pavlovian conditioning of shock-induced suppression of lymphocyte reactivity: Acquisition, extinction, and preexposure effects. Life Sci. 42, 2185–2194.

    Article  PubMed  CAS  Google Scholar 

  • Lysle D. T., Lyte M., Fowler H., and Rabin B. S. (1987) Shock-induced modulation of lymphocyte reactivity: Suppression, habituation, and recovery. Life Sci. 41, 1805–1814.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan A. J. and Maier S. F. (1983) Coping and stress-induced potentiation of stimulant stereotypy in the rat. Science 219, 1091–1093.

    Article  PubMed  CAS  Google Scholar 

  • Macris N. T., Schiavi R. C, Camerino M. S., and Stein M. (1970) Effects of hypothalamic lesions on immune processes in the guinea pig. Am. J. Physiol. 219, 1205–1209.

    PubMed  CAS  Google Scholar 

  • Madden J., Akil I. V., Patrick R. L., and Barchas J. (1977) Stress-induced parallel changes in central opioid levels and pain responsiveness in rat. Nature 265, 358–360.

    Article  PubMed  CAS  Google Scholar 

  • Maier S. F. and Laudenslager M. L. (1988) Inescapable shock, shock controllability, and mitogen stimulated lymphocyte proliferation. Brain Behav. Immun. 2, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Maier S. F. and Seligman M. E. P. (1976) Learned helplessness: Theory and evidence. J. Exp. Psychol: Gen. 105, 3–46.

    Article  Google Scholar 

  • Mantz J., Thierry A. M., and Glowinski J. (1989) Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: Selective activation of the mesocortical system. Brain Res. 476, 377–381

    Article  PubMed  CAS  Google Scholar 

  • McNeal E. T. and Cimbolic P. (1986) Antidepressants and biochemical theories of depression. Psychol. Bull. 99, 361–374.

    Article  PubMed  CAS  Google Scholar 

  • Miller J.D., Speciale S. G., McMillen B. A., and German D. C. (1984) Naloxone antagonism of stress induced augmentation of frontal cortex dopamine metabolism. Eur. J. Pharmacol. 98, 437–439.

    Article  PubMed  CAS  Google Scholar 

  • Minor T. R., Jackson R. L., and Maier S. F. (1984) Effects of task-irrelevant cues and reinforcement delay on choice-escape learning following inescapable shock: Evidence for a deficit in selective attention. J. Exp. Psychol: Anim. Behav. Proc. 10, 543–556.

    Article  CAS  Google Scholar 

  • Monjan A. A. and Collector I. I. (1977) Stress-induced modulation of the immune response. Science 196, 307,308.

    Article  PubMed  CAS  Google Scholar 

  • Morely J. E., Elson M. K., Levine A. S., and Shafer R. B. (1982) The effects of stress on central nervous system concentrations of the opioid peptide, dynorphin. Peptides 3, 901–906.

    Article  Google Scholar 

  • Morgan W. W., Rudeen P. K., and Pfeil K. A. (1975) Effect of immobilization stress on serotonin content and turnover in regions of the rat brain. Life Sci. 17, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Morilak D. A., Fornal C. A., and Jacobs B. L. (1987a) Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. II. Cardiovascular challenge. Brain Res. 422, 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Morilak D. A., Fornal C. A., and Jacobs, B. L. (1987b) Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. III. Glucoregulatory challenge. Brain Res. 422, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Mormede P., Dantzer R., Michaud B., Kelley K. W., and Le Moal M. (1988) Influence of stressor predictability and behavioral control on lymphocyte reactivity, antibody responses, and neuroendocrine activation in rats. Physiol. Behav. 43, 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz A. S. and Goodman R. R. (1984) Light microscopic autoradio-graphic localization of opioid binding sites in the mouse central nervous system. J. Neurosci. 4, 1331–1342.

    PubMed  CAS  Google Scholar 

  • Munck A., Guyre P. M., and Holbrook N. J. (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrinol. Rev. 5, 25–44.

    Article  CAS  Google Scholar 

  • Nakamura S., Sakaguchi T., and Aoki F. (1989) Electrophysiological evidence for terminal sprouting of locus coeruleus neurons following repeated mild stress. Neurosci. Lett. 100, 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Nomura S., Watanabe M., Ukei N., and Nakazawa T. (1981) Stress and β-adrenergic receptor binding in the rat’s brain. Brain Res. 224, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Okimura T. and Nigo Y. (1986) Stress and immune responses I. Suppression of T cell function in restraint-stress mice. Japan J. Pharmacol. 40, 505–511.

    Article  CAS  Google Scholar 

  • Owen P. C. and Smith R. (1987) Opioid peptides in blood and cerebrospinal fluid during acute stress. Clin. Endocrinol. Met. 1, 415–437.

    Google Scholar 

  • Pancherri P., Zichella L., Fraioli F., Carilli L., Perrone G., Biondi M., Fabbri A., Santoro A., and Moretti C. (1985) ACTH, beta-endorphin and met-enkephalin: Peripheral modifications during the stress of human labor. Psychoneuroendocrinology 10, 289–301.

    Article  Google Scholar 

  • Pert U. (1982) Mechanisms of opiate analgesia and the role of endorphins in pain suppression. Adv. Neurol. 33, 107–114.

    PubMed  CAS  Google Scholar 

  • Petty F. and Sherman A. D. (1982) A neurochemical differentiation between exposure to stress and the development of learned helplessness. Drug Devel. Res. 2, 43–45.

    Article  Google Scholar 

  • Platt J. E. and Stone E. A. (1982) Chronic restraint stress elicits a positive antidepressant response on the forced swim test. Eur. J. Pharmacol. 82, 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Prince C. R. and Anisman H. 1984) Acute and chronic stress effects on performance in a forced-swim task. Behav. Neur. Biol. 84, 99–119.

    Google Scholar 

  • Prince C. R, Collins C, and Anisman H. (1986) Stressor-provoked response patterns in a swim task: Modification by diazepam. Pharmacol. Biochem. Behav. 24, 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen K. and Jacobs B. L. (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. 11. Conditioning and pharmacologic studies. Brain Res. 71, 335–344.

    Article  Google Scholar 

  • Rasmussen K., Morulak D. A., and Jacobs B. L. (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Res. 71, 324–334.

    Article  Google Scholar 

  • Redmond D. E. (1987) Studies of the nucleus locus coeruleus in monkeys and hypotheses for neuropsychopharmacology, in Psychopharmacology: The Third Generation of Progress (Meltzer H. Y., ed.), Raven, New York, pp. 967–975.

    Google Scholar 

  • Ritter S. and Pelzer N. L. (1978) Magnitude of stress-induced norepinephrine depletion varies with age. Brain Res. 152, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Rossier J., Guillemin R., and Bloom F. (1978) Footshock induced stress decreases leu5-enkephalin immunoreactivity in rat hypothalamus. Eur. J. Pharmacol. 48, 465, 466.

    Article  PubMed  CAS  Google Scholar 

  • Roszman T. L. and Brooks W. H. (1985) Neural modulation of immune function. Neuroimmunology 10, 59–69.

    Article  CAS  Google Scholar 

  • Roth K. A., Mefford I. M., and Barchas J. D. (1982) Epinephrine, norepinephrine, dopamine and serotonin: Differential effects of acute and chronic stress on regional brain amines. Brain Res. 239, 417–424.

    Article  PubMed  CAS  Google Scholar 

  • Roth R. H., Tarn S-Y., Ida Y., Yang J-X., and Deutch Y. (1988) Stress and mesocorticolimbic dopamine system, in The Mesocorticolimbic Dopamine System (Kalivas P. W. and Nemeroff C. B., eds.), Ann. NY Acad. Sci. 537, pp. 138–147.

    Google Scholar 

  • Sapolsky R., Rivier C, Yamamoto G., Plotsky P., and Vale W. (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-re-leasing factor. Science 238, 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Shanks N. and Anisman H. (1988) Stressor provoked behavioral changes in six strains of mice. Behav. Neurosci. 102, 894–905.

    Article  PubMed  CAS  Google Scholar 

  • Shanks N. and Anisman H. (1989) Strain-specific effects of antidepressants on escape deficits induced by inescapable shock. Psychopharmacology 99, 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Shanks N., Zalcman S., and Anisman H. (1988) Strain-specific catecholamine variations induced by stressors: Relation to behavioral change. Soc. Neurosci. Abst. 18, 969.

    Google Scholar 

  • Shavit Y., Ryan S. M., Lewis J.W., Laudenslager M. L., Terman G. W., Maier S. F., Gale R. P., and Liebskind J. C. (1984) Inescapable but not escapable stress alters immune function. Physiologist 26, A–64.

    Google Scholar 

  • Sherman A. D. and Petty F. (1980) Neurochemical basis of the action of anti-depressants on learned helplessness. Behav. Neur. Biol. 30, 119–134.

    Article  CAS  Google Scholar 

  • Simson P. E. and Weiss J. M. (1988) Altered activity of the locus coeruleus in an animal model of depression. Neuropsychopharmacology 1, 287–295.

    PubMed  CAS  Google Scholar 

  • Simson P. G., Weiss J. M., Ambrose M. J., and Webster A. (1986a) Infusion of a monoamine oxidase inhibitor into the locus coeruleus can prevent stress induced behavioral depression. Biol. Psychiat. 21, 724–734.

    Article  PubMed  CAS  Google Scholar 

  • Simson P. G., Weiss J. M., Hoffman L. J., and Ambrose M. J. (1986b) Reversal of behavioral depression by infusion of an alpha-2 adrenergic agonist into the locus coeruleus. Neuropharmacology 25, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Sirakova I., Panova D., Georgiev P., and Sirakov L. M. (1988) Opiate receptor binding in the brain of rat during stress. Pav. J. Biol. Sci. 23, 54–56.

    CAS  Google Scholar 

  • Sklar L. S. and Anisman H. (1981) Stress and cancer, Psychol. Bull. 89, 369–406.

    Article  PubMed  CAS  Google Scholar 

  • Sklar L. S. and Anisman H. (1980) Social stress influences tumor growth. Psychosom. Med. 42, 347–365.

    PubMed  CAS  Google Scholar 

  • Smith E. M. and Blalock J. E. (1981) Human lymphocyte production of ACTH and endorphin-like substances: Association with leukocyte interferon. Proc. Natl. Acad. Sci. USA 78, 7530–7535.

    Article  PubMed  CAS  Google Scholar 

  • Smith E. M., Phan M., Coppenhaver D., Kruger T. E., and Blalock J. E. (1983) Human lymphocyte production of immunoreactive thyrotropin. Proc. Natl. Acad. Sci. USA 80, 6010–6013.

    Article  PubMed  CAS  Google Scholar 

  • Soubrie P., Martin P., El Mestikawy S., Thiebot M. H., Simon P., and Hamon M. (1986) The lesion of serotonergic neurons does not prevent antide-pressant-induced reversal of escape failures produced by inescapable shocks in rats. Pharmacol. Biochem. Behav. 25, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Stanford S. C, Fillenz M., and Ryan E. (1984) The effect of repeated mild stress on cerebral cortical adrenoceptors and noradrenaline synthesis in the rat. Neurosci, Lett. 45, 163–167.

    Article  CAS  Google Scholar 

  • Stein M. (1981) A biopsychosodal approach to immune function and medical disorders. Psychiat. Clin. North Amer. 4, 203–221.

    CAS  Google Scholar 

  • Stein M., Schiavi R. C, and Camerino M. (1976) Influence of brain and behavior on the immune system. Science 191, 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Stolk J. M., Connor R. L., Levine S., and Barchas J. D. (1974) Brain norepi-nephrine metabolism and shock-induced fighting behavior in rats: Differential effects of shock and fighting on the neurochemical response to a common footshock stimulus. J. Pharmacol. Exp. Ther. 190, 193–209.

    PubMed  CAS  Google Scholar 

  • Stone E. A. (1979) Subsensitivity to norepinephrine as a link between adaptation to stress and antidepressant therapy: An hypothesis. Res. Comm. Psychol. Psychiat. Behav. 4, 241–255.

    CAS  Google Scholar 

  • Stone E. A. (1983) Problems with current catecholamine hypotheses of anti-depressant agents. Behav. Brain Sci. 6, 535–577.

    Article  Google Scholar 

  • Stone E. A. (1987) Central cyclic-AMP-linked noradrenergic receptors: New findings on properties as related to the actions of stress. Neurosci. Biobehav. Rev. 11, 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Stone E. A. and Platt J. E. (1982) Brain noradrenergic receptors and resistance to stress. Brain Res. 237, 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Stone E. A., Platt J. E., Herrera A. S., and Kirk K. L. (1986) The effect of repeated restraint stress, desmethylimipramine or adrenocorticotropin on the alpha and beta adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices. J. Pharmacol. Exp. Ther. 237, 702–707.

    PubMed  CAS  Google Scholar 

  • Stone E. A., Slucky A. V., Platt J. E., and Trullas R. (1985) Reduction of the cyclic adenosine 3′, 5′-monophosphate response to catecholamines in rat brain slices after repeated restraint stress. J. Pharmacol. Exp. Ther. 233, 382–388.

    PubMed  CAS  Google Scholar 

  • Szostak C. and Anisman H. (1985) Stimulus perseveration in a water maze following exposure to uncontrollable shock. Behav. Neur. Biol. 43, 178–198.

    Article  CAS  Google Scholar 

  • Tanaka M., Ida Y., Tsuda A., Tsujimaru S., Shirao I., and Oguchi M. (1989) Met-enkephalin, injected during the early phases of stress, attenuates stress-induced increases in noradrenaline release in rat brain regions. Pharmacol. Biochem. Behav. 32, 791–795.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M., Kohno Y., Nakagawa R., Ida Y., Takeda S., and Nagasaki N. (1982) Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacol Biochem. Behav. 16, 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Tassin J. P., Herve D., Blanc G. and Glowinski J. (1980) Differential effects of a two-minute open-field session on dopamine utilization in the frontal cortices of BALB/C and C57BL/6 mice. Neurosci. Lett. 17, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Thierry A. M., Fekete M., and Glowinski J. (1968a) Effects of stress on the metabolism of noradrenaline, dopamine and serotonin (5-HT) in the central nervous system of the rat, II. Modifications of serotonin metabolism. Eur. J. Pharmacol. 4, 384–389.

    Article  PubMed  CAS  Google Scholar 

  • Thierry A. M., Javoy F., Glowinski J., and Kety S. S. (1968b) Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. J. Pharmacol. Exp. Ther. 163, 163–171.

    PubMed  CAS  Google Scholar 

  • Thierry A. M., Tassin J. P., Blanc G., and Glowinski J. (1976) Selective activation of the mesocortical DA system by stress. Nature 263, 242–244.

    Article  PubMed  CAS  Google Scholar 

  • Torda T., Yamaguchi I., Hirata F., Kopin, I. J., and Axelrod J. (1981) Mepacrine treatment prevents immobilization-induced desensitization of beta-adrenergic receptors in rat hypothalamus and brain stem. Brain Res. 205, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda A. and Tanaka M. (1985) Differential changes in noradrenaline turnover in specific region of rat brain produced by controllable and uncontrollable shocks. Behav. Neurosci. 99, 802–817.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda A., Ida Y., Satoh H., Tsujimaru S., and Tanaka M. (1989) Stressor predictability and rat brain noradrenaline metabolism. Pharmacol. Biochem. Behav. 32, 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda A., Tanaka M., Nishikawa T., Ida Y., and Nagasaki N. (1983) Changes in hypothalamic noradrenaline turnover in rats produced by controllable and uncontrollable shocks. Karume Med. J. 30, 73–79.

    Article  CAS  Google Scholar 

  • Tsuda A., Tanaka M, Ida Y., Shirao I., Gondoh Y., Oguchi I., and Yashida M. (1988) Expression of aggression attenuates stress-induced increases in rat brain noradrenaline turnover. Brain Res. 474, 174–180.

    Article  PubMed  CAS  Google Scholar 

  • U’Pritchard D. C. and Kvetnansky R. (1980) Central and peripheral adrenergic receptors in acute and repeated immobilization stress, in Second International Symposium in Catecholamines and Stress (Usdin E., Kvetnansky R., and Kopin I. J., eds.), Elsevier, New York, pp. 299–308.

    Google Scholar 

  • Weiss J. M. and Simson P. G. (1985) Neurochemical mechanisms underlying stress-induced depression, in Stress and Coping (Field T., McCabe P., and Schneiderman N., eds.), Lawrence Erlbaum, Hillsdale, New Jersey, pp. 93–116.

    Google Scholar 

  • Weiss J. M. and Simson P. E. (1989) Electrophysiology of the locus coeruleus: Implications for stress-induced depression, in Animal Models of Depression (Koob G. F., Ehlers C. L., and Kupfer D. J., eds.), Birkhauser, Boston, pp. 111–134.

    Chapter  Google Scholar 

  • Weiss J. M, Glazer H. I., and Pohorecky L. A. (1976a) Coping behavior and neurochemical changes: An alternative explanation for the original “learned helplessness” experiments, in Animal Models in Human Psychobiology (Serban G. and Kling A., eds.), Plenum, New York, pp. 141–173.

    Chapter  Google Scholar 

  • Weiss J. M., Pohorecky L. A., Salman S. and Gruenthal M. (1976b) Attenuation of gastric lesions by psychological aggression in rats. J. Comp. Physiol, Psychol. 90, 252–259.

    Article  PubMed  CAS  Google Scholar 

  • Weiss J. M, Glazer, H. I., Pohorecky, L. A., Brick, J., and Miller N. A. (1975) Effects of chronic exposure to stressors on avoidance-escape behavior and on brain norepinephrine. Psychosom. Med. 37, 522–534.

    PubMed  CAS  Google Scholar 

  • Weiss J. M., Goodman P.A., Losito B. G., Corrigan S., Charry J. M., and Bailey W. H. (1981) Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Res. Rev. 3, 167–205.

    Article  CAS  Google Scholar 

  • Weiss J. M., Simson P. A., Hoffman L. J., Ambrose M. J., Cooper S., and Webster A. (1986) Infusion of adrenergic receptor agonists and antagonists into the locus coeruleus and ventricular system of the brain: Effects on swim-motivated and spontaneous motor activity. Neuropharmacology 25, 357–384.

    Article  Google Scholar 

  • Wilkinson L. O. and Jacobs B. L. (1988) Lack of response of serotonergic neurons in the dorsal raphe nucleus of freely moving cats to stressful stimuli. Exp. Neurol. 101, 445–457.

    Article  PubMed  CAS  Google Scholar 

  • Williams J. M. and Felten D. L. (1981) Sympathetic innervation of murine thymus and spleen: A comparative histofluorescence study. Anat. Rec. 199, 531–542.

    Article  PubMed  CAS  Google Scholar 

  • Willner P. (1985) Depression: A Psychobtologic Synthesis. Wiley, New York.

    Google Scholar 

  • Wistar J. and Hildemann W. H. (1960) Effect of stress on skin transplantation immunity in mice. Science 131, 159,160.

    Article  Google Scholar 

  • Woloski B. M. N. R. J., Smith E. M., Meyer W. J., Fuller G. M., and Blalock J. E. (1985) Corticotropin-releasing activity of monokines. Science 230, 1035–1037.

    Article  PubMed  CAS  Google Scholar 

  • Wybran, J., Appelboom, T., Famacy, J. P., and Govaerts, A. (1979) Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T-lymphocytes. J. Immunol. 123, 1068–1070.

    PubMed  CAS  Google Scholar 

  • Zacharko R. M. and Anisman H. (1989) Pharmacological, biochemical, and behavioral analyses of depression: Animal models, in Animal Models of Depression (Koob G. P., Ehlers C. L., and Kupfer D. J., eds.), Birkhauser, Boston, pp. 204–238.

    Google Scholar 

  • Zacharko R. M, Bowers W. J., Kokkinidis L., and Anisman H. (1983a) Region-specific reductions of intracranial self-stimulation after uncontrollable stress: Possible effects on reward processes. Behav. Brain Res. 9, 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Zacharko R. M., Bowers W. J., Prince C, and Anisman H. (1983b) Behavioral alterations following repeated exposure to uncontrollable foot-shock or desmethylimipramine. Soc. Neurosct. Abst. 9, 561.

    Google Scholar 

  • Zacharko R. M., Bowers, W. J., and Anisman H. (1984a) Responding for brain stimulation: Stress and desmethylimipramine. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 8, 601–606.

    Article  CAS  Google Scholar 

  • Zacharko R. M., Bowers W. J., Kelley M. S., and Anisman H. (1984b) Prevention of stressor-induced disturbances of self-stimulation by desmethylimipramine. Brain Res. 321, 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Zacharko R. M., Kasian M., MacNeil G., and Anisman H. (1990a) Stressor-induced behavioural alterations in intracranial self-stimulation from the ventral tegmental area: Evidence for regional variations Brain Res. Bull. 25, 617–621.

    Article  PubMed  CAS  Google Scholar 

  • Zacharko R. M., Gilmore W., MacNeil G., Kasian M., and Anisman H. (1990b) Stressor induced variations of intracranial self-stimulation from the mesocortex in several strains of mice. Brain Res. 533, 353–357.

    Article  PubMed  CAS  Google Scholar 

  • Zacharko R. M., Lalonde G., Kasian M., and Anisman H. (1987) Strain-specific effects of inescapable shock on intracranial self-stimulation from the nucleus accumbens. Brain Res. 426, 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Zalcman S., Minkiewicz-Janda A., Richter M, and Anisman H. (1988a) Critical periods associated with stressor effects on antibody titers and on the plaque-forming cell response to sheep red blood cells. Brain Behav. Immun. 2, 254–266.

    Article  PubMed  CAS  Google Scholar 

  • Zalcman S., Richter M., and Anisman H. (1988b) Critical periods for stressor provoked immunological changes. Soc. Neurosci. Abst. 14, 1282.

    Google Scholar 

  • Zalcman S., Richter M., and Anisman H. (1989a) Alterations of immune functioning following exposure to stressor related cues. Brain Behav. Immun. (in press).

    Google Scholar 

  • Zalcman S., Shanks N., and Anisman H. (1989b) Central catecholamine variations associated with antigen administration. Soc. Neurosci. Abst. 15, 720.

    Google Scholar 

  • Zalcman S., Henderson N., Richter M., and Anisman H. (1990) Age-related enhancement and suppression of the antibody response to sheep red blood cells after stressor exposure. First Int. Cong. Neuroimmunomod. 1, 376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 The Humana Press Inc.

About this protocol

Cite this protocol

Anisman, H., Zalcman, S., Shanks, N., M. Zacharko, R. (1991). Multisystem Regulation of Performance Deficits Induced by Stressors. In: Boulton, A.A., Baker, G.B., Martin-Iverson, M.T. (eds) Animal Models in Psychiatry, II. Neuromethods, vol 19. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-177-2:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-177-2:1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-177-7

  • Online ISBN: 978-1-59259-624-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics