Skip to main content

Whole-Cell and Microelectrode Voltage Clamp

  • Protocol
Neurophysiological Techniques

Part of the book series: Neuromethods ((NM,volume 14))

Abstract

As other chapters in this book demonstrate, intra- and extracellular recording provide considerable information about the electrical behavior of cells. However, as Hodgkin and Huxley (1952) taught us long ago, analysis of the mechanisms that generate electrical activity is far easier with voltage clamp. If the behavior of ion channels depends on voltage, the first step in studying such channels is to control the voltage. Under voltage clamp, the kinetic behavior of a channel (or of a macroscopic assemblage of channels) is at its simplest. Without voltage clamp, there is a complex interaction between channel gating and membrane potential. When channels open, current through them affects the membrane potential, which in turn makes channels open (or close), affecting the membrane potential....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P. R., Brown D. A., and Constanti A. (1982a) M-currents and other potassium currents in bullfrog sympathetic neurones. J. Phystol. 330, 537–572.

    CAS  Google Scholar 

  • Adams P. R., Constanti A., Brown D. A., and Clark R. B. (1982b) Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature (Lond). 296, 746–749.

    Article  PubMed  CAS  Google Scholar 

  • Adams P. R., Jones S. W., Pennefather P., Brown D. A., Koch C., and Lancaster B. (1986) Slow synaptic transmission in frog sympathetic ganglia. J. Exp. Blol. 124, 259–285.

    CAS  Google Scholar 

  • Armstrong C. M. and Chow R. H. (1987) Supercharging: A method for improving patch-clamp performance. Biophys. J. 52, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Cachelin A. B. and Rice P. D. (1987) Microcomputers in the laboratory, in Microelectrode Techniques. The Plymouth Workshop Handbook (Standen N. B., Gray P. T. A., and Whitaker M. J., eds.), pp. 229–248, The Company of Biologists, Cambridge, England.

    Google Scholar 

  • DiFrancesco D., Ferrom A., Visentin S., and Zaza A. (1985) Cadmium-induced blockade of the cardiac fast Na channels in calf Purkinle fibres. Proc. Roy. Sot. B 223, 475–484.

    Article  CAS  Google Scholar 

  • Finkel A. S. and Gage P. W. (1985) Conventional voltage clamping with two intracellular microelectrodes, in Voltage and Patch Clumping with Microelectrodes (Smith T. G. Jr., Lecar H., Redman S. J., and Gage P. W., eds.), American Physiological Society, Bethesda, Maryland, pp. 47–94.

    Chapter  Google Scholar 

  • Finkel A. S. and Redman S. (1984) Theory and operation of a single microelectrode voltage clamp. J. Neurosci. Meth. 11, 101–127.

    Article  CAS  Google Scholar 

  • Finkel A. S. and Redman S. J. (1985) Optimal voltage clamping with single microelectrode, in Voltage and Patch Clamping with Microelectrodes (Smith T. G., Jr., Lecar H., Redman S. J., and Gage P. W., eds.), American Physiological Society, Bethesda, Maryland, pp. 95–120.

    Chapter  Google Scholar 

  • Halliwell J. V. and Adams P. R. (1982) Voltage-clamp analysis of muscarmic excitation in hippocampal neurons. Bruin Res. 250, 71–92.

    Article  CAS  Google Scholar 

  • Hamill O. P. (1983) Potassium and chloride channels in red blood cells, in Single Channel Recording (Sakmann B. and Neher E., eds.), Plenum New York, pp. 451–471.

    Chapter  Google Scholar 

  • Hamill O. P., Marty A., Neher E., Sakmann B., and Sigworth F. J, (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hille B. (1984) Ionrc Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Hodgkin A. L. and Huxley A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Horn R. and Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-ceil recording method. J. Gen. Physiol. 92, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S. R., Schofield G. G, and Weight F. F. (1986) Na+ and Ca2+ currents of acutely isolated adult rat nodose ganglion cells. J. Neurophysiol. 55, 527–539.

    PubMed  CAS  Google Scholar 

  • Jack J. J. B., Noble D., and Tsien R. W. (1975) Elecfrtc Current Flow in Excitable Cells (Oxford University Press, Oxford, England).

    Google Scholar 

  • Johnston D. and Brown T. H. (1983) Interpretation of voltage-clamp measurements in hippocampal neurons. J. Neurophysiol. 50, 464–486.

    PubMed  CAS  Google Scholar 

  • Jones S. W. (1987) Sodium currents in dissociated bull-frog sympathetic neurones. J. Physlol. 389, 605–627.

    CAS  Google Scholar 

  • Jones S. W (1989) On the resting potential of isolated frog sympathetic neurons. Neuron 3, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Jones S. W. and Marks T. N. (1989) Calcium currents in bullfrog sympathetic neurons. I. Activation kinetics and pharmacology. J, Gen. Physiol. 94, 151–167.

    Article  CAS  Google Scholar 

  • Kostyuk P. G., Veselovsky N. S., and Tsyndrenko A. Y. (1981) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons—I. Sodium currents. Neuroscience 6, 2423–2430.

    Article  PubMed  CAS  Google Scholar 

  • Kramer R. H. (1986) Axonal contribution to subthreshold currents in Aplysia busting pacemaker neurons. Cell. Molec. Neurobiol. 6, 239–253.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster B. and Pennefather P. (1987) Potassium currents evoked by brief depolarizations in bull-frog sympathetic ganglion cells. J. Physiol. 387, 519–548.

    PubMed  CAS  Google Scholar 

  • Lipscombe D., Madison D. V., Poenie M., Reuter H., Tsien R. Y., and Tsien R. W. (1988) Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc. Natl. Acad Sci. USA 85, 2398–2402.

    Article  PubMed  CAS  Google Scholar 

  • Madison D. V., Malenka R. C., and Nicoll R. A. (1986) Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321, 695–697.

    Article  PubMed  CAS  Google Scholar 

  • Marty A. and Neher E. (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J. Phystol. 367, 117–141.

    CAS  Google Scholar 

  • Moore J. W. (1971) Voltage clamp methods, in Biophysics and Physiology of Excifuble Membranes (Adelman W. J., ed.), Van Nostrand, New York, pp. 143–167.

    Google Scholar 

  • Moore J. W. (1985) Comparison of voltage clamps with microelectrode and sucrose-gap techniques, in Voltage and Patch Clamping with Mic-roelectrodes (Smith T. G., Jr., Lecar H., Redman S. J., and Gage P. W., eds.), American Physiological Society, Bethesda, Maryland, pp. 217–230.

    Chapter  Google Scholar 

  • Pennefather P., Lancaster B., Adams I. R., and Nicoll R. A. (1985) Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc. Natl. Acad. Sci. USA 82, 3040–3044.

    Article  PubMed  CAS  Google Scholar 

  • Rall W. and Segev I. (1985) Space-clamp problems when voltage clamping branched neurons with intracellular microelectrodes, in Voltage and Patch Clumping with Microelectrodes (Smith T. G., Jr., Lecar H., Redman S. J., and Gage P. W., eds.), American Physiological Society, Bethesda, Maryland, pp. 191–215.

    Chapter  Google Scholar 

  • Sakmann B. and Neher E. (eds.) (1983) Single-Channel Recording. (Plenum, New York).

    Google Scholar 

  • Sigworth F. J. (1983) Electronic design of the patch clamp, in Single-Channel Recording (Sakmann B. and Neher E., eds.), Plenum, New York, pp. 3–35.

    Chapter  Google Scholar 

  • Smith T. G., Jr., Lecar H., Redman S. J., and Gage P. W. (eds.) (1985) Voltage and Patch Clumping with Microelectrodes (American Physiological Society, Bethesda, Maryland).

    Book  Google Scholar 

  • Standen N. B., Gray I. T. A., and Whitaker M. J. (eds.) (1987) Microelectrade Techniques. The Plymouth Workshop Handbook (The Company of Biologists, Cambridge, England).

    Google Scholar 

  • Wilson W. A., and Goldner M. M. (1975) Voltage clamping with a single microelectrode, J. Neurobiol. 6, 411–422.

    Article  PubMed  CAS  Google Scholar 

  • Wonderlin W. F., French R. J., and Arispe N. J. (1989) Recording and analysis of currents from single ion channels, in Neuromethods, Vol. 14 (Boulton A. A., Baker G. B., and Vanderwolf C. H., eds.), Humana Press, Clifton, New Jersey, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc., Clifton, NJ

About this protocol

Cite this protocol

Jones, S.W. (1990). Whole-Cell and Microelectrode Voltage Clamp. In: Boulton, A.A., Baker, G.B., Vanderwolf, C.H. (eds) Neurophysiological Techniques. Neuromethods, vol 14. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-160-8:143

Download citation

  • DOI: https://doi.org/10.1385/0-89603-160-8:143

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-160-9

  • Online ISBN: 978-1-59259-619-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics