Fabrication and Implementation of Ion-Selective Microelectrodes

  • Walter G. Carlini
  • Bruce R. Ransom
Part of the Neuromethods book series (NM, volume 14)


Techniques for measuring ion concentrations in tissue have been vitally important for critically evaluating a broad range of physiological phenomena. Refinements that allow ion activities to be monitored with considerable spatial and temporal precision have been particularly valuable for this purpose. These methods are widely applied to the study of the nervous system, whose characteristic feature of excitability results in a complex set of dependencies on highly regulated ionic gradients.


Electrical Double Layer Liquid Membrane Silane Solution Standard Gibbs Energy Membrane Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achenbach C. (1985) Effects of thallous ions on the measurement of intracellular ion activities, in Ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K., and Hoper J., eds.) Springer Verlag, New York, pp. 256–2CrossRefGoogle Scholar
  2. Agm D. P. (1969) Electrochemical properties of glass microelectrodes, in Glass Microelectrodes (Lavallée M., Schanne O., and Hebert N. C., eds.) Wiley, New York, pp. 62–75.Google Scholar
  3. Aicken C. C. and Brading A. F. (1982) Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and microelectrodes. J. Physiol 326, 139–154.Google Scholar
  4. Ammann D. (1986) Ion-Selective Microelectrodes (Springer Verlag, New York).Google Scholar
  5. Ammann D., Oesch U., Buhrer T., and Simon W. (1987) Designs of ionophores for ion-selective microsensors. Can. J. Physiol. Pharmacol. 65, 879–884.PubMedCrossRefGoogle Scholar
  6. Ammann D., Lanter F., Steiner R. A., Schulthess P., Shijo Y., and Simon W. (1981) Neutral carrier based ion-selective microelectrode for extra-and intracellular studies. Anal. Chem. 53, 2267–2269.PubMedCrossRefGoogle Scholar
  7. Armstrong W. McD. and Garcia-Diaz J. F. (1980) Ion-selective microelectrodes: Theory and technique. Fed. Proc. 39, 2851–2859.PubMedGoogle Scholar
  8. Bailey P. L. (1980) Analysis with Ion-Selective Electrodes (Heyden, Philadelphia).Google Scholar
  9. Bartsch R. A., Charewicz W. A., Kang S. I., and Walkowiak W. (1987) Proton-coupled transport of alkali metal cations across liquid membranes by ionizable crown ethers, in ACS Symposium Series, Vol. 347: Liquid Membranes Theory and Applications (Noble R. D. and Way J. D., eds.) American Chemical Society, Washington, DC, pp. 86–97.Google Scholar
  10. Bates R. G. (1969) Inner reference electrodes and their characteristics, in Glass Microelectrodes (Lavallée M., Schanne O., and Hebert N. C., eds.) Wiley, New York, pp. 1–24.Google Scholar
  11. Bates R. G. and Robinson R. A. (1978) Trends in the standardization of ion-selective electrodes, in Ion-Selective Electrodes (Pungor E. and Buzás I., eds.) Elsevier Scientific, New York, pp 3–19.Google Scholar
  12. Bauer H. (1972) Electrodics (George Thieme, Stuttgart).Google Scholar
  13. Boron W. F. (1985) Intracellular pH-regulating mechanism of the squid axon. J. Gen. Physiol. 85, 325–245.PubMedCrossRefGoogle Scholar
  14. Borrelli M. J., Carlini W. G., Dewey W. C., and Ransom B. R. (1985) A simple method for making ion-selective microelectrodes suitable for intracellular recording in vertebrate cells. J. Neurosci. Methods 15, 141–154.PubMedCrossRefGoogle Scholar
  15. Borrelli M. J., Carlini W. G., Dewey W. C., and Ransom B. R. (1986) Ion-sensitive microelectrode measurements of free-intracellular chloride and potassium concentrations in hyperthermia-treated neuroblastoma cells. J. Cell. Physiol. 129, 175–184.PubMedCrossRefGoogle Scholar
  16. Briano R. A., Jr. (1983) A reproducible technique for breaking glass micropipettes over a wide range of tip diameters. J. Neurosci. Methods 9, 31–34.PubMedCrossRefGoogle Scholar
  17. Brown K. T. and Flaming D. G. (1977) New microelectrode techniques for intracellular work in small cells. Neurosci. 2, 813.CrossRefGoogle Scholar
  18. Brown K. T. and Flaming D. G. (1979) Technique for precision beveling of relatively large micropipettes. J. Neurosci. Methods 1, 2.5–34.CrossRefGoogle Scholar
  19. Buck R. P. (1978) Theory and principles of membrane electrodes, in Ion-selective Electrodes in Analytical Chemistry (Freiser H., ed.) Plenum Press, New York, pp. 1–141.CrossRefGoogle Scholar
  20. Caldwell P. C. (1954) An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrodes. J. Physiol. 126, 169–180.PubMedGoogle Scholar
  21. Carlini W. G. and Ransom B. R. (1987) Tip size of ion-exchanger based K+ selective microelectrodes. I. Effects on selectivity. Can. J. Physiol. Pharmacol. 65, 889–893.PubMedCrossRefGoogle Scholar
  22. Chesler M. (1986) Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus. J. Physiol. 381, 241–261.Google Scholar
  23. Chesler M. and Kraig R. P. (1987) Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am. J. Physiol. 253(4), R666–R670.PubMedGoogle Scholar
  24. Coles J. A. and Tsacopoulos M. (1977) A method of making fine double-barrelled potassium-sensitive micro-electrodes for intracellular recording. J. Physiol. 270, 13-14P.Google Scholar
  25. Coles J. A. and Tsacopoulos M. (1979) Potassium activity in photoreceptors, glial cells, and extracellular space in the drone retina: changes during photostimulation. J. Physiol. 290, 525–549.PubMedGoogle Scholar
  26. Coles J. A., Munoz J. L., and Deyhemi F. (1985) Surface and volume resistivity of Pyrex glass used for liquid membrane ion-selective microelectrodes, in Ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K., and Hoper J., eds.) Springer Verlag, New York, pp. 67–73.CrossRefGoogle Scholar
  27. Connors B. W. and Ransom B. R. (1984) Chloride conductance and extracellular potassium concentration interact to modify the excitability of rat optic nerve fibers. J. Physiol. 355, 619–633.PubMedGoogle Scholar
  28. Connors B. W., Ransom B. R., Kums D. M., and Gutnick M. J. (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216, 1341–1343.PubMedCrossRefGoogle Scholar
  29. Corey D. P. and Stevens C. F. (1983) Science and technology of patch-recording electrodes, in Single-Channel Recording (Sakmann B. and Neher E., eds.) Plenum Press, New York, pp. 53–68.CrossRefGoogle Scholar
  30. Cragg P., Patterson L., and Purves D. (1977) The pH of brain extracellular fluid in the cat. J. Physiol. 272, 137–166.PubMedGoogle Scholar
  31. Deisz R. A. and Lux H. D. (1982) The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones. J. Physiol. 326, 123–138.PubMedGoogle Scholar
  32. Deisz R. A. and Lux H. D (1985) Thiocyanate interference at chloride-selective microelectrodes in crayfish stretch receptor neurons: Evidence for a non-passive thiocyanate distribution, in Ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K., and Hoper J., eds.) Springer Verlag, New York, pp. 158–165.CrossRefGoogle Scholar
  33. Deitmer J, M. and Schlue W. R. (1987) The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. J. Physiol. 388, 261–283.PubMedGoogle Scholar
  34. Deyhimi F. and Coles J. A. (1982) Rapid silylation of a glass surface: Choice of reagent and effect of experimental parameters on hydrophobicity. Helv. Chir. Acta 65, 1752–1759.CrossRefGoogle Scholar
  35. Dietzel I., Heinemann U., Hofmeier G., and Lux H. D. (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of the cat in relation to stimulation-induced changes in potassium concentration. Exp Brain Res. 40, 432–439PubMedCrossRefGoogle Scholar
  36. Dietzel I, Heinemann U., Hofmeier G., and Lux H. D. (1982) Stimulus-induced changes in extracellular Na+ and Cl- concentration in relation to changes in the size of the extracellular space. Exp. Brain Res. 46, 73–84.PubMedCrossRefGoogle Scholar
  37. Durst R. A. (1978) Sources of error in ion-selective electrode potentiometry, in Ion-selective Electrodes in Anulytical Chemistry (Freiser H., ed.) Plenum Press, New York, pp. 311–338.CrossRefGoogle Scholar
  38. Eisenman G. (1969) The ion-exchange characteristics of the hydrated surface of Na+ selective glass electrodes, in Glass Microelectrodes (Lavallée M., Schanne O., and Hebert N. C., eds.) Wiley, New York, pp. 32–61.Google Scholar
  39. Ellermann A., Höper J., Brunner M., and Kessler M. (1985) Computer-assisted processing of ion-selective electrode measurements, in Ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K., and Hoper J., eds.) Springer Verlag, New York, pp. 90–95.CrossRefGoogle Scholar
  40. Elmer T. H. (1980) Glass surfaces, in Silyuted Surfaces (Leyden D. and Collins W., eds.) Gordon and Breach Science Publishers, London, pp. 1–30.Google Scholar
  41. Fmkel A. S. (1987) Axoprobe-1A Microelectrode Amplifier Operator’s and Service Manual. Axon Instruments, Inc., Burlingame, California.Google Scholar
  42. Finkel A. S. and Redman S. (1983) A shielded microelectrode suitable for single-electrode voltage clamping of neurones in the CNS. J. Neuro-sci. Methods 9, 23–29.CrossRefGoogle Scholar
  43. Flaming D. G. and Brown K. T. (1982) Micropipet puller design—form of the heating filament and effects of filament width on tip length and diameter. J. Neurosci. Methods 6, 91–102.PubMedCrossRefGoogle Scholar
  44. Fromm M. and Schultz S. G. (1981) Some properties of KCl-filled micro-electrodes: Correlation of potassium “leakage” with tip resistance. J. Membr. Biol 62, 239–244.PubMedCrossRefGoogle Scholar
  45. Fujimoto M. and Honda M. (1980) A triple-barreled microelectrode for simultaneous measurements of intracellular Na+ and K+ activities and membrane potential in biological cells. Jpn. J. Physiol. 30, 859–875.PubMedCrossRefGoogle Scholar
  46. Garcia-Diaz J. F. and Armstrong W. McD. (1980) The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder. J. Membr. Biol. 55, 213–222.PubMedCrossRefGoogle Scholar
  47. Goodisman J. (1987) Electrochemistry: Theoretical Foundations. Wiley, New York, 374 pp.Google Scholar
  48. Grafe P., Rimpel J., Reddy M. M. and Ten Bruggencate G. (1982) Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurones induced by repetitive synaptic stimulation. Neurosci. 7, 3213–3220.CrossRefGoogle Scholar
  49. Greaves G. N., Fontaine A., Lagarde P., Raoux D., and Gurman S. J. (1981) Local structure of silicate glasses. Nature 293, 611–615.CrossRefGoogle Scholar
  50. Guggi M., Oehme M., Pretsch E., and Simon W. (1976) Neutraler Ionophor fur Flussigmembranelektroden mit hoher Selektivitat fur Natrium—gegenuber Kalium-Ionen. Helv. Chir. Acta 59, 2417–2420.CrossRefGoogle Scholar
  51. Hamer W. J, (1968) Theoretical Mean Activity Coefficients of Strong Electrolytes in Aqueous Solutions from 0 to 200°C. National Bureau of Standards, Washington, DC.Google Scholar
  52. Hansen A. J., and Olsen C. E. (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol. Scand. 108, 355–365.PubMedCrossRefGoogle Scholar
  53. Harris R. J. and Symon L. (1984) Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex. J. Cereb. Blood Flow Metub. 4, 178–186.CrossRefGoogle Scholar
  54. Hebert N. C. (1969) Properties of microelectrode glasses, in Glass Micro-electrodes (Lavallée M., Schanne O., and Hebert N. C., eds.) Wiley, New York, pp. 25–31.Google Scholar
  55. Heinemann U. and Pumian R. (1980) Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids. Exp. Brain. Res. 40, 247–250.PubMedCrossRefGoogle Scholar
  56. Hille B. (1984) Ionic Channels of Excitable Membranes (Smauer Associates Inc. Sunderland, Massachusetts).Google Scholar
  57. Hinke J. A. M. (1967) Cation-selective microelectrodes suitable for in-tracellular use, in Glass Electrodes for Hydrogen and Other Cations (Eisenman E., ed.) Marcel Dekker, New York, pp. 464–477.Google Scholar
  58. Hinke J. A. M. (1987) Thirty years of ion-selective microelectrodes: Disappointments and successes. Can. J. Physiol. Pharmacol. 65, 873–878.PubMedCrossRefGoogle Scholar
  59. Horvath A. L. (1985) Handbook of Aqueous Electrolyte Solutions. Wiley, New York, 631 pp.Google Scholar
  60. Kaila K. and Voipio J. (1985) A simple method for dry-bevelling of micro-pipettes used in the construction of ion-selective microelectrodes. J. Physiol. 369, 8P.Google Scholar
  61. Kessler M., Hajek K., and Simon W. (1976) Four-barreled microelectrode for the measurement of potassium, sodium, and calcium ion activity, in Ion and Enzyme Electrodes in Biology and Medicine (Kessler M., Clark L. C., Lubbers D. W., Silver A., and Simon W., eds.) Urban & Schwarzenberg, Munich, pp. 136–140.Google Scholar
  62. Kettenman H. and Schlue W. R. (1988) Intracellular pH regulation in cultured oligododendrocytes. J. Physiol. 406, 147–162.Google Scholar
  63. Kettenman H., Sonnhof U. and Schachner M. (1983) Exclusive potassium dependence of the membrane potential in cultured mouse oli-godendrocytes. J. Neurosci. 3, 500–505.Google Scholar
  64. Kirk-Othmer D. (1984) Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., vol. 24, Water Properties, (Wiley-Interscience, New York).Google Scholar
  65. Kocsis J, D., Malenka R. C., and Waxman S. G. (1983) Effects of extracellular potassium concentration on the excitability of the parallel fibers of the rat cerebellum. J. Physiol. 334, 225–244.PubMedGoogle Scholar
  66. Koryta J. (1982) Ions, Electrodes, and Membranes, (Wiley, New York).Google Scholar
  67. Koryta J. and Stulík, K. (1983) Ion-selective Electrodes (Cambridge University Press, Cambridge, UK).CrossRefGoogle Scholar
  68. Koryta J., Dvorák J., and Bohácková V. (1970) Electrochemistry (Methuen, London).Google Scholar
  69. Kraig R. P. and Cooper A. J. L. (1986) Bicarbonate and ammonia changes in brain during spreading depression. ISM Symposium Abstracts 98.Google Scholar
  70. Kraig R. P., Ferreira-Filho C. R, and Nicholson C. (1983) Alkaline and acid transients in cerebellar microenvironment. J. Neurophysiol. 49, 831–850.PubMedGoogle Scholar
  71. Kraig R. P., Pulsinelli W. A., and Plum F. (1985) Hydrogen ion buffering during complete brain ischemia. Brain Res. 342, 281–290.PubMedCrossRefGoogle Scholar
  72. Kriz N. and Sykova E. (1981) Sensitivity of K+-selective microelectrodes to pH and some biologically active substances, in Ion-Selective Microelectrodes and Their Use in Excitable Tissues (Syková E., Hník P., and Vyklicky L., eds.) Plenum Press, New York, pp. 25–39.CrossRefGoogle Scholar
  73. Lanford W. A. (1977) Glass hydration: A method of dating glass objects. Science 186, 975–976.CrossRefGoogle Scholar
  74. Lavallée M. and Szabo G. (1969) The effect of glass surface conductivity phenomena on the tip potential of glass micropipette electrodes, in Glass Microelectrodes (Lavallée M., Schanne O., and Hebert N. C., eds.) Wiley, New York, pp. 95–110.Google Scholar
  75. Lee C. O. (1981) Determination of selectivity coefficients of ion-selective microelectrodes, in Ion-Selective Microelectrodes and their Use in Excitable Tissues (Sykova E., Hník P., and Vyklicky L., eds.) Plenum Press, New York, pp. 47–52.CrossRefGoogle Scholar
  76. Lev A. A. (1964) Determination of activity and activity coefficients of potassium and sodium ions in frog muscle fibres. Nature 201, 1132–1134.PubMedCrossRefGoogle Scholar
  77. Levy S., Tillem L., and Tillotson D. L. (1985) Ion selective microelec-trodes Computer-controlled calibration, plotting, and data analysis. J. Neurosci. Methods 15, 253–261.PubMedCrossRefGoogle Scholar
  78. Lewis S. A. and Wills N. K. (1980) Resistive artifacts in liquid ion-exchanger microelectrode estimates of Na+ activity in epithelial cells, Biophys. J. 31, 127–138.PubMedCrossRefGoogle Scholar
  79. Lux H. D. and Neher E. (1973) The equilibration time course of [K+]o in cat cortex. Exp. Bruin Res. 17, 190–205.Google Scholar
  80. Malenka R. C., Kocsis J. D., Ransom B. R., and Waxman S. G. (1981) Modulation of parallel fiber excitability by postsynaptically mediated changes in extracellular potassium. Science 214, 339–341.PubMedCrossRefGoogle Scholar
  81. Meech R. W. and Thomas R. C. (1987) Voltage-dependent intracellular pH in Helix aspera neurones. J. Physiol. 390, 433–452.PubMedGoogle Scholar
  82. Meier P. C., Lanter F., Ammann D., Steiner R. A., and Simon W. (1982) Applicability of available ion-selective liquid-membrane microelectrodes to intracellular ion-activity measurements. Pflugers Arch. 393, 23–30.PubMedCrossRefGoogle Scholar
  83. Meyer G., Rossetti C., Bottá G., and Cremaschi D. (1985) Construction of K+-and Na+-sensitive theta-microelectrodes with fine tips: an easy method with high yield. Pflugers Arch. 404, 378–381.PubMedCrossRefGoogle Scholar
  84. Meyerhoff M. E. and Opdycke W. N. (1986) Ion-selective electrodes. Adv. Clin. Chem. 25, 1–47.PubMedCrossRefGoogle Scholar
  85. Morf W. E. (1981) The Principles of Ion-Selective Electrodes and of Membrane Transport (Elsevier, Oxford, UK).Google Scholar
  86. Munoz J.-L. and Coles J. A. (1987) Quartz micropipettes for intracellular voltage microelectrodes and ion-selective microelectrodes. J. Neurosci. Methods 22, 57–64.PubMedCrossRefGoogle Scholar
  87. Munoz J.-L., Deyhimi F., and Coles J. A. (1983) Silanization of glass in the making of ion sensitive microelectrodes. J. Neurosci. Methods 8, 231–247.PubMedCrossRefGoogle Scholar
  88. Mutch W. A. C. and Hansen A. J. (1984) Extracellular pH changes during spreading depression and cerebral ischemia. Mechanisms of brain pH regulation. J Cereb. Blood Flow Metab. 4, 17–27.PubMedCrossRefGoogle Scholar
  89. Newman E. A. and Odette L. L. (1984) Model of electroretinogram B-wave generation-A test of the K+ hypothesis. J. Neurophysiol. 51, 164–182.PubMedGoogle Scholar
  90. Nicholson C. (1985) Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res. 333, 325–329PubMedCrossRefGoogle Scholar
  91. Nicholson C. and Phillips J. M. (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321, 225–257.PubMedGoogle Scholar
  92. Nicholson C. and Phillips J. M. (1982) Diffusion in the brain cell microenvironment. Lectures on Mathematics in the Life Sciences 15, 103–122.Google Scholar
  93. Nicholson C., Kraig R. P., Ferreira-Filho C. R., and Thompson P. (1985) Hydrogen ion variations and their interpretation in the microenvironment of the vertebrate brain, in Ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K. and Höper J., eds.) Springer Verlag, New York, pp, 206–213.Google Scholar
  94. Nicholson C., Ten Bruggencate G., Stockle H., and Steinberg R. (1978) Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex. J. Neurophysiol. 41, 1026–1039.PubMedGoogle Scholar
  95. Noble R. D. and Way J. D. (1987) Liquid membrane technology: An overview, in ACS Symposium Series, Vol. 347: Liquid Membranes Theory and Applications (Noble R. D. and Way J. D., eds.) American Chemical Society, Washington, DC, pp. 1–27CrossRefGoogle Scholar
  96. Oehme M., Kessler M., and Simon W. (1976) Neutral carrier Ca2+-microelectrode. Chimia. 30, 204–206.Google Scholar
  97. Oesch U., Ammann D., and Simon W. (1987) Cell contamination due to the use of carrier-based microelectrodes. Can. J. Physiol. Pharmacol. 65, 885–888.PubMedCrossRefGoogle Scholar
  98. Oesch U., Dinten O., Ammann D., and Simon W. (1985) Lifetime of neutral carrier based membranes in aqueous systems and blood serum, in Ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K., and Hoper J., eds.), Springer Verlag, New York, pp. 42–47.CrossRefGoogle Scholar
  99. Okada Y. and Inouye A. (1976) Studies on origin of tip potential of glass microelectrode. Biophys. Struct, Mech. 2, 31–42CrossRefGoogle Scholar
  100. Orkand R. K., Dietzel I., and Coles J. A. (1984) Light induced changes in extracellular volume in the retina of the drone, Apis Mellifera. Neuro-Sci. Lett. 45, 273–278.CrossRefGoogle Scholar
  101. Orme F. W. (1969) Liquid ion-exchanger microelectrodes, in Glass Micro-electrodes (Lavallée M., Schanne O., and Hebert N. C., eds.) Wiley, New York, pp. 376–395.Google Scholar
  102. Philhps J. M. and Nicholson C. (1979) Anion permeability in spreading depression investigated with ion-sensitive microelectrodes. Brain Res. 173, 567–571.CrossRefGoogle Scholar
  103. Plueddemann E. P. (1980) Chemistry of silane coupling agents, in Silyated Surfaces (Leyden D. and Collins W. eds.) Gordon and Breach Science Publishers, London, pp 130Google Scholar
  104. Pretsch E., Wegmann D., Ammann D., Bezegh A., Dinten O., Läubli M. W., Morf W. E., Oesch U., Sugahara K., Weiss H., and Simon W. (1985) Effects of lipophilic charged sites on the electromotive behavior of ligand membrane electrodes, in Ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K., and Hoper J., eds.) Springer Verlag, New York, pp. 11–16.CrossRefGoogle Scholar
  105. Pucacco L. R. and Carter N. W. (1976) A glass-membrane pH microelectrode. Anal. Biochem. 73, 501–512.PubMedCrossRefGoogle Scholar
  106. Pucacco L. R. and Carter N. W. (1978) A submicrometer glass-membrane pH microelectrode. Anal. Biochem. 89, 151–161.PubMedCrossRefGoogle Scholar
  107. Pucacco L. R., Corona S. K., Jacobson H. R., and Carter N. W. (1986) pH microelectrode: Modified Thomas recessed-tip configuration. Anal. Biochem. 153, 251–261.PubMedCrossRefGoogle Scholar
  108. Pungor E. and Tóth K. (1978) Precipitate-based ion-selective electrodes, in Ion-selective Electrodes in Analytical Chemistry (Freiser H., ed.) Plenum Press, New York, pp. 143–210.CrossRefGoogle Scholar
  109. Purves R. D. (1981) Biological Techniques Series, vol. 6: Microelectrode Methods for Intracellular Recording and Ionophoresis (Academic, New York).Google Scholar
  110. Ransom B R., Carlini W. G., and Connors, B. W. (1986) Brain extracellular space: Developmental studies in rat optic nerve. Ann. NY Acad. Sci. 481, 87–105.PubMedCrossRefGoogle Scholar
  111. Ransom B. R., Carlini W. G., and Yamate C. L (1987) Tip size of ion-exchanger based K+-selective microelectrodes. II. Effects on measurement of evoked [K+]o transients. Can J. Physiol. Pharmacol. 65, 894–897.PubMedCrossRefGoogle Scholar
  112. Ransom B. R., Yamate C. L., and Connors B. W. (1985a) Developmental studies on brain extracellular space. Activity-dependent K+ accumulation and shrinkage, in ion Measurements in Physiology and Medicine (Kessler M., Harrison D. K. and Hoper, J, eds.) Springer Verlag, New York, pp. 206–213.CrossRefGoogle Scholar
  113. Ransom B. R., Yamate C. L., and Connors B. W. (1985b) Activity-dependent shrinkage of extracellular space in the rat optic nerve: A developmental study. J. Neurosci. 5, 532–535.PubMedGoogle Scholar
  114. Raynauld J.-P. and Laviolette J. R. (1987) The silver-silver chloride electrode: A possible generator of offset voltages and currents. J. Neurosci. Methods 19, 249–255.pPubMedCrossRefGoogle Scholar
  115. Rubinstein I., Steinberg S., Tor Y., Shanzer A., and Sagiv J. (1988) Ionic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature 332, 426–429.CrossRefGoogle Scholar
  116. Sakmann B. and Neher E. (1983) Geometric parameters of pipettes and membrane patches, in Single-Channel Recording (Sakmann, B. and Neher, E., eds.) Plenum Press, New York, pp. 37–51.CrossRefGoogle Scholar
  117. Schlue W. R. and Deitmer J. W. (1986) Direct measurement of intracellular pH in identified glial cells and neurons of the leech central nervous system. Can. J. Physiol. Pharmacol. 65, 978–985.CrossRefGoogle Scholar
  118. Schlue W. R. and Thomas R. C. (1985) A dual mechanism for intracellular pH regulation by leech neurones. J. Physiol. 364, 327–338.PubMedGoogle Scholar
  119. Schlue W. R. and Wuttke W. (1983) Potassium activity in leech neuropile glial cells changes with external potassium concentration. Brain Res. 270, 368–372.PubMedCrossRefGoogle Scholar
  120. Schwartz T. L. (1971) The thermodynamic foundations of membrane physiology, in Biophysics and Physiology of Excitable Membranes (Adel-man W. J., ed.) Van Nostrand Reinhold Co., New York, pp. 47–95.Google Scholar
  121. Siebens A. W. and Boron W. F. (1987) Effect of electroneutral luminal and basolateral lactate transport on intracellular pH in salamander proximal tubules. J. Gen. Physiol. 90, 799–831.PubMedCrossRefGoogle Scholar
  122. Silver B. J. (1985) The Physical Chemistry of Membranes (Allen & Unwin, Boston).CrossRefGoogle Scholar
  123. Snell F. M. (1969) Some electrical properties of fine-tipped pipette micro-electrodes, in Glass Microelectrodes (Lavallée M., Schanne O., and Hebert N. C., eds.) Wiley, New York. pp. 111–121.Google Scholar
  124. Somjen G. G. (1979) Extracellular potassium in the mammalian central nervous system. Ann. Rev. Physiol. 41, 159–177.CrossRefGoogle Scholar
  125. Starzak M. E. (1984) The Physical Chemistry of Membranes (Academic, San Francisco).Google Scholar
  126. Syková E. (1983) Extracellular K+ accumulation in the central nervous system. Prog. Biophys. Mol. Biol. 42, 135–189.PubMedCrossRefGoogle Scholar
  127. Syková E., Syka J., Johnstone B. M., and Yates G. K. (1987) Longitudinal flow of endolymph measured by distribution of tetraethylammo-nium and choline in Scala media. Hear. Res. 28, 161–171.PubMedCrossRefGoogle Scholar
  128. Tamura H., Kimura K., and Shono T. (1982) Coated wire sodium-and potassium-selective electrodes based on bis(crown ether) compounds Anal. Chem. 54, 1224–1227.CrossRefGoogle Scholar
  129. Taylor P. S. and Thomas R. C (1984) The effect of leakage on micro-electrode measurements of intracellular sodium activity in crab muscle fibers. J Physiol 352, 539–550.PubMedGoogle Scholar
  130. Thomas R. C. (1972) Intracellular sodium activity and the sodium pump in snail neurones. J. Physiol. 220, 55–71.PubMedGoogle Scholar
  131. Thomas R. C. (1974) Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode. J. Physiol. 238, 159–180.PubMedGoogle Scholar
  132. Thomas R. C. (1978) Ion-Sensitive Microelectrodes. (Academic, London).Google Scholar
  133. Thomas R. C. (1984) Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J. Physiol. 354, 3P–22P.PubMedGoogle Scholar
  134. Thomas R. C. and Cohen C. J. (1981) A liquid ion-exchanger alternative to KC1 for filling intracellular reference microelectrodes. Pflügers Arch. 390, 96–98.PubMedCrossRefGoogle Scholar
  135. Thomas R. C. and Meech R. W. (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299, 826–828.PubMedCrossRefGoogle Scholar
  136. Tmoco J., Sauer K., and Wang J. C. (1978) Physical Chemistry: Principles and Applications in Biological Sciences (Prentice Hall, Englewood Cliffs, New Jersey).Google Scholar
  137. Tripathi S., Mirgunov N., and Boulpaep E. L. (1985) Submicron tip breakage and silanization control improve ion-selective microelectrodes. Am. J Physiol. 249(5), C514–C521.PubMedGoogle Scholar
  138. Tsien R. Y. (1983) Intracellular measurements of ion activities. Ann. Rev. Biophys. Bioeng. 12, 91–116.CrossRefGoogle Scholar
  139. Tsien R. Y. and Rink T. J. (1980) Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim. Biophys. Acta 599, 623–638.PubMedCrossRefGoogle Scholar
  140. Tsien R. Y. and Rink T J. (1981) Ca2+-selective electrodes: A novel pvc-gelled neutral carrier mixture compared with other currently available sensors. J. Neurosci. Methods 4, 73–86.PubMedCrossRefGoogle Scholar
  141. Ujec E., Keller O., Machek J.,and Pavlik V. (1979) Low impedance coaxial K+ selective microelectrodes. Pflügers Arch. 382, 189–192.PubMedGoogle Scholar
  142. Ujec E., Keller O., Kríz N, Pavlik V., and Machek J. (1981) Double-barrel ion selective [K+, Ca2+, Cl-] coaxial microelectrodes (ISCM) for measurements of small and rapid changes in ion activities, in Ion-Selective Microelectrodes and their Use in Excitable Tissues (Syková E., Hník P., and Vyklicky L., eds.) Plenum Press, New York, pp. 41–46.CrossRefGoogle Scholar
  143. Urbanics R., Leniger-Follert E., and Lubbers D. W. (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflügers Arch. 378, 47–53.PubMedCrossRefGoogle Scholar
  144. Vaughan-Jones R. D. and Kaila K. (1986) The sensitivity of liquid sensor, ion-selective microelectrodes to changes in temperature and solution level. Pfl&#gers Arch. 406, 641–644.CrossRefGoogle Scholar
  145. Walden J., Lehmenkuhler A., Speckman E.-J., and Witte O. W. (1984) Continuous measurement of pentylenetetrazol concentration by a liquid ion exchanger microelectrode. J. Neurosci. Methods 11,187–192.PubMedCrossRefGoogle Scholar
  146. Walker J. L. (1971) Ion specific liquid ion exchanger microelectrodes. Anal. Chem. 43, 89A–93A.CrossRefGoogle Scholar
  147. Walker J. L. and Brown H. M. (1977) Intracellular ionic activity measurements in nerve and muscle. Physiol. Rev. 57, 729–778.PubMedGoogle Scholar
  148. Yamate C. L. and Ransom B. R. (1985) Effects of altered gliogenesis on activity-dependent K+ accumulation in the developing rat optic nerve. Dev. Brain Res. 21, 167–173.CrossRefGoogle Scholar
  149. Zeuthen T. (1981) How to make and use double-barreled ion-selective microelectrodes. Current Topics in Membranes and Transport 13,31–47.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc., Clifton, NJ 1990

Authors and Affiliations

  • Walter G. Carlini
    • 1
  • Bruce R. Ransom
    • 1
  1. 1.Department of NeurologyYale University School of MedicineNew Haven

Personalised recommendations