Skip to main content

Chloramphenicol Acetyltransferase as a Reporter in Mammalian Gene Transfer

  • Protocol
Animal Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 5))

  • 5719 Accesses

Abstract

Reporter genes can be used to advantage in a variety of different kinds of gene transfer experiments. One of the most common applications is the optimization of transfection methods. Owing to the large number of variables that influence the uptake and expression of exogenously introduced genes, it is extremely helpful to have available rapid, sensitive methods for determining transfection efficiency. A second frequent application of reporter genes is to study promoters and transcriptional enhancers. To rigorously map functional domains in transcriptional control elements it is often necessary to generate large numbers of deletions, insertions, and point mutations, and then carry out functional assays on each construct. As in optimization studies, an appropriate reporter gene can greatly facilitate the rate with which information is accumulated. Another gene regulation application involves measuring activity of transacting transcriptional regulatory proteins. In such experiments, one plasmid codes for the transacting factor, while the second cotransfected plasmid carries a target cis-acting element coupled to a reporter gene. Examples of more novel reporter gene uses include introducing translational stop codons into a reporter coding sequence to measure suppressor function in mammalian cells (1,2), and measuring transcriptional competence of UV-irradiated reporter plasmid DNA (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burke, J. F. and Mogg, A. E. (1985) Construction of a vector, pRSVcatamb38, for the rapid and sensitive assay of amber suppression in human and other mammalian cells. Nucleic Acids Res. 13, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  2. Capone, J. P., Sedivy, J. M., Sharp, P. A., and RajBhandary, U. L. (1986) Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells. Mol. Cell. Biol. 6, 3059–3067.

    PubMed  CAS  Google Scholar 

  3. Protic-Sabljic, M. and Kraemer, K. H. (1986) Host cell reactivation by human cells of DNA expression vectors damaged by ultraviolet radiation or by acid-heat treatment. Carcinogenesis 10, 1765–1770.

    Article  Google Scholar 

  4. Gaynor, R. B., Feldman, L. T., and Berk, A. J. (1985) Transcription of class III genes activated by viral immediate early proteins. Science 230, 447–450.

    Article  PubMed  CAS  Google Scholar 

  5. Gorman, C. M., Moffat, L. F., and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044–1051.

    PubMed  CAS  Google Scholar 

  6. Hall, C. V., Jacob, P. E., Ringold, G. M., and Lee, F. (1983) Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Moke. Appl. Genet. 2, 101–109.

    CAS  Google Scholar 

  7. Mulligan, R. and Berg, P. (1980) Expression of a bacterial gene in mammalian cells. Science 209, 1422–1427.

    Article  PubMed  CAS  Google Scholar 

  8. Chu, G. and Berg, P. (1985) Rapid assay for detection of Escherichia coli xanthine-guanine phosphoribosyltransferase activity in transduced cells. Nucleic Acids Res. 13, 2921–2930.

    Article  PubMed  CAS  Google Scholar 

  9. Schumperli, D., Howard, B. H., and Rosenberg, M. (1982) Efficient expression of Escherichia coli galactokinase gene in mammalian cells. Proc. Natl. Acad. Sci. USA 79, 257–261.

    Article  PubMed  CAS  Google Scholar 

  10. de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.

    PubMed  Google Scholar 

  11. Price, J., Turner, D., and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84, 156–160.

    Article  PubMed  CAS  Google Scholar 

  12. Mulligan, R. and Berg P. (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78, 2072–2076.

    Article  PubMed  CAS  Google Scholar 

  13. Shaw, W. (1967) The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. J. Biol. Chem. 242, 687–693.

    PubMed  CAS  Google Scholar 

  14. Cohen, J. D., Eccleshall, T. R., Needleman, R. B. Federoff, H., Buchferer, B. A., and Marmur, J. (1980) Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase. Proc. Natl. Acad. Sci. USA, 77, 1078–1082.

    Article  PubMed  CAS  Google Scholar 

  15. Shaw, W. V. (1983) Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit. Rev. Biochem. 14, 1–46.

    Article  PubMed  CAS  Google Scholar 

  16. Kleanthous, C. and Shaw, W. V. (1984) Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics. Evidence for a ternary-complex mechanism. Biochem. J. 223, 211–220.

    PubMed  CAS  Google Scholar 

  17. Gorman, C, Padmanabhan, R., and Howard, B. H. (1983) High efficiency DNA-mediated transformation of primate cells. Science 221, 551–553.

    Article  PubMed  CAS  Google Scholar 

  18. Fordis, C. M. and Howard, B. H. (1987) Use of the CAT reporter gene for optimization of gene transfer into eucaryotic cells. Methods Enzytnol, 151, 382–397.

    Article  CAS  Google Scholar 

  19. Overbeek, P. A., Chepelinsky, A. B., Khillan, J. S., Piatigorsky, J., and Westphal, H. (1985) Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc. Natl. Acad. Sci. USA 82, 7815–7819.

    Article  PubMed  CAS  Google Scholar 

  20. Mercola, M., Goverman, J., Mirell, C, and Calame, K. (1985) Immunoglobulin heavy-chain enhancer requires one or more tissue-specific factors. Science 227, 266–270.

    Article  PubMed  CAS  Google Scholar 

  21. Sleigh, M. F. (1986) A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. Anal. Biochem. 156, 251–256.

    Article  PubMed  CAS  Google Scholar 

  22. Young, S. L., Jackson, A. E., Puett, D., and Melner, M. H. (1985) Detection of chloramphenicol acetyltransferase in transfected cells: a rapid and sensitive HPLC-based method. DNA 4, 469–475.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this protocol

Cite this protocol

Corsico, C.D., Howard, B.H. (1990). Chloramphenicol Acetyltransferase as a Reporter in Mammalian Gene Transfer. In: Walker, J.M., Pollard, J.W., Walker, J.M. (eds) Animal Cell Culture. Methods in Molecular Biology, vol 5. Humana Press. https://doi.org/10.1385/0-89603-150-0:589

Download citation

  • DOI: https://doi.org/10.1385/0-89603-150-0:589

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-150-0

  • Online ISBN: 978-1-59259-492-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics