Skip to main content

Isolation and Characterization of Synaptic and Nonsynaptic Mitochondria from Mammalian Brain

  • Protocol
Carbohydrates and Energy Metabolism

Part of the book series: Neuromethods ((NM,volume 11))

Abstract

Until the mid-1960s, studies on the metabolism of brain mitochondria were hampered by the lack of suitable methodologies for brain mitochondrial isolation. In the majority of the studies up to this time, crude mitochondrial preparations were isolated from mammalian brain homogenates using differential centrifugation techniques that were adapted from those that had originally been designed for isolating liver mitochondria. During the early 196Os, two groups of workers [see Whittaker (1969 and 1984) and De Robertis and de Lores Arnaiz (1969) for discussions] independently designed relatively elaborate subcellular fractionation procedures, whereby the crude mitochondrial fraction derived from brain homogenates was subfractionated, using sucrose density gradients, into three or more discrete fractions, including pinched-off nerve-ending particles or “synaptosomes” and myelinated axon fragments (usually referred to as “myelin”), in addition to “free” (i.e., nonsynaptic) mitochondria. Thus, the structural heterogeneity of the crude mitochondrial fraction derived from brain homogenates was revealed. Consequently, many of the metabolic properties (e.g., glycolysis) that were erroneously attributed to isolated brain mitochondria in the studies in that era could be accounted for by the presence of vesicular and other membranous particles (e.g., synaptosomes, myelin, and micro-somes) that contain cytosolic material to a greater or lesser extent [see Clark and Nicklas (1970) for a discussion].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abood L. G. (1969) Brain Mitochondria, in Handbook of Neurochemistry, Vol. 2 (1st Ed.) (Lajtha A., ed.). pp. 303–326. Plenum, New York.

    Google Scholar 

  • Balázs R. and Cremer J. E. (1973) Metabolic Compartmentation in the Brain MacMillan, London.

    Google Scholar 

  • Balázs R., Dahl D., and Harwood J. R. (1966) Subcellular distribution of enzymes of glutamate metabolism in rat brain. J. Neurochem. 13, 897–905.

    PubMed  Google Scholar 

  • Balázs R., Machiyama Y., and Patel A. J. (1973) Compartmentation and the metabolism of gamma-aminobutyrate, in Metabolic Compartmentation in the Brain (Balázs R. and Cremer J. E., eds.), pp. 57–70. MacMillan, London.

    Google Scholar 

  • Baláza R., Wilkm G. P., Wilson J E., Cohen J., and Dutton G. R. (1975) Biochemical dissection of the cerebellum—isolation of perikarya from the cerebellum with well-preserved ultrastructure, in Metabolic Compartmentation and Neurotransmission (Berl S., Clarke D. D., and Schneider D., eds.). pp. 437–448. Plenum, New York.

    Google Scholar 

  • Berl S., Clarke D. D., and Schneider D. (1975) Metabolic Compartmentation and Neurotransmission. Plenum, New York.

    Google Scholar 

  • Blokhuis G. G. D. and Veldstra H. (1970) Heterogeneity of mitochondria in rat brain. FEBS Lett. 11, 197–199.

    PubMed  CAS  Google Scholar 

  • Booth R. F. G. (1978) Ph.D. Thesis, University of London, England.

    Google Scholar 

  • Booth R. F. G. and Clark J. B. (1978a) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176, 365–370.

    PubMed  CAS  Google Scholar 

  • Booth R. F. G. and Clark J. B. (1978b) The control of pyruvate dehydrogenase in isolated brain mitochondria. J. Neurochem. 30, 1003–1008.

    PubMed  CAS  Google Scholar 

  • Booth R. F. G. and Clark J. B. (1979) A method for the rapid separation of soluble and particulate components of rat brain synaptosomes. FEBS Lett 107, 387–392

    PubMed  CAS  Google Scholar 

  • Brand M. D. and Chappell J. B. (1974) Glutamate and aspartate transport in rat brain mitochondria. Biochem J 140, 205–210

    PubMed  CAS  Google Scholar 

  • Chance B. and Williams G. R. (1956) The respiratory chain and oxidative phosphorylation, in Advances in Enzymology, Vol. 17 (Nord F. F., ed.). pp. 63–134. Interscience, New York.

    Google Scholar 

  • Cheeseman A. J. and Clark J B (1987) Effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine and its metabolite 1-methyl-4-phenylpyridine on acetylcholine synthesis in synaptosomes from rat forebrain. J. Neurochem 48, 1209–1214.

    PubMed  CAS  Google Scholar 

  • Clark J. B. and Lai J. C. K. (1988) Glycolytic, tricarboxylic acid cycle and related enzymes in brain, in Neuromethods, Vol. 11 (Boulton, AA, Baker, G. B. and Butterworth R F, eds) Humana Press, Clifton, pp 233–281

    Google Scholar 

  • Clark J. B. and Land J. M. (1974) Differential effects of 2-oxo-acids on pyruvate utilization and fatty acid synthesis in rat brain. Biochem. J. 140, 25–29.

    PubMed  CAS  Google Scholar 

  • Clark J. B. and Land J. M. (1975) Phenylketonuria and maple syrup disease and their association with brain mitochondrial substrate utilization, in Normal and Pathological Development of Energy Metabolism (Hommes F. A. and Van den Berg C. J., eds.). pp. 177–191. Academic, London.

    Google Scholar 

  • Clark J. B. and Nicklas W. J. (1970) The metabolism of rat brain mitochondria. J. Biol. Chem 245, 4724–4731.

    PubMed  CAS  Google Scholar 

  • Clark J. B. and Nicklas W. J. (1984) Brain mitochondria, in Handbook of Neurochemistry Vol. 7 (2nd Ed.) (Lajtha A., ed.). pp. 135–159. Plenum, New York.

    Google Scholar 

  • Cooper A. J. L., Fitzpatrick S. M., Ginos J. Z., Kaufman C., and Dowd P. (1983) Inhibition of glutamate-aspartate transaminase by beta-methylene-DL-aspartate. Biochem Pharmacol. 32, 679–689.

    PubMed  CAS  Google Scholar 

  • Cotman C. W. and Matthews D. A. (1971) Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochim Biophys. Acta 249, 380–394.

    PubMed  CAS  Google Scholar 

  • Cunningham J., Clarke D. D., and Nicklas W. J. (1980) Oxidative metabolism of 4-ammobutyrate by rat brain mitochondria: inhibition by branched-chain fatty acids. J. Neurochem. 34, 197–202.

    PubMed  CAS  Google Scholar 

  • D’Adamo Jr. A. F., Gidez L. I., and Yatzu F. M. (1968) Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing brain. Exp. Brain Res. 5, 267–273.

    PubMed  Google Scholar 

  • Dagani F., Gorim A., Polgatti M., Villa R. F., and Benzi G. (1983) Rat cortex synaptic and nonsynaptic mitochondria: enzymatic characterization and pharmacological effects of naftidrofuryl J. Neurosci. Res. 10, 135–140.

    PubMed  CAS  Google Scholar 

  • Dennis S. (1976) Ph.D. Thesis, University of London, England.

    Google Scholar 

  • Dennis S. and Clark J. B. (1977) The pathway of glutamate metabolism in rat brain mitochondria. Biochem. J. 168, 521–527.

    PubMed  CAS  Google Scholar 

  • Dennis S. and Clark J. B. (1978) The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria. Biochem. J. 172, 155–162.

    PubMed  CAS  Google Scholar 

  • Dennis S. C., Lai J. C. K., and Clark J. B. (1977) Comparative studies on glutamate metabolism in synaptic and non-synaptic rat brain mitochondria. Biochem. J. 164, 727–736.

    PubMed  CAS  Google Scholar 

  • Dennis S. C., Lai J C and Clark J. B. (1980) The distribution of glutamine synthetase in subcellular fractions of rat brain. Braim Res. 197, 469–475.

    CAS  Google Scholar 

  • Dennis S., Land J. M., and Clark J. B. (1976) Glutamate metabolism and transport in rat brain mitochondria. Biochem. J. 156, 323–331.

    PubMed  CAS  Google Scholar 

  • Denton R. M. and Halstrap A. P. (1979) Regulation of pyruvate metabolism in mammalian tissues, in Essays in Biochemistry, Vol. 15 (Campbell P. N. and Marshall R. D., eds.). pp. 37–77. The Biochemical Society, U.K.

    Google Scholar 

  • De Robertis E. and de Lores Arnaiz G. R. (1969) Structural components of the synaptic region, in Handbook af Neurochemistry, Vol. 2 (1st Ed.) (Lajtha A., ed.). pp. 365–392. Plenum, New York.

    Google Scholar 

  • Deshmukh D. R. and Patel M. S. (1982) Age-dependent changes in pyruvate uptake by nonsynaptic and synaptic mitochondria from rat brain. Mech. Ageing Dev. 20, 343–351.

    PubMed  CAS  Google Scholar 

  • Deshmukh D. R., Owen O. E., and Patel M. S. (1980) Effect of aging on the metabolism of pyruvate and 3-hydroxybutyrate in nonsynaptic and synaptic mitochondria from rat brain. J Neurochem. 34, 1219–1224.

    PubMed  CAS  Google Scholar 

  • Dienel G., Ryder E., and Greengard O. (1977) Distribution of mitochondrial enzymes between the perikaryal and synaptic fractions of immature and adult rat brain. Biochim Biophys. Acta 496, 484–494.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick S. M., Cooper A. J. L., and Duffy T. E. (1983) Use of β-methylene-D, L-aspartate to assess the role of aspartate aminotrans-ferase in cerebral oxidative metabolism. J. Neurochem. 41, 1370–1383.

    PubMed  CAS  Google Scholar 

  • Hafalowska U. and Ksiezak H. (1976) Subcellular localization of enzymes oxidizing citrate in the rat brain. J. Neurochem 27, 813–815.

    PubMed  CAS  Google Scholar 

  • Halestrap A. P. (1975) The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem. J. 148, 85–96.

    PubMed  CAS  Google Scholar 

  • Halestrap A. P. (1978) Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier. Biochem. J 172, 377–387.

    PubMed  CAS  Google Scholar 

  • Hamberger A., Blomstrand C., and Lehninger A. L. (1970) Comparative studies on mitochondria isolated from neuron-enriched and gliaenriched fractions of rabbit and beef brain. J. Cell Biol 45, 221–234.

    PubMed  CAS  Google Scholar 

  • Hillered L., Siesjo B. K., and Arfors K.-E. (1984) Mitochondrial response to transient forebrain ischemia and recirculation in the rat. J Cereb. Blood Flow Metab. 4, 438–446.

    PubMed  CAS  Google Scholar 

  • Holtzman D. and Moore C. L. (1973) Oxidative phosphorylation in immature rat brain mitochondria. Biol. Neonate 22, 230–242.

    PubMed  CAS  Google Scholar 

  • Hughes D. E., Wimpenny J. W. T., and Lloyd D. (1971) The disintegration of micro-organisms, in Methods in Microbiology, Vol. 5B (Norris J. R. and Ribbons D. W., eds.). pp. 1–54. Academic, London.

    Google Scholar 

  • Johnston P. V. and Roots B. I. (1970) Neuronal and glial perikarya preparations: an appraisal of present methods. Int. Rev. Cytol. 29, 265–280.

    PubMed  CAS  Google Scholar 

  • Jope R. and Blass J. P. (1975) A comparison of the regulation of pyruvate dehydrogenase in mitochondria from rat brain and liver. Biochem. J. 150, 397–403.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K. (1975) Ph.D. Thesis, University of London, England.

    Google Scholar 

  • Lai J. C. K. and Blass J. P. (1984) Inhibition of brain glycolysis by aluminum. J. Neurochem. 42, 438–446.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K. and Clark J. B. (1976) Preparation and properties of mitochondria derived from synaptosomes. Biochem. J. 154, 423–432.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K. and Clark J. B. (1979) Preparation of synaptic and nonsynaptic mitochondria from mammalian brain, in Methods in Enzymology 55, Pt. F (Fleischer S. and Packer L., eds.). pp. 51–60. Academic, New York.

    Google Scholar 

  • Lai J. C. K. and Cooper A. J. L. (1986) Brain cu-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J. Neurochem. 47, 1376–1386.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K., Guest J. F., Lim L., and Davison A. N. (1978) The effects of transition-metal ions on rat brain synaptosomal amine-uptake systems. Biochem. Soc. Trans. 6, 1010–1012.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K., Guest J. F., Leung T., Lim L., and Davison A. N. (1980) The effects of cadmium, manganese and aluminium on sodium-potassium-activated and magnesium-activated adenosine triphos-phatase activity and choline uptake in rat brain synaptosomes. Biochem. Pharmacol. 29, 141–146.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K., Leung T. K. C. and Lim L. (1981) Monoamine oxidase in synaptic and non-synaptic mitochondria from brain regions. Proc. 8th Meet Inf. Soc. for Neurochem. p. 291.

    Google Scholar 

  • Lai J. C. K., Leung T. K. C. and Lim L. (1982) Activities of the mitochon-drial NAD-linked isocitric dehydrogenase in different regions of the rat brain. Changes in ageing and the effect of chronic manganese chloride administration. Gerontology 28, 81–85.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K., Murthy Ch. R. K., Hertz L., and Cooper A. J. L. (1986) NH3 & beta-methyleneaspartate inhibit neuronal & glial glutamate oxidation. Trans. Am. Soc. Neurochem. 17, 217.

    Google Scholar 

  • Lai J. C. K. and Sheu K.-F.R. (1985) Relatiosnhip between activation state of pyruvate dehydrogenase complex and rate of pyruvate oxidation in isolated cerebra-cortical mitochondria: effects of potassium ions and adenine nucleotides. J. Neurochem. 45, 1861–1868.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K. and Sheu K.-F. R. (1987) The effect of 2-oxoglutarate or 3-hydroxybutyrate on pyruvate dehydrogenase complex in isolated cerebra-cortical mitochondria. Neurochem. Res. 12, 715–72

    PubMed  CAS  Google Scholar 

  • Lai J. C. K., Sheu K.-F. R. and Carlson Jr. K. C. (1985) Differences in some of the metabolic properties of mitochondria isolated from cerebral cortex and olfactory bulb in the rat. Brain Res. 343, 52–59.

    PubMed  CAS  Google Scholar 

  • Lai J. C. K., Walsh J. M., Dennis S. C., and Clark J. B. (1975) Compartmentation of citric acid cycle and related enzymes in distinct populations of rat brain mitochondria, in Metabolic Compartmentation and Neurotransmission (Berl S., Clarke D. D and Schneider D., eds.). pp. 487–496, Plenum, New York.

    Google Scholar 

  • Lai J. C. K., Walsh J. M., Dennis S C.,and Clark J B. (1977) Synaptic and non-synaptic mitochondria from rat brain. isolation and characterization. J. Neurochem. 28, 625–631

    PubMed  CAS  Google Scholar 

  • Lai J. C. K., Wong P. C. L., and Lim L. (1983) Structure and function of synaptosomal and mitochondrial membranes. elucidation using neurotoxic metals and neuromodulatory agents, in Neural Membranes (Sun G. Y., Bazan N., Wu J-Y., Porcellati G, and Sun A. Y., eds.). pp. 355–374, Humana, Clifton.

    Google Scholar 

  • Land J. M. (1974) Ph D. Thesis, University of London, England.

    Google Scholar 

  • Land J. M. and Clark J. B. (1974) Inhibition of pyruvate and beta-hydroxybutyrate oxidation in rat brain mitochondna by phenylpyru-vate and alpha-ketoisocaproate FEES Lett. 44, 348–351.

    CAS  Google Scholar 

  • Land J. M. and Clark J. B. (1975) The changing pattern of brain mitochondrial substrate utilization during development, in Normal and Puthological Development of Energy Metabolism (Hommes F. A. and Van den Berg C J., eds.) pp. 155–167, Academic, New York-London

    Google Scholar 

  • Land J M. and Clark J. B (1979) Mitochondrial myopathies. Biochem. Soc Trans. 7, 231–245.

    PubMed  CAS  Google Scholar 

  • Land J M., Mowbray J., and Clark J. B. (1976) Control of pyruvate and beta-hydroxybutyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J. Neurochem. 26, 823–830.

    PubMed  CAS  Google Scholar 

  • La Noue K. F. and Schoolwerth A. C. (1984) Metabolite transport in mammalian mitochondria, in Bioenergetics (Ernster L., ed.). pp. 221–268, Elsevier, Amsterdam.

    Google Scholar 

  • Leong S. F, Lai J. C. K., Lim L., and Clark J. B. (1981) Energy-metabolizing enzymes in brain regions of adult and aging rats. J. Neurochem 37, 1548–1556.

    PubMed  CAS  Google Scholar 

  • Leong S. F., Lai J. C. K., Lim L., and Clark J. B. (1984) The activities of some energy-metabolizing enzymes in nonsynaptic (free) and synaptic mitochondria derived from selected brain regions. J. Neurochem. 42, 1306–1312

    PubMed  CAS  Google Scholar 

  • Malloch G. D. A, Munday L. A., Olson M. S, and Clark J. B. (1986) Comparative development of the pyruvate dehydrogenase complex and citrate synthase in rat brain mitochondria. Biochem J. 238, 729–736.

    PubMed  CAS  Google Scholar 

  • Meijer A. J. and Van Dam (1974) The metabolic significance of anion transport in mitochondria. Biochim. Biophys. Acta 346, 213–244.

    PubMed  CAS  Google Scholar 

  • Minn A. and Gayet J. (1977) Kinetic study of glutamate transport in rat brain mitochondna. J Neurochem. 29, 873–881.

    PubMed  CAS  Google Scholar 

  • Minn A., Gayet J., and Delorme P. (1975) The penetration of the membrane of brain mitochondria by anions. J. Neurochem. 24, 149–156.

    PubMed  CAS  Google Scholar 

  • Moore C. L. and Strasberg P. M. (1970) Cytochromes and oxidative phosphorylation, in Handbook of Neurochemistry, Vol. 3 (1st Ed.) (Lajtha A., ed.). pp. 53–85, Plenum, New York.

    Google Scholar 

  • Neidle A., Van den Berg C.J.,and Grynbaum A. (1969) The heterogeneity of rat brain mitochondria isolated on continuous sucrose gradients. J. Neurochem. 16, 225–234.

    PubMed  CAS  Google Scholar 

  • Newsholme E. A. and Leech A. R. (1983) Biochemistry for the Medical Sciences, John Wiley & Sons, Chichester-New York.

    Google Scholar 

  • Newsholme E. A. and Start C. (1973) Regulation in Metabolism. John Wiley & Sons, London.

    Google Scholar 

  • Nicholls D. G. (1978) Calcium transport and proton electrochemical potential gradient in mrtochondrra from guinea-pig cerebral cortex and rat heart. Biochem. J. 170, 511–522.

    PubMed  CAS  Google Scholar 

  • Nicklas W. J., Clark J. and Williamson J. R. (1971) Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate. Biochem. J. 123, 83–95.

    PubMed  CAS  Google Scholar 

  • Nicklas W. J., Vyas I., and Heikkila R. E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36, 2503–2508.

    PubMed  CAS  Google Scholar 

  • Nowicki J.-P., MacKenzie E. T., and Spinnewyn B. (1982) Effects of agents used in the pharmacotherapy of cerebrovascular disease on the oxygen consumption of isolated cerebral mitochondria. J. Cereb. Blood Flow Metab. 2, 33–40.

    PubMed  CAS  Google Scholar 

  • O’Neill J. J. and Holtzman D. (1985) Heavy metal toxicity and energy metabolism in the development brain: lead as the model, in Cerebral Energy Metabolism and Metabolic Encephalopathy (McCandless D. W., ed.). pp. 391–424, Plenum, New York.

    Google Scholar 

  • Owen, F., Bourne R. C., Lai J. C. K., and Williams R. (1977) The heterogeneity of monoamine oxidase in distinct populations of rat brain mitochondria. Biochem. Pharacol. 26, 289–292.

    CAS  Google Scholar 

  • Patel M. S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem. 22, 717–724.

    PubMed  CAS  Google Scholar 

  • Patel M. S. (1975) Citrate transport and oxidation by isolated rat brain mitochondria. Brain Res. 98, 607–611.

    PubMed  CAS  Google Scholar 

  • Patel M. S. and Tilghman S. M. (1973) Regulation of pyruvate metabolism via pyruvate carboxylase in rat brain mitochondria. Biochem. J. 132, 185–192.

    PubMed  CAS  Google Scholar 

  • Patel T B. (1978) Ph.D. Thesis, University of London, England.

    Google Scholar 

  • Patel T. B., Booth R. F. G, and Clark J. B. (1977) Inhibition of acetoacetate oxidation by bram mitochondria from the suckling rat by phenylpy-ruvate and alpha-ketoisocaproate. J. Neurochem. 29, 1151–1153.

    PubMed  CAS  Google Scholar 

  • Patel T. B. and Clark J. B. (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem. J. 184, 539–546.

    PubMed  CAS  Google Scholar 

  • Patel T. B. and Clark J. B. (1981) Mitochondrial/cytosolic carbon transfer in the developing rat brain. Biochim. Biophys. Acta 677, 373–380.

    PubMed  CAS  Google Scholar 

  • Randle P. J. (1981) Phosphorylation-dephosphorylation cycles and the regulation of fuel selection in mammals, in Current Topics in Cellular Regulation, Vol. 18 (Estabrook R. W. and Srere P., eds.). pp. 107–128, Academic, New York.

    Google Scholar 

  • Reed L. J. (1981) Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle, in Current Topics in Cellular Regulation, Vol. 18 (Estabrook R. W. and Srere P., eds.). pp. 95–106, Academic, New York.

    Google Scholar 

  • Reilnierse G. L. A., Veldstra H., and Van den Berg C. J. (1975a) Short-cham fatty acid synthases in brain. Subcellular localization and changes during development. Biochem. J. 152, 477–484.

    Google Scholar 

  • Reijruerse G. L. A., Veldstra H., and Van den Berg C. J. (1975b) Sub-cellular localization of gamma-aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain. Evidence for at least two small glutamate compartments in brain. Biochem. J. 152, 469–475.

    Google Scholar 

  • Rodichok L. D. and Albers R. W. (1980) The effect of gamma-ammobutyric acid on substrate-level phosphorylation in brain mitochondria. J. Neurochem. 34, 808–812.

    PubMed  CAS  Google Scholar 

  • Ryder E. (1980) Enzymatic profile of mitochondna isolated from selected brain regions of young adult and one-year-old rats. J. Neurochem. 34, 1550–1552.

    PubMed  CAS  Google Scholar 

  • Salganicoff L. and De Robertis E. (1965) Subcellular distribution of the enzymes of the glutamic acid, glutamine and gamma-aminobutyric acid cycles in rat brain. J. Neurochem 12, 287–309.

    PubMed  CAS  Google Scholar 

  • Salganicoff L. and Koeppe R. E. (1968) Subcellular distribution of pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopy-ridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J. Biol. Chem. 243, 3416–3420.

    PubMed  CAS  Google Scholar 

  • Sheu K.-F R. and Kim Y. T (1984) Studies on the bovine brain pyruvate dehydrogenase complex using the antibodies against kidney enzyme complex. J. Neurochem. 43, 1352–1358.

    PubMed  CAS  Google Scholar 

  • Sheu K.-F. R. and Lai J. C. K. (1985) Regulation of pyruvate metabolism in brain mitochondria. J. Neurochem. 44(Suppl), S166D.

    Google Scholar 

  • Sheu K.-F. R., Lai J. C. K. and Blass J. P. (1983) Pyruvate dehydrogenase phosphate (PDHb) phosphatase in brain: activity, properties and subcellular localization. J. Neurochem. 40, 1366–1372.

    PubMed  CAS  Google Scholar 

  • Sheu K.-F. R., Lai J. C. K. and Blass J. P. (1984a) Properties and regional distribution of pyruvate dehydrogenase (PDH,) kmase in rat brain. J. Neurochem. 42, 230–236.

    PubMed  CAS  Google Scholar 

  • Sheu K.-F. R., Lai J. C. K. and Dorant G. (1984b) ADP induces pyruvate dehydrogenase inactivation in brain mitochondria. Runs Am Soc Neurochem. 15, 188.

    Google Scholar 

  • Sheu K.-F-R., Lai J. C. K., Kim Y. T., Bagg J., and Dorant G. (1985a) Immunochemical characterization of pyruvate dehydrogenase complex in rat brain. J. Neurochem. 44, 593–599.

    PubMed  CAS  Google Scholar 

  • Sheu K.-F. R., Lai J. C. K., DiLorenzo J. C., and Blass J. P. (1985b) Calcium inactivates pyruvate dehydrogenase complex in brain mitochondria. Trans Am. Soc. Neurochem 16, 193.

    Google Scholar 

  • Sheu K.-F. R, Kim Y.-T., Blass, J. P., and Weksler M E. (1985c) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann. Neural. 17, 444–449.

    CAS  Google Scholar 

  • Siesjo B. K. (1981) Cell damage in the brain: a speculative synthesis. J Cereb. Blood Flow Metab. 1, 155–185.

    PubMed  CAS  Google Scholar 

  • Sims N. R. and Blass J. P. (1986) Expression of classical mitochondrial respiratory responses in homogenates of rat forebrain. J. Neurochem. 47, 496–505.

    PubMed  CAS  Google Scholar 

  • Sims N. R., Finegan J. M., and Blass J. P. (1986) Effects of postdecapitative ischemia on mitochondrial respiration in brain tissue homogenates. J. Neurochem. 47, 506–511.

    PubMed  CAS  Google Scholar 

  • Srere P. A. (1985) Organization of proteins within the mitochondrion, in Organized Multienzyme Systems: Catalytic Properties (Welch G. R., ed.). pp. 1–61, Academic, Orlando.

    Google Scholar 

  • Sterling G. H. and O’Neill J. J. (1978) Citrate as the precursor of the acetyl moiety of acetylcholme. J. Neurochem. 31, 525–530.

    PubMed  CAS  Google Scholar 

  • Sun A. Y., Sun G. Y., and Foudm L. L. (1985) Aging, in Handbook of Neurochemistry Vol. 9 (2nd Ed.) (Lajtha A., ed.). pp 173–202, Plenum, New York

    Google Scholar 

  • Tucek S. and Cheng S-C. (1974) Provenance of the acetyl group of acetylcholme and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in viva. J. Neurochem. 22, 893–914.

    PubMed  CAS  Google Scholar 

  • Tzagoloff A. (1982) Mitochondria, Plenum, New York-London.

    Google Scholar 

  • Van Dam K. (1973) The mitochondrion as a model of compartmentation, in Metabolic Compartmentation in the Brain (Balázs R. and Cremer J. E., eds.). pp 321–329, MacMillan, London.

    Google Scholar 

  • Van den Berg C. J. (1973) A model of compartmentation in mouse brain based on glucose and acetate metabolism, in Metabolic Compartmentation in the Brain (Balázs R. and Cremer J. E., eds.). pp. 137–166, MacMillan, London.

    Google Scholar 

  • Van den Berg C. J., Matheson D. F., Ronda G., Reijnierse G. L. A., Blokhuis G. G. D., Kroon M. C., Clarke D. D., and Garfinkel D. (1975) A model of glutamate metabolism in brain: a biochemical analysis of a heterogeneous structure, in Metubolic Compartmentation and Neurotrunsmission (Berl S., Clarke D. D., and Schneider D., eds.). pp. 515–543, Plenum, New York.

    Google Scholar 

  • Van Kempen G. W. J., Van den Berg C. J., Van der Helm H. J., and Veldstra H. (1965) Intracellular localization of glutamate de-carboxylase, gamma-aminobutyrate transammase and some other enzymes in brain tissue. J. Neurochem. 12, 581–588.

    PubMed  Google Scholar 

  • Vyas I., Herkkila R. E., and Nrcklas W. J. (1986) Studies on the neurotoxlc-ity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. inhibition of NAD-linked substrate oxidation by its metabohte, 1-methyl-4-phenylpyridmium. J. Neurochem. 46, 1501–1507.

    PubMed  CAS  Google Scholar 

  • Wagner K. R. and Myers R. E. (1986) Hyperglycemia preserves brain mitochondrial respiration during anoxia. J. Neurochem. 47, 1620–1626.

    PubMed  CAS  Google Scholar 

  • Walsh J. M. and Clark J. B. (1976) Studies on the control of 4-aminobutyrate metabolism in’ synaptosomal’ and free rat brain mitochondria. Biochem. J. 160, 147–157.

    PubMed  CAS  Google Scholar 

  • Whittaker V. P. (1969) The synaptosome, in Handbook of Neurochemistry, Vol. 2 (1st Ed.) (Lajtha A., ed) pp. 327–364, Plenum, New York.

    Google Scholar 

  • Whittaker, V. P. (1984) The synaptosome, in Handbook of Neurochemistry, Vol. 7 (2nd Ed.) (Lajtha A., ed.). pp. 1–39, Plenum, New York.

    Google Scholar 

  • Wilkin G. P., Reijnierse G. L. A., Johnson A. L., and Balázs R. (1979) Subcellular fractionation of rat cerebellum: separation of synaptosomal populations and heterogeneity of mitochondna. Brain Res 164, 153–163

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc

About this protocol

Cite this protocol

Lai, J.C.K., Clark, J.B. (1989). Isolation and Characterization of Synaptic and Nonsynaptic Mitochondria from Mammalian Brain. In: Boulton, A.A., Baker, G.B., Butterworth, R.F. (eds) Carbohydrates and Energy Metabolism. Neuromethods, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-143-8:43

Download citation

  • DOI: https://doi.org/10.1385/0-89603-143-8:43

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-143-2

  • Online ISBN: 978-1-59259-616-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics