Skip to main content

Part of the book series: Neuromethods ((NM,volume 11))

Abstract

CO2 fixation by the nervous system has been demonstrated with the use of 14C-labeled bicarbonate in the retina (Crane and Ball, 1951), in the brain of 1-d-old mice (Moldave et al., 1953), and in the adult cat brain (Berl et al., 1962a,b). When cat brain was perfused with labeled bicarbonate and the specific radioactivity of 14CO2 was maintained at a constant level, most of the radioactivity fixed in the brain was found in free aspartate, glutamate, and glutamine, with a small amount in lactate (Berl et al., 1962a,b; Otsuki et al., 1963; Waelsch et al., 1964). Aspartate had the highest specific radioactivity, which approached about 10% of that of infused radioactive bicarbonate. When ammonia was administered together with H14CO3 - to cats, the total amount of 14CO2-fixation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achuta Murthy P. N. and Mistry S. P. (1977) Biotin. Prog. Food Nutr. Sci. 2, 405–455.

    Google Scholar 

  • Aeberhard E., Grippo J., and Menkes J. H. (1969) Fatty acid synthesis in the developing brain. Pediatr. Res. 3, 590–596.

    Article  CAS  PubMed  Google Scholar 

  • Alberts A. W. and Vagelos, P. R. (1972) Acyl-CoA Carboxylases, in The Enzymes (Boyer P. D., ed.) vol 6 (3rd Ed.) Academic, New York.

    Google Scholar 

  • Arinze J. C. and Mistry S. P. (1971) Activities of some biotin enzymes and certain aspects of gluconeogenesis during biotin deficiency. Comp. Biochem. Physiol. 38B, 285–294.

    Google Scholar 

  • Atkin B. M., Buist N. R. M., Utter M. F., Leiter A. B., and Banker B. Q. (1979) Pyruvate caboxylase deficiency and lactic acidosis in a retarded child without Leigh’s disease. Pediatr. Res. 13, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Attwood P. V. and Keech D. B. (1984) Pyruvate carboxylase. Curr. Top. Cell Regul. 23, 1–55.

    CAS  PubMed  Google Scholar 

  • Balazs R., Patel A. J., and Richter D. (1972) Metabolic Compartments in the Brain: Their Properties and Relation to Morphological Structures, in Metabolic Compartmentation in the Brain (Balazs R. and Cremer J. E., eds.) Halsted Press, John Wiley, New York.

    Google Scholar 

  • Ballard F. J. (1970) Kinetic studies with cytosol and mitochondrial phosphoenolpyruvate carboxykinase. Biochem. J. 120, 809–814.

    CAS  PubMed  Google Scholar 

  • Ballard F. J. and Hanson R. W. (1967a) Changes in lipid synthesis in rat liver during development. Biochem. J. 102, 952–958.

    CAS  PubMed  Google Scholar 

  • Ballard F. J. and Hanson R. W. (1967b) The citrate cleavage pathway and lipogenesis in rat adipose tissue: Replenishment of oxaloacetate. J. Lipid Res. 8, 73–79.

    CAS  PubMed  Google Scholar 

  • Ballard F. J. and Hanson R. W. (1969) Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunological demonstration of differences between this enzyme and the mitochondrial phosphoenolpyruvate carboxykinase. J. Biol. Chem. 244, 5626–5630.

    Google Scholar 

  • Ballard F. J., Hanson R. W., and Reshef L. (1970) Immunological studies with soluble and mitochondrial pyruvate carboxylase activities from rat tissues. Biochem. J. 119, 735–742.

    CAS  PubMed  Google Scholar 

  • Barritt G. J. (1985) Diseased States in Man and Other Vertebrates, in Pyruvate Carboxylase (Keech D. B. and Wallace J. C, eds.) RC Series in Enzyme Biology, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Bartlett K., Ghneim H. K., Stirk J-H., Wastell H. J., Sherratt H. S. A., and Leonard J. V. (1985) Enzyme studies in combined carboxyase deficiency. Ann. NY Acad. Sci. 447, 235–251.

    Article  CAS  PubMed  Google Scholar 

  • Berl S. and Clarke D D. (1969) Metabolic Compartmentation of Glutamate in the CNS, in Handbook of Neurochemistry(Latjtha A., ed.) vol. 1, Plenum, New York.

    Google Scholar 

  • Berl S., Takagaki G, Clarke D. D., and Waelsch H. (1962a) Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J. Biol. Chem. 237, 2562–2569.

    CAS  PubMed  Google Scholar 

  • Berl S., Takagaki G., Clarke D. D., and Waelsch H. (1962b) Carbon dioxide fixation in the brain. J. Biol. Chem. 237, 2570–2573.

    CAS  PubMed  Google Scholar 

  • Bernstine E. G., Koh C, and Lovelace C. C. (1979) Regulation of mitochondrial malic enzyme synthesis in mouse brain. Proc. Natl. Acad. Sci. USA 76, 6539–6541.

    Article  CAS  PubMed  Google Scholar 

  • Blass J. P. (1983) Inborn Errors of Pyruvate Metabolism, in The Metabolic Basis of Inherited Disease Fifth Ed. (Stanbury J. B., Wyngaarden J. B., Fredrickson D. S., Goldstein J. L., and Brown M. S., eds.) McGrawHill, New York.

    Google Scholar 

  • Brady R. D. (1960) Biosynthesis of fatty acids. II. Studies with enzyme obtained from brain. J. Biol. Chem. 235, 3099–3103.

    CAS  Google Scholar 

  • Brdiczka D. and Pette D. (1971) Intra-and extramitochondrial isozymes of (NADP) malate dehydrogenase. Eur. J. Biochem. 19, 546–551.

    Article  CAS  PubMed  Google Scholar 

  • Brownsey R. W. and Denton R. M. (1982) Evidence that insulin activates fat-cell acetyl-CoA carboxylase by increased phosphorylation at a specific site. Biochem. J. 202, 77–86.

    CAS  PubMed  Google Scholar 

  • Chang H.-C. and Lane M. D. (1966) The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J. Biol. Chem. 241, 2413–2420.

    CAS  PubMed  Google Scholar 

  • Chang H.-C, Maruyama H., Miller R. S., and Lane M. D. (1966) The enzymatic carboxylation of phosphoenolpyruvate. III. Investigation of the kinetics and mechamsm of the mitochondrial phosphoenol-pyruvate carboxykinase-catalyzed reaction. J. Biol. Chem. 241, 2421–2430.

    CAS  PubMed  Google Scholar 

  • Cheng S.-C. and Cheng R. H. C. (1972) A mitochondrial phosphoenol-pyruvate carboxykinase from rat. brain. Arch. Biochem. Biophys. 151, 501–511.

    Article  CAS  PubMed  Google Scholar 

  • Cheng S.-C, Nakamura R., and Waelsch H. (1967) Relative contribution of carbon dioxide fixation and acetyl-CoA pathways in two nervous tissues. Nature 216, 928–929.

    Article  CAS  PubMed  Google Scholar 

  • Chiang G. S and Mistry S. P. (1974) Activities of pyruvate carboxylase and propionyl-CoA carboxylase in rat tissues during biotin deficiency and restoration of the activities after biotin administration. Proc. Soc. Exp. Biol. Med. 146, 21–24.

    CAS  PubMed  Google Scholar 

  • Cote L., Cheng S.-C, and Waelsch H. (1966) CO2 fixation in the nervous system. I. CO2 fixation in the sciatic nerve of the bullfrog. J. Neurochem. 13, 271–279.

    Article  CAS  Google Scholar 

  • Crane R. K. and Ball E. G. (1951) Relationship of C14O2 fixation to carbohydrate metabolism in retina. J. Biol. Chem. 189, 269–276.

    CAS  PubMed  Google Scholar 

  • D’Adamo A. F., Jr. and D’Adamo A. P. (1968) Acetyl transport mechanisms in the nervous system. The oxoglutarate shunt and fatty acid synthesis in the developing rat brain. J. Neurochem. 15, 315–323.

    Article  PubMed  Google Scholar 

  • De Vellis J., Schjeide O. A., and Clemente C. D. (1967) Protein synthesis and enzymatic patterns in the developing brain following head X-irradiation of newborn rats. J Neurochem. 14, 449–511.

    Article  Google Scholar 

  • Dhopeshwarkar G. A., Maier R., and Mead J.F. (1969) Incorporation of fl-14C]-acetate into the fatty acids of the developing rat brain. Biochim. Biophys Acta 187, 6–12.

    Article  CAS  PubMed  Google Scholar 

  • Felicioli R. A., Gabrielli F., and Rossi C. A. (1966)Intracellular distribution of pyruvate carboxylase in mammalian brain cortex. Expenentia 22, 728–729

    Article  CAS  Google Scholar 

  • Flavin M. and Ochoa S. (1957) Metabolism of propionic acid in animal tissues. I. Enzymatic conversion of propionate to succinate. J. Biol. Chem. 229, 965–979.

    CAS  PubMed  Google Scholar 

  • Frenkel R. (1972) Isolation and some properties of a cytosol and a mitochondrial malic enzyme from bovine brain. Arch. Biochem. Biophys. 152, 136–143.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert E. F., Arya S., and Chun R. (1983) Leigh’s necrotizing encephalopathy with pyruvate carboxylase deficiency. Arch. Pathol. Lab. Med. 107, 162–166.

    CAS  PubMed  Google Scholar 

  • Greenspan M. and Lowenstein J. M. (1967) Effect of magnesium ion and adenosine triphosphate on the activity of acetyl coenzyme A carboxylase. Arch. Biochem Biophys. 118, 260–263.

    Article  CAS  Google Scholar 

  • Gromek A. and Pastuszko A. (1977) The localization of mitochondrial NADP-dependent isocitrate dehydrogenase in normal and hypoxic conditions. J. Neurochem. 28, 429–433.

    Article  CAS  PubMed  Google Scholar 

  • Gross I. and Warshaw J. B. (1974) Fatty acid biosynthesis in developing brain. Acetyl-CoA carboxylase activity. Biol. Neonate 25, 365–375.

    Article  CAS  PubMed  Google Scholar 

  • Grover W. D., Auerbach V. H., and Patel M. S. (1972) Biochemical studies and therapy in subacute necrotizing encephalomyelopathy (Leigh’s syndrome). J. Pediatr. 81, 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Guchhait R. B., Polakis S. E., Hollis D., Fenselau C, and Lane M. D. (1974) Acetyl coenzyme A carboxylase system in Escherichia colt. Site of carboxylation of biotin and enzymatic reactivity of 1′-N-(ureido)-carboxybiotin derivatives. J. Biol. Chem. 249, 6646–6656.

    CAS  PubMed  Google Scholar 

  • Halenz D. R., Feng J-Y., Hegre C. S., and Lane M. D. (1962) Some enzymic properties of mitochondrial propionyl carboxylase. J. Biol. Chem. 237, 2140–2147.

    CAS  PubMed  Google Scholar 

  • Hanson R. W. and Garber A. J. (1972) P-enolpyruvate carboxykinase. I. Its role in gluconeogenesis. Comments in Biochemistry. Am. J. Clin. Nutr. 25, 1010–1021.

    CAS  PubMed  Google Scholar 

  • Hardie D. G., Carling D., Ferrai S., Guy P. S., and Aitken A. (1986) Characterization of the phosphorylation of rat mammary ATP-citrate lyase and acetyl-CoA carboxylase by Ca2+ and calmodulin-dependent multiprotin kinase and Ca2+ and phospholipid-dependent protein kinase. Eur. J. Biochem. 157, 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Hector M. L., Cochran B. C, Logue E. A., and Fall R. R. (1980) Subcellular localization of 3-methylcrotonyl-coenzyme A carboxylase in bovine kidney. Arch. Biochem. Biophys. 199, 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Henderson N. S. (1965) Isozymes of isocitrate dehydrogenase: Subunit structure and intracellular location. J. Exp. Zool. 158, 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Hod Y., Yoo-Warren H., and Hanson R. W. (1984) The gene encoding the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the chicken. J. Biol. Chem. 259, 15609–15614.

    CAS  PubMed  Google Scholar 

  • Hod Y., Cook J. S., Weldon S. L., Short J. M., Wynshaw-Boris A., and Hanson R. W. (1986) Differential expression of the genes for the mitochondrial and cytosolic forms of P-enolpyruvate carboxykinase. Ann. NY Acad. Sci. 478, 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Holland R. and Hardie D. G. (1985) Both insulin and epidermal growth factor stimulate fatty acid synthesis and increase phosphorylation of acetyl-CoA carboxylase and ATP-citrate lyase in isolated hepatocytes. FEBS Lett. 181, 308–312.

    CAS  Google Scholar 

  • Hommes F. A., Polman H. A., and Reerink J. D. (1968) Leigh’s encephalomyelopathy: An inborn error of gluconeogenesis. Arch. Dis. Child. 43, 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Isohashi F., Shibayama K., Maruyama E., Aoki Y., and Wada F. (1971) Immunological studies on malate dehydrogenase (decarboxylating) (NADP). Biochim. Biophys. Acta 250, 14–24.

    Article  CAS  Google Scholar 

  • Jomain-Baum M., Schramm V. L., and Hanson R. W. (1976) Mechanism of 3-mercaptopicolinic acid inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP). J. Biol. Chem. 251, 37–44.

    CAS  PubMed  Google Scholar 

  • Kalousek F., Darigo M. D., and Rosenberg L. E. (1980) Isolation and characterization of propionyl-CoA carboxylase from normal human liver: Evidence for a protomeric tetramer of nonidentical subunits. J. Biol. Chem. 255, 60–65.

    CAS  PubMed  Google Scholar 

  • Kaziro Y., Ochoa S., Warner R. C, and Chen J.-Y. (1961) Metabolism of propionic acid in animal tissues. VIII. Crystalline propionyl carboxylase. J. Biol. Chem. 236, 1917–1923.

    CAS  PubMed  Google Scholar 

  • Keech D. B. and Attwood P. V. (1985) The Reaction Mechanism, in Pyruvate Carboxylase (Keech D. B. and Wallace J. C, eds.) CRC Series in Enzyme Biology, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Keech D. B. and Utter M. F. (1963) Pyruvate carboxylase. II. Properties. J. Biol. Chem. 238, 2609–2614.

    CAS  PubMed  Google Scholar 

  • Keech D. B. and Wallace J. C. (eds.) (1985) Pyruvate carboxylase pp. 1–262. CRC Series in Enzyme Biology, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kelley R. E., Jr. and Joel C.D. (1973) The activity of acetyl-coenzyme A carboxylase in rat brain. Biochem. Soc. Trans. 1, 467–469.

    CAS  Google Scholar 

  • Kim K-H. (1983) Regulation of acetyl-CoA carboxylase. Curr. Top. Cell. Regul. 22, 143–176.

    CAS  PubMed  Google Scholar 

  • Knappe J., Schlegel H. G., and Lynen F. (1961) Zur Biochemischen funktion des biotins: I, Die beteiligung der β-methylcrotonyl carboxylase un der bildung von β-hydroxy-β-methylglutaryl CoA aus P-hydroxyisovaleryl CoA. Biochem. Z. 335, 101–122.

    CAS  PubMed  Google Scholar 

  • Lai J. C. K. and Clark J. B. (1978) Isocitrate dehydrogenase and malate dehydrogenase in synaptic and non-synaptic rat brain mitochondria: A comparison of their kinetic constants. Biochem. Soc. Trans. 6, 993–995.

    CAS  PubMed  Google Scholar 

  • Lane M. D., Moss J., and Polakis S. E. (1974) Acetyl coenzyme A carboxylase. Curr. Top. Cell Regul. 8, 139–195.

    CAS  PubMed  Google Scholar 

  • Lau E. P., Cochran B. C, and Fall R. R. (1980) Isolation of 3-methylcrotonylcoenzyme A carboxylase from bovien kidney. Arch. Biochem. Biophys. 205, 352–359.

    Article  CAS  PubMed  Google Scholar 

  • Lau E. P., Cochran B. C, Munson L., and Fall R. R. (1979) Bovine kidney 3-methylcrotonyl-CoA and propionyl-CoA carboxylases: Each enzyme contains non-identical subunits. Proc. Natl. Acad. Sci. USA 76, 214–218.

    Article  CAS  PubMed  Google Scholar 

  • Lent B. A., Lee K.-H., and Kim K.-H (1978) Regulation of rat liver acetyl-CoA carboxylase. Stimulation of phosphorylation and subsequent inactivation of liver acetyl-CoA carboxylase by cyclic 3′: 5′-monophosphate and effect on the structure of the enzyme. J. Bid. Chem. 253, 8149–8156.

    CAS  Google Scholar 

  • Ling A.-M. and Keech D.B. (1966) Pyruvate carboxylase from sheep kidney. I. Purification and some properties of the enzyme. Enzymologia. 30, 367–380.

    CAS  PubMed  Google Scholar 

  • Loverde A. W. and Lehrer G.M. (1973) Subcellular distribution of isocitrate dehydrogenases in neonatal and adult mouse brain. J. Neurochem. 20, 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein J. M., and Smith S.R. (1962) Intra-and extra-mitochondrial isocitrate dehydrogenase. Biochim. Biophys. Acta 56, 385–387.

    Article  CAS  Google Scholar 

  • Mahan D. E., Mushahwar I. K., and Koeppe R. E. (1975) Purification and properties of rat brain pyruvate carboxylase. Biochem. J. 145, 25–35.

    CAS  PubMed  Google Scholar 

  • Majno G. and Karnovsky M. L. (1958) A biochemical and morphological studies of myelination and demyelination. 1. Lipids biosynthesis in vitro by normal nervous tissue. J. Exp. Med. 107, 475–496.

    Article  CAS  PubMed  Google Scholar 

  • Matsuhashi M., Matsuhashi S., and Lynen F. (1964) Zur biosynthese der fettsauren. V. Die acetyl-CoA carboxylase aus rattenleber und ihre aktivierung durch citronensaure. Biochem. Z. 340, 263–289.

    CAS  PubMed  Google Scholar 

  • McClure W. R., Lardy H. A., and Kneifel H. P. (1971a) Rat liver pyruvate carboxylase. I. Preparation, properties, and cation specificity. J. Biol. Chem. 246, 3569–3578.

    CAS  PubMed  Google Scholar 

  • McClure W. R., Lardy H. A., Wagner M., and Cleland W. W. (1971b) Rat liver pyruvate carboxylase. II. Kinetic studies of the forward reaction. J. Biol. Chem. 246, 3579–3583.

    CAS  PubMed  Google Scholar 

  • Mildvan A. S., Scrutton M. C, and Utter M. F. (1966) Pyruvate carboxy-lase. VII. A possible role for tightly bound manganese. J. Biol. Chem. 241, 3488–3498.

    CAS  PubMed  Google Scholar 

  • Miller A. L., and Levy H. R. (1969) Rat mammary acetyl coenzyme A carboxylase. I. Isolation and characterization. J. Biol. Chem. 244, 2334–2342.

    CAS  PubMed  Google Scholar 

  • Moldave K., Winzler R. J., and Pearson H. E. (1953) The incorporation in vitro of C14 into amino acids of control and virus-infected mouse brain. J. Biol. Chem. 200, 357–365.

    CAS  PubMed  Google Scholar 

  • Moss J., Yamagishi M., Kleinschmidt A. K., and Lane M.D. (1972) Acetyl coenzyme A carboxylase. Purification and properties of the bovine adipose tissue enzyme. Biochemistry 11, 3779–3786.

    Article  CAS  PubMed  Google Scholar 

  • Murphy J. V., Isohashi F., Weinberg M. B., and Utter M. F. (1981) Pyruvate carboxylase deficiency: An alleged biochemical cause of Leigh’s disease. Pediatrics 68, 401–404.

    CAS  PubMed  Google Scholar 

  • Murthy M. R. V. and Rappoport D. A. (1963) Biochemistry of the developing rat brain. II. Neonatal mitochondrial oxidations. Biochim. Biophys. Acta 74, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Naruse H., Cheng S.-C, and Waelsch H. (1966a) CO2 fixation in the nervous tissue. IV. CO2 fixation and citrate metabolism in lobster nerve. Exp. Brain Res. 1, 284–290.

    CAS  PubMed  Google Scholar 

  • Naruse H., Cheng S.-C, and Waelsch H. (1966b) CO2 fixation in the nervous tissue. V. CO2 fixation and citrate metabolism in rabbit nerve. Exp. Brain Res. 1, 291–298.

    CAS  PubMed  Google Scholar 

  • Numa S. and Yamashita S. (1974) Regulation of lipogenesis in animal tissues. Curr. Top. Cell. Regul. 8, 197–246.

    CAS  PubMed  Google Scholar 

  • Obermayer M. and Lynen F., (1976) Structure of biotin enzymes. Trends Biochem. Sci. 1, 169–171.

    CAS  Google Scholar 

  • Ochoa S. (1955) Malic Enzyme, in Methods in Enzymology (Colowick S. P. and Kaplan N. O., eds.) Academic, New York.

    Google Scholar 

  • Otsuki S., Geiger A., and Gombos G. (1963) The metabolic pattern of the brain in brain perfusion experiments in vivo. I. The quantitative significance of CO2 assimilation in the metabolism of the brain. J. Neurochem. 10, 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Patel M. S. (1972) The effect of phenylpyruvate on pyruvate metabolism in rat brain. Biochem. J. 128, 677–684.

    CAS  PubMed  Google Scholar 

  • Patel M. S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J. Neurochem. 22, 717–724.

    Article  CAS  PubMed  Google Scholar 

  • Patel M. S. (1977) Age-dependent changes in the oxidative metabolism in rat brain. J. Gerontol. 32, 643–646.

    Article  CAS  PubMed  Google Scholar 

  • Patel M. S. and Owen O. E. (1976) Lipogenesis from ketone bodies in rat brain. Evidence for conversion of acetoacetate to acetyl coenzyme A in the cytosol. Biochem. J. 156, 603–607.

    CAS  PubMed  Google Scholar 

  • Patel M. S. and Tilghman S. M. (1973) Regulation of pyruvate metabolism via pyruvate caraboxylase in rat brain mitochondria. Biochem J. 132, 185–192.

    CAS  PubMed  Google Scholar 

  • Patel M. S. and Tonkonow B. L (1974) Development of lipogenesis in rat brain cortex: The differential incorporation of glucose and acetate into brain lipids in vitro. J. Neurochem. 23, 309–313.

    Article  CAS  Google Scholar 

  • Plaut G. W. E. (1962) Isocitric Dehydrogenase (TPN-Linked) from Pig Heart (Revised Procedure), in Methods in Enzymology (Colowick S. P. and Kaplan N. O., eds.) vol. V, Academic, New York.

    Google Scholar 

  • Rafalowska U. and Ksiezak H. (1976) Subcellular localization of enzymes oxidizing citrate in the rat brain. J. Neurochem. 27, 813–815.

    Article  CAS  Google Scholar 

  • Reshef L., Hanson R. W., and Ballard F. J. (1969) Glyceride-glycerol synthesis from pyruvate. Adaptive changes in phosphoenolpyruvate carboxykinase and pyruvate carboxylase in adipose tissue and liver. J. Biol. Chem. 244, 1994–2001.

    CAS  PubMed  Google Scholar 

  • Rosenberg L. E. (1983) Disorders of Propionate and Methylmalonate Metabolism, in The Metabolic Basis of Inherited Disease (Stanbury J. B., Wyngaarden J. B., Fredrickson D. S., Goldstein J. L., and Brown M. S., eds.) Fifth Ed., McGraw-Hill, New York.

    Google Scholar 

  • Rylatt D. B., Keech D. B., and Wallace J. C. (1977) Pyruvate carboxylases: Isolation of the biotin-containing tryptic peptide and the determination of its primary sequence. Arch. Biochem. Biophys. 183, 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Salganicoff L. and Koeppe R. E. (1968) Subcellular distribution of pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J. Biol. Chem. 243, 3416–3420.

    CAS  PubMed  Google Scholar 

  • Scrutton M. C. and Mildvan A. S. (1970) Pyruvate carboxylase: Nuclear magnetic resonance studies of the enzyme-manganese-oxaloacetate and enzyme-manganese-pyruvate bridge complexes. Arch. Biochem. Biophys. 140, 131–151.

    Article  CAS  PubMed  Google Scholar 

  • Scrutton M. C. and Utter M. F. (1965) Pyruvate carboxylase. III. Some physical and chemical properties of the highly purified enzyme. J. Biol. Chem. 240, 1–9.

    CAS  PubMed  Google Scholar 

  • Scrutton M. C. and Young M.R. (1972) Pyruvate Carboxylase, in The Enzymes (Boyer P. D., ed.) Third Edn., Academic, New York.

    Google Scholar 

  • Scrutton M. C, Olmsted M. R., and Utter M. F. (1969) Pyruvate Carboxylase from Chicken Liver, in Methods in Enzymology (Lowenstein J. M., ed.) Academic, New York.

    Google Scholar 

  • Scrutton M. C, Utter M. F., and Mildvan A. S. (1966) Pyruvate carboxylase. VI. The presence of tightly bound manganese. J. Biol. Chem. 241, 3480–3487.

    CAS  PubMed  Google Scholar 

  • Seufert D., Herleman E.-M., Allbrecht E., and Seubert W. (1971) On the mechanism of gluconeogenesis and its regulation. VII. Purification and properties of pyruvate carboxylase from rat liver. Hoppe Seylers Z. Physiol. Chem. 352, 459–478.

    Article  CAS  PubMed  Google Scholar 

  • Shank R. P., Bennett G. S., Freytag S. O., and Campbell G.LeM. (1985) Pyruvate carboxylase: An astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329, 364–367.

    Article  CAS  PubMed  Google Scholar 

  • Sweetman L., Burri B. J., and Nyhan W. L. (1985) Biotin holocarboxylase synthetase deficiency. Ann NY Acad. Sci. 447, 288–296.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K. and Rosenberg L. B. (1983) Disorders of Branched Chain Amino Acid and Organic Acid Metabolism, in The Metabolic Basis of Inherited Disease (Stanbury J. B., Wyngaarden J. B., Fredrickson D. S., Goldstein J. L., and Brown M. S., eds.) Fifth Edn., McGraw-Hill, New York.

    Google Scholar 

  • Utter M. F. and Keech D. B. (1963) Pyruvate carboxylase. I. Nature of the reaction. J. Biol. Chem. 238, 2603–2608.

    CAS  PubMed  Google Scholar 

  • Utter M. F. and Kolenbrander H. M. (1972) Formation of Oxalacetate by CO2 Fixation on Phosphoenolpyruvate, in The Enzymes (Boyer P. D., ed.) Third Edn. Academic, New York.

    Google Scholar 

  • Utter M. F. and Kurahashi K. (1954) Purification of oxalacetic carboxylase from chicken liver. J. Biol Chem. 207, 787–802.

    CAS  PubMed  Google Scholar 

  • Utter M. F. and Scrutton M. C. (1969) Pyruvate carboxylase. Curr. Top. Cell. Regul. 1, 253–296.

    CAS  Google Scholar 

  • Utter M. F., Keech D. B., and Scrutton M. C. (1964) A possible role for acetyl CoA in the control of gluconeogensis. Adv. Enzyme Regul. 2, 49–68.

    Article  CAS  PubMed  Google Scholar 

  • Vagelos P. R., Alberts A. W., and Martin D. B. (1963) Studies on the mechanism of activation of acetyl coenzyme A carboxylase by citrate. J. Biol. Chem. 238, 533–540.

    CAS  PubMed  Google Scholar 

  • Valentine R. C, Wrigley N. G., Scrutton M. C, Mas J. J., and Utter M. F. (1966) Pyruvate car boxylase. VIII. The subunit structure as examined by electron microscopy. Biochemistry 5, 3111–3116.

    Article  CAS  PubMed  Google Scholar 

  • Volpe J. J. and Vagelos P.R. (1976) Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol. Rev. 56, 339–417.

    CAS  PubMed  Google Scholar 

  • Waelsch H., Berl S., Rossi C. A., Clarke D.D., and Purpura D.P. (1964) Quantitative aspects of CO2 fixation in mammalian brain in vivo. J. Neurochem. 11, 717–728.

    Article  CAS  PubMed  Google Scholar 

  • Waelsch H., Cheng S.-C, Cote L. J., and Naruse H. (1965) CO2 fixation in the nervous system. Proc. Natl. Acad. Sci. USA 54, 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  • Waite M. and Wakil S. J. (1962) Studies on the mechanism of fatty acid synthesis. XII. Acetyl coenzyme A carboxyase. J. Biol. Chem. 237, 2750–2757.

    CAS  PubMed  Google Scholar 

  • Wallace J. C. (1985) Distribution and Biological Functions of Pyruvate Carboxylase in Nature, in Pyruvate Carboxylase (Keech D. B. and Wallace J. C, eds.) CRC Series in Enzyme Biology, CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wallace J. C. and Easterbrook-Smith S. B. (1985) The Structure of Pyruvate Carboxylase, in Pyruvate Carboxylase (Keech D. B. and Wallace J. C, eds.) CRC Series in Enzyme Biology, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Watanabe T., Goto H., and Ogasawara N. (1974) Specific development of isocitrate dehydrogenases in rat brain. Biochim. Biophys. Acta 358, 340–346.

    Google Scholar 

  • Wilbur D. O. and Patel M S. (1974) Development of mitochondrial pyruvate metabolism in rat brain. J, Neurochem. 22, 709–715.

    Article  CAS  Google Scholar 

  • Witters L. A., Tipper J. P., and Bacon G. W. (1983) Stimulation of site-specific phosphorylation of acetyl coenzyme A carboxylase by insulin and epmephrine. J. Biol. Chem. 258, 5643–5648.

    CAS  PubMed  Google Scholar 

  • Wood H. G. and Barden R. E. (1977) Biotin enzymes. Ann. Rev. Biochem. 46, 385–413.

    Article  CAS  PubMed  Google Scholar 

  • Yeh L. A. and Kim K.-H. (1980) Regulation of acetyl-CoA carboxylase: Properties of CoA activation of acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA 77, 3351–3355.

    Article  CAS  PubMed  Google Scholar 

  • Yoo-Warren H., Monahan J., Short J., Short H., Bruzel A., Wynshaw-Boris A., Meisner H. M., Samols D., and Hanson R. W. (1983) Isolation and characterization of the gene coding for cytosolic phosphoenolpyruvate carboxykinase (GTP) from the rat. Proc. Natl. Acad. Sci. USA 80, 3656–3660.

    Article  CAS  PubMed  Google Scholar 

  • Yu A. C. H., Drejer J., Hertz L., and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 1484–1487.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc

About this protocol

Cite this protocol

Patel, M.S. (1989). CO2-Fixing Enzymes. In: Boulton, A.A., Baker, G.B., Butterworth, R.F. (eds) Carbohydrates and Energy Metabolism. Neuromethods, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-143-8:309

Download citation

  • DOI: https://doi.org/10.1385/0-89603-143-8:309

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-143-2

  • Online ISBN: 978-1-59259-616-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics