Skip to main content

The [14C]Deoxyglucose Method for Measurement of Local Cerebral Glucose Utilization

  • Protocol

Part of the book series: Neuromethods ((NM,volume 11))

Abstract

The brain is a complex, heterogeneous organ composed of many anatomical and functional components with markedly different levels of functional activity that vary independently with time and function. Other tissues are generally far more homogeneous, with most of their cells functioning similarly and synchronously in response to a common stimulus or regulatory influence. The central nervous system, however, consists of innumerable subunits, each integrated into its own set of functional pathways and networks, and subserving only one or a few of the many activities in which the nervous system participates. Understanding how the nervous system functions requires knowledge not only of the mechanisms of excitation and inhibition, but even more so of their precise localization in the nervous system and the relationships of neural subunits to specific functions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Abrams R. M., Ito M., Frisinger J. E., Patlak S., Pettigrew D., and Kennedy C. (1984) Local cerebral glucose utilizationinfetal and neonatal sheep. Am. J. Physiol. 246, R608–R618.

    PubMed  CAS  Google Scholar 

  • Benson T. E., Burd G. D., Greer C. A., Landis D. M. D., and Shepherd G. M. (1985) High-resolution 2-deoxyglucose autoradiography in quick-frozen slabs of neonatal rat olfactory bulb. Brain Res. 339, 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Buchner E. and Buchner S. (1980) Mapping stimulus-induced nervous activity in small brains by [3H]2-deoxy-d-glucose. Cell Tissue Res. 211, 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Buchner E., Buchner S., and Hengstenberg R. (1979) 2-Deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Drosophila, Science 205, 687.

    CAS  Google Scholar 

  • Collins R. C, Kennedy C., Sokoloff L., and Plum F. (1976) Metabolic anatomy of focal motor seizures. Arch. Neurol. 33, 536.

    Article  PubMed  CAS  Google Scholar 

  • Des Rosiers M.H. and Descarries L. (1978) Adaptation de la méthode au désoxyglucose a l’echelle cellulaire: préparation histologique du systéme nerveux central en vue de la radio-autographie à haute résolution, C. R. Acad. Sc. Paris, 287 (Series D), 153.

    Google Scholar 

  • DiChiro G., DeLaPaz R. L., Brooks R. A., Sokoloff L., Kornblith P. L., Smith B. H., Patronas N. J., Kufta C. V., Kessler R. M., and Wolf, A. P. (1982) Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and position emission tomography. Neurol. 32(12), 1323–1329.

    Article  CAS  Google Scholar 

  • Dienel G., Nelson T., Cruz N., Jay T., and Sokoloff L. (1986) Contaminants in inadequately purified glucose and incomplete recovery of metabolites are responsible for the erroneous conclusion of high glucose-6-phosphatase activity in rat brain. Soc. Neurosci. Abstr. 12, Part 2, p. 1405.

    Google Scholar 

  • Duffy T. E., Cavazzuti M., Cruz N. F., and Sokoloff L. (1982) Local cerebral glucose metabolism in newborn dogs: effects of hypoxia and halothane anesthesia. Ann. Neurol. 11, 233–246.

    Article  PubMed  CAS  Google Scholar 

  • Duncan G. E., Stump W. E., and Pilgrim C. (1987) Cerebral metabolic mapping at the cellular level with dry-mount autoradiography of [3H]2-deoxyglucose. Brain Res. 401, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Durham D., Woolsey T. A., and Krugher L. (1981) Cellular localization of 2-[3H]deoxyglucose-D-glucose from paraffin-embedded brains. J Neurosci. 1, 519–526.

    PubMed  CAS  Google Scholar 

  • Fishman R. S. and Karnovsky M. L. (1986) Apparent absence of a translocase in the cerebral glucose-6-phosphatase system J. Neurochem. 46, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Foster N. L., Chase T. N., Fedio P., Patronas N J., Brooks R A, and DiChiro G. (1983) Alzheimer’s disease: focal cortical changes shown by position emission tomography. Neurol. 33, 961–965.

    Article  CAS  Google Scholar 

  • Goochee C, Rasband W., and Sokoloff L. (1980) Computerized densitometry and color coding of [14C]deoxyglucose autoradiographs. Ann. Neurol. 7, 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins R. A. and Miller D. L. (1978) Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of conscious rats: implications for quantitative autoradiographic determination of regional glucose utilization. Neurosci. 3, 251–258.

    Article  CAS  Google Scholar 

  • Hers H. G. (1957) Le Métabolisme du Fructose, Editions Arscia, Bruxelles, p. 102.

    Google Scholar 

  • Hokfelt T., Smith C. B., Peters A., Norell G., Crane A., Brownstein M., and Sokoloff L. (1983) Improved resolution of the 2-deoxy-D-glucose technique. Brain Res. 289, 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Huang M.-T. and Veech R. L. (1982) The quantitative determination of the in vivo dephosphorylation of glucose-6-phosphate in rat brain. J. Biol. Chem. 257, 11358–11363.

    PubMed  CAS  Google Scholar 

  • Huang S.-C, Phelps M. E., Hoffman E. J., Sideris K., Selin C. J., and Kuhl D. E. (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol 238, E69–E82.

    PubMed  CAS  Google Scholar 

  • Hubel D. H., Wiesel T. N., and Stryker M. P. (1978) Anatomical demonstration of orientation columns in Macaque monkey. J. Neurol. 177, 361.

    CAS  Google Scholar 

  • Jay T. M., Jouvet M., and Des Rosiers M. H. (1985) Local cerebral glucose utilization in the free moving mouse: a comparison during two stages of the activity-rest cycle. Brain Res. 342, 297–306.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Des Rosiers M. H., Jehle J. W., Reivich M., Sharp F., and Sokoloff L. (1975) Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose. Science 187, 850.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C., Des Rosiers M. H., Sakurada O., Shinohara M., Reivich M., Jehle J. W., and Sokoloff, L. (1976) Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proc. Natl. Acad. Sci. USA 73, 4230.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Sakurada O., Shinohara M., Jehle J., and Sokoloff L. (1978) Local cerebral glucose utilization in the normal conscious Macaque monkey. Ann. Neurol. 4, 293.

    Article  PubMed  CAS  Google Scholar 

  • Kety S. S. and Schmidt C. F. (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J. Clin. Invest. 27, 476–483.

    Article  PubMed  CAS  Google Scholar 

  • Kliot M. and Poletti C. E., (1979) Hippocampal afterdischarges: differential spread of activity shown by the [14C]deoxyglucose technique. Science 204, 641–626.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl D. E., Engel J., Phelps M. E., and Selin C. (1979) Patterns of local cerebral metabolism and perfusion in partial epilepsy by emission computed tomography of 18F-fluorodeoxyglucose and 13N-ammonia. Acta Neurol. Scand. 60 (Suppl. 72), 538–539.

    Google Scholar 

  • Kuhl D. E., Engel J., Phelps M. E., and Selin C. (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18F DG and 13NH3. Ann. Neurol. 8, 348–360.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl D. E., Metter E. J., Riege W. H., and Phelps M. E. (1982a) Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J. Cereb. Blood Metab. 2, 163–171.

    Article  CAS  Google Scholar 

  • Kuhl D. E., Phelps M. E., Markham H., Metter E. J., Riege W. H., and Winter J. (1982b) Cerebral metabolism and atrophy in Huntington’s disease determined by 8FDG and computed tomographic scan. Ann. Neurol. 12, 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl D. E., Metter E. J., Riege W. H., Hawkins R. A., Mazziotta, J. C., Phelps M. E., and Kling A. S. (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia and Alzheimer’s disease. J. Cereb. Blood Flow Metab. 3(Suppl. 1), 494–495.

    Google Scholar 

  • Lancet D., Greer A., Kauer J. S., and Shepherd G. M. (1982) Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution of 2-deoxyglucose autoradiography. Proc. Natl. Acad. Sci. USA 79, 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Lassen N. A., Ingvar D. H., and Skinhoj E. (1978) Brain function and blood flow. Sci. Amer. 239, 62–71.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch J., Savaki H. E., McCulloch M. C, and Sokoloff L. (1980) Regina-dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus. Science 207, 313–315.

    Article  PubMed  CAS  Google Scholar 

  • MacGregor R., Fowler J. S., Wolfe A. P., Shiue C.-Y., Lade R. E., and Wan C.-N. (1981) A synthesis of 2 Deoxy-D-[l-11C]glucose for regional metabolic studies: concise communication. J Nucl. Med. 22, 800–803.

    PubMed  CAS  Google Scholar 

  • Macko K. A., Jarvis D., Kennedy C, Miyaoka M., Shinohara M., Sokoloff L., and Mishkin M. (1982) Mapping the primate visual system with [2-14C]Deoxyglucose. Science 218, 394–397.

    Article  PubMed  CAS  Google Scholar 

  • Meibach R. C, Glick S. D., Cox R, and Maayani S. (1979) Localization of phencyclidine-induced changes in brain energy metabolism. Nature 282, 625–626.

    Article  PubMed  CAS  Google Scholar 

  • Nelson T., Kaufman E. E., and Sokoloff L. (1984) 2-Deoxyglucose incorporation into rat brain glycogen during measurement of local cerebral glucose utilization by the 2-deoxyglucose method. J. Neurochem. 43, 949–956.

    Article  PubMed  CAS  Google Scholar 

  • Nelson T., Lucignani G., Atlas S., Crane A. M., Dienel G. A., and Sokoloff L. (1985) Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle. Science 229, 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Nelson T., Lucignani G., Goochee J., Crane A. M., and Sokoloff L. (1986) Invalidity of criticisms of the deoxyglucose method based on alleged glucose-6-phosphatase activity in brain. J. Neurochem. 46, 905–919.

    Article  PubMed  CAS  Google Scholar 

  • Ornberg R. L., Neale E. A., Smith C. B., Yarowsky P., and Bowers L. M. (1979) Radioautographic localization of glucose utilization by neurons in culture. J. Cell. Biol Abstr. 83, CN 142A.

    Google Scholar 

  • Phelps M. E., Huang S. C., Hoffman E. J., Selin C, Sokoloff L., and Kuhl D. E. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6, 371–388.

    Article  PubMed  CAS  Google Scholar 

  • Phelps M. E., Kuhl D. E., and Mazziotta J. C. (1981) Metabolic mapping of the brain’s response to visual stimulation: studies in man. Science 211, 1445–1448.

    Article  PubMed  CAS  Google Scholar 

  • Porrino L. J., Esposito R. U., Seeger T. F., Crane A. M., Pert A., and Sokoloff L. (1984) Metabolic mapping of the brain during rewarding self-stimulation. Science 224, 306–309.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli W. A. and Duffy T. E. (1978) Local cerebral glucose metabolism during controlled hypoxemia in rats. Science 204, 626–629.

    Article  Google Scholar 

  • Reivich M., Alavi A., Wolf A., Fowler J., Russell J., Arnett C, MacGregor R. K., Shiue C. Y., Atkins H., Anand A., Dann R., and Greenberg J. H. (1985) Glucose metabolic rate kinetic model parameter determination in humans the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J. Cereb. Blood Flow Metab. 5, 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Reivich M., Alavi A., Wolf A., Greenberg, J. H., Fowler J., Christman D., MacGregor R., Jones S. C., London J., Shiue C., and Yonekura Y. (1982) Use of 2-deoxy-D-[l-11C]glucose for the determinations of local cerebral glucose metabolism in humans: variation within and between subjects. J. Cereb Blood Flow Metab. 2, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Reivich M, Kuhl D., Wolf A., Greenberg J., Phelps M., Ido T., Casella V., Fowler J., Hoffman E., Alavi A., Som P., and Sokoloff, L. (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44, 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Sacks W., Sacks S, and Fleischer A. (1983) A comparison of the cerebral uptake and metabolism of labeled glucose and deoxyglucose in vivo in rats. Neurochem. Res. 8, 661–685.

    Article  PubMed  CAS  Google Scholar 

  • Savaki H. E., Davidsen L., Smith C, and Sokoloff L. (1980) Measurement of free glucose turnover in brain. J. Neurochem. 35(2), 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz W. J., Smith C. B., Davidsen L., Savaki H., Sokoloff L., Mata M., Fink D. J., and Gainer H. (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205, 723–725.

    Article  PubMed  CAS  Google Scholar 

  • Sejnowski T. J., Reingold S. C, Kelley D. and Gelperin A. (1980) Localization of [3H]-2-deoxyglucose in single molluscan neurones (1980). Nature 287, 449–451.

    Article  PubMed  CAS  Google Scholar 

  • Smith C. B. (1983) Localization of activity-associated changes in metabolism of the central nervous system with the deoxyglucose method: prospects for cellular resolution, in Current Methods in Cellular Neurobiology Vol. I. Anatomical Techniques (Barker J. L. and McKelvy J. F., eds.), pp. 269–317, John Wiley, New York.

    Google Scholar 

  • Sokoloff L. (1978) Local cerebral energy metabolism: its relationships to local functional activity and blood flow, in Cerebral Vascular Smooth Muscle and Its Control, Ciba Foundation Symposium 56 (new series), pp. 171–197, Elsevier/Excerpta Medica/ North-Holland, Amsterdam.

    Google Scholar 

  • Sokoloff L. (1982) The radioactive deoxyglucose method. Theory, procedure, and applications for the measurement of local glucose utilization in the central nervous system, in Advances in Neurochemistry, Vol. 4 (Agranoff B. W. and Aprison, M. H., eds.), pp. 1–82. Plenum Press, New York.

    Chapter  Google Scholar 

  • Sokoloff L., Reivich M., Kennedy C, DesRosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., and Shinohara M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Toga A. W. and Collins R. C. (1981) Metabolic response of optic centers to visual stimuli in the albino rat: anatomical and physiological considerations. J Neurol. 199, 443–464.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc

About this protocol

Cite this protocol

Sokoloff, L., Kennedy, C., Smith, C.B. (1989). The [14C]Deoxyglucose Method for Measurement of Local Cerebral Glucose Utilization. In: Boulton, A.A., Baker, G.B., Butterworth, R.F. (eds) Carbohydrates and Energy Metabolism. Neuromethods, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-143-8:155

Download citation

  • DOI: https://doi.org/10.1385/0-89603-143-8:155

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-143-2

  • Online ISBN: 978-1-59259-616-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics