The [14C]Deoxyglucose Method for Measurement of Local Cerebral Glucose Utilization

  • Louis Sokoloff
  • Charles Kennedy
  • Carolyn B. Smith
Part of the Neuromethods book series (NM, volume 11)


The brain is a complex, heterogeneous organ composed of many anatomical and functional components with markedly different levels of functional activity that vary independently with time and function. Other tissues are generally far more homogeneous, with most of their cells functioning similarly and synchronously in response to a common stimulus or regulatory influence. The central nervous system, however, consists of innumerable subunits, each integrated into its own set of functional pathways and networks, and subserving only one or a few of the many activities in which the nervous system participates. Understanding how the nervous system functions requires knowledge not only of the mechanisms of excitation and inhibition, but even more so of their precise localization in the nervous system and the relationships of neural subunits to specific functions.


Operational Equation Glucose Utilization Cerebral Tissue Arterial Plasma Precursor Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrams R. M., Ito M., Frisinger J. E., Patlak S., Pettigrew D., and Kennedy C. (1984) Local cerebral glucose utilizationinfetal and neonatal sheep. Am. J. Physiol. 246, R608–R618.PubMedGoogle Scholar
  2. Benson T. E., Burd G. D., Greer C. A., Landis D. M. D., and Shepherd G. M. (1985) High-resolution 2-deoxyglucose autoradiography in quick-frozen slabs of neonatal rat olfactory bulb. Brain Res. 339, 67–78.PubMedCrossRefGoogle Scholar
  3. Buchner E. and Buchner S. (1980) Mapping stimulus-induced nervous activity in small brains by [3H]2-deoxy-d-glucose. Cell Tissue Res. 211, 51–64.PubMedCrossRefGoogle Scholar
  4. Buchner E., Buchner S., and Hengstenberg R. (1979) 2-Deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Drosophila, Science 205, 687.Google Scholar
  5. Collins R. C, Kennedy C., Sokoloff L., and Plum F. (1976) Metabolic anatomy of focal motor seizures. Arch. Neurol. 33, 536.PubMedCrossRefGoogle Scholar
  6. Des Rosiers M.H. and Descarries L. (1978) Adaptation de la méthode au désoxyglucose a l’echelle cellulaire: préparation histologique du systéme nerveux central en vue de la radio-autographie à haute résolution, C. R. Acad. Sc. Paris, 287 (Series D), 153.Google Scholar
  7. DiChiro G., DeLaPaz R. L., Brooks R. A., Sokoloff L., Kornblith P. L., Smith B. H., Patronas N. J., Kufta C. V., Kessler R. M., and Wolf, A. P. (1982) Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and position emission tomography. Neurol. 32(12), 1323–1329.CrossRefGoogle Scholar
  8. Dienel G., Nelson T., Cruz N., Jay T., and Sokoloff L. (1986) Contaminants in inadequately purified glucose and incomplete recovery of metabolites are responsible for the erroneous conclusion of high glucose-6-phosphatase activity in rat brain. Soc. Neurosci. Abstr. 12, Part 2, p. 1405.Google Scholar
  9. Duffy T. E., Cavazzuti M., Cruz N. F., and Sokoloff L. (1982) Local cerebral glucose metabolism in newborn dogs: effects of hypoxia and halothane anesthesia. Ann. Neurol. 11, 233–246.PubMedCrossRefGoogle Scholar
  10. Duncan G. E., Stump W. E., and Pilgrim C. (1987) Cerebral metabolic mapping at the cellular level with dry-mount autoradiography of [3H]2-deoxyglucose. Brain Res. 401, 43–49.PubMedCrossRefGoogle Scholar
  11. Durham D., Woolsey T. A., and Krugher L. (1981) Cellular localization of 2-[3H]deoxyglucose-D-glucose from paraffin-embedded brains. J Neurosci. 1, 519–526.PubMedGoogle Scholar
  12. Fishman R. S. and Karnovsky M. L. (1986) Apparent absence of a translocase in the cerebral glucose-6-phosphatase system J. Neurochem. 46, 371–378.PubMedCrossRefGoogle Scholar
  13. Foster N. L., Chase T. N., Fedio P., Patronas N J., Brooks R A, and DiChiro G. (1983) Alzheimer’s disease: focal cortical changes shown by position emission tomography. Neurol. 33, 961–965.CrossRefGoogle Scholar
  14. Goochee C, Rasband W., and Sokoloff L. (1980) Computerized densitometry and color coding of [14C]deoxyglucose autoradiographs. Ann. Neurol. 7, 359–370.PubMedCrossRefGoogle Scholar
  15. Hawkins R. A. and Miller D. L. (1978) Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of conscious rats: implications for quantitative autoradiographic determination of regional glucose utilization. Neurosci. 3, 251–258.CrossRefGoogle Scholar
  16. Hers H. G. (1957) Le Métabolisme du Fructose, Editions Arscia, Bruxelles, p. 102.Google Scholar
  17. Hokfelt T., Smith C. B., Peters A., Norell G., Crane A., Brownstein M., and Sokoloff L. (1983) Improved resolution of the 2-deoxy-D-glucose technique. Brain Res. 289, 311–316.PubMedCrossRefGoogle Scholar
  18. Huang M.-T. and Veech R. L. (1982) The quantitative determination of the in vivo dephosphorylation of glucose-6-phosphate in rat brain. J. Biol. Chem. 257, 11358–11363.PubMedGoogle Scholar
  19. Huang S.-C, Phelps M. E., Hoffman E. J., Sideris K., Selin C. J., and Kuhl D. E. (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol 238, E69–E82.PubMedGoogle Scholar
  20. Hubel D. H., Wiesel T. N., and Stryker M. P. (1978) Anatomical demonstration of orientation columns in Macaque monkey. J. Neurol. 177, 361.Google Scholar
  21. Jay T. M., Jouvet M., and Des Rosiers M. H. (1985) Local cerebral glucose utilization in the free moving mouse: a comparison during two stages of the activity-rest cycle. Brain Res. 342, 297–306.PubMedCrossRefGoogle Scholar
  22. Kennedy C, Des Rosiers M. H., Jehle J. W., Reivich M., Sharp F., and Sokoloff L. (1975) Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose. Science 187, 850.PubMedCrossRefGoogle Scholar
  23. Kennedy C., Des Rosiers M. H., Sakurada O., Shinohara M., Reivich M., Jehle J. W., and Sokoloff, L. (1976) Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proc. Natl. Acad. Sci. USA 73, 4230.PubMedCrossRefGoogle Scholar
  24. Kennedy C, Sakurada O., Shinohara M., Jehle J., and Sokoloff L. (1978) Local cerebral glucose utilization in the normal conscious Macaque monkey. Ann. Neurol. 4, 293.PubMedCrossRefGoogle Scholar
  25. Kety S. S. and Schmidt C. F. (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J. Clin. Invest. 27, 476–483.PubMedCrossRefGoogle Scholar
  26. Kliot M. and Poletti C. E., (1979) Hippocampal afterdischarges: differential spread of activity shown by the [14C]deoxyglucose technique. Science 204, 641–626.PubMedCrossRefGoogle Scholar
  27. Kuhl D. E., Engel J., Phelps M. E., and Selin C. (1979) Patterns of local cerebral metabolism and perfusion in partial epilepsy by emission computed tomography of 18F-fluorodeoxyglucose and 13N-ammonia. Acta Neurol. Scand. 60 (Suppl. 72), 538–539.Google Scholar
  28. Kuhl D. E., Engel J., Phelps M. E., and Selin C. (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18F DG and 13NH3. Ann. Neurol. 8, 348–360.PubMedCrossRefGoogle Scholar
  29. Kuhl D. E., Metter E. J., Riege W. H., and Phelps M. E. (1982a) Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J. Cereb. Blood Metab. 2, 163–171.CrossRefGoogle Scholar
  30. Kuhl D. E., Phelps M. E., Markham H., Metter E. J., Riege W. H., and Winter J. (1982b) Cerebral metabolism and atrophy in Huntington’s disease determined by 8FDG and computed tomographic scan. Ann. Neurol. 12, 425–434.PubMedCrossRefGoogle Scholar
  31. Kuhl D. E., Metter E. J., Riege W. H., Hawkins R. A., Mazziotta, J. C., Phelps M. E., and Kling A. S. (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia and Alzheimer’s disease. J. Cereb. Blood Flow Metab. 3(Suppl. 1), 494–495.Google Scholar
  32. Lancet D., Greer A., Kauer J. S., and Shepherd G. M. (1982) Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution of 2-deoxyglucose autoradiography. Proc. Natl. Acad. Sci. USA 79, 670–674.PubMedCrossRefGoogle Scholar
  33. Lassen N. A., Ingvar D. H., and Skinhoj E. (1978) Brain function and blood flow. Sci. Amer. 239, 62–71.PubMedCrossRefGoogle Scholar
  34. McCulloch J., Savaki H. E., McCulloch M. C, and Sokoloff L. (1980) Regina-dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus. Science 207, 313–315.PubMedCrossRefGoogle Scholar
  35. MacGregor R., Fowler J. S., Wolfe A. P., Shiue C.-Y., Lade R. E., and Wan C.-N. (1981) A synthesis of 2 Deoxy-D-[l-11C]glucose for regional metabolic studies: concise communication. J Nucl. Med. 22, 800–803.PubMedGoogle Scholar
  36. Macko K. A., Jarvis D., Kennedy C, Miyaoka M., Shinohara M., Sokoloff L., and Mishkin M. (1982) Mapping the primate visual system with [2-14C]Deoxyglucose. Science 218, 394–397.PubMedCrossRefGoogle Scholar
  37. Meibach R. C, Glick S. D., Cox R, and Maayani S. (1979) Localization of phencyclidine-induced changes in brain energy metabolism. Nature 282, 625–626.PubMedCrossRefGoogle Scholar
  38. Nelson T., Kaufman E. E., and Sokoloff L. (1984) 2-Deoxyglucose incorporation into rat brain glycogen during measurement of local cerebral glucose utilization by the 2-deoxyglucose method. J. Neurochem. 43, 949–956.PubMedCrossRefGoogle Scholar
  39. Nelson T., Lucignani G., Atlas S., Crane A. M., Dienel G. A., and Sokoloff L. (1985) Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle. Science 229, 60–62.PubMedCrossRefGoogle Scholar
  40. Nelson T., Lucignani G., Goochee J., Crane A. M., and Sokoloff L. (1986) Invalidity of criticisms of the deoxyglucose method based on alleged glucose-6-phosphatase activity in brain. J. Neurochem. 46, 905–919.PubMedCrossRefGoogle Scholar
  41. Ornberg R. L., Neale E. A., Smith C. B., Yarowsky P., and Bowers L. M. (1979) Radioautographic localization of glucose utilization by neurons in culture. J. Cell. Biol Abstr. 83, CN 142A.Google Scholar
  42. Phelps M. E., Huang S. C., Hoffman E. J., Selin C, Sokoloff L., and Kuhl D. E. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6, 371–388.PubMedCrossRefGoogle Scholar
  43. Phelps M. E., Kuhl D. E., and Mazziotta J. C. (1981) Metabolic mapping of the brain’s response to visual stimulation: studies in man. Science 211, 1445–1448.PubMedCrossRefGoogle Scholar
  44. Porrino L. J., Esposito R. U., Seeger T. F., Crane A. M., Pert A., and Sokoloff L. (1984) Metabolic mapping of the brain during rewarding self-stimulation. Science 224, 306–309.PubMedCrossRefGoogle Scholar
  45. Pulsinelli W. A. and Duffy T. E. (1978) Local cerebral glucose metabolism during controlled hypoxemia in rats. Science 204, 626–629.CrossRefGoogle Scholar
  46. Reivich M., Alavi A., Wolf A., Fowler J., Russell J., Arnett C, MacGregor R. K., Shiue C. Y., Atkins H., Anand A., Dann R., and Greenberg J. H. (1985) Glucose metabolic rate kinetic model parameter determination in humans the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J. Cereb. Blood Flow Metab. 5, 179–192.PubMedCrossRefGoogle Scholar
  47. Reivich M., Alavi A., Wolf A., Greenberg, J. H., Fowler J., Christman D., MacGregor R., Jones S. C., London J., Shiue C., and Yonekura Y. (1982) Use of 2-deoxy-D-[l-11C]glucose for the determinations of local cerebral glucose metabolism in humans: variation within and between subjects. J. Cereb Blood Flow Metab. 2, 307–319.PubMedCrossRefGoogle Scholar
  48. Reivich M, Kuhl D., Wolf A., Greenberg J., Phelps M., Ido T., Casella V., Fowler J., Hoffman E., Alavi A., Som P., and Sokoloff, L. (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44, 127–137.PubMedCrossRefGoogle Scholar
  49. Sacks W., Sacks S, and Fleischer A. (1983) A comparison of the cerebral uptake and metabolism of labeled glucose and deoxyglucose in vivo in rats. Neurochem. Res. 8, 661–685.PubMedCrossRefGoogle Scholar
  50. Savaki H. E., Davidsen L., Smith C, and Sokoloff L. (1980) Measurement of free glucose turnover in brain. J. Neurochem. 35(2), 495–502.PubMedCrossRefGoogle Scholar
  51. Schwartz W. J., Smith C. B., Davidsen L., Savaki H., Sokoloff L., Mata M., Fink D. J., and Gainer H. (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205, 723–725.PubMedCrossRefGoogle Scholar
  52. Sejnowski T. J., Reingold S. C, Kelley D. and Gelperin A. (1980) Localization of [3H]-2-deoxyglucose in single molluscan neurones (1980). Nature 287, 449–451.PubMedCrossRefGoogle Scholar
  53. Smith C. B. (1983) Localization of activity-associated changes in metabolism of the central nervous system with the deoxyglucose method: prospects for cellular resolution, in Current Methods in Cellular Neurobiology Vol. I. Anatomical Techniques (Barker J. L. and McKelvy J. F., eds.), pp. 269–317, John Wiley, New York.Google Scholar
  54. Sokoloff L. (1978) Local cerebral energy metabolism: its relationships to local functional activity and blood flow, in Cerebral Vascular Smooth Muscle and Its Control, Ciba Foundation Symposium 56 (new series), pp. 171–197, Elsevier/Excerpta Medica/ North-Holland, Amsterdam.Google Scholar
  55. Sokoloff L. (1982) The radioactive deoxyglucose method. Theory, procedure, and applications for the measurement of local glucose utilization in the central nervous system, in Advances in Neurochemistry, Vol. 4 (Agranoff B. W. and Aprison, M. H., eds.), pp. 1–82. Plenum Press, New York.CrossRefGoogle Scholar
  56. Sokoloff L., Reivich M., Kennedy C, DesRosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., and Shinohara M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916.PubMedCrossRefGoogle Scholar
  57. Toga A. W. and Collins R. C. (1981) Metabolic response of optic centers to visual stimuli in the albino rat: anatomical and physiological considerations. J Neurol. 199, 443–464.Google Scholar

Copyright information

© The Humana Press Inc 1989

Authors and Affiliations

  • Louis Sokoloff
    • 1
  • Charles Kennedy
    • 2
  • Carolyn B. Smith
    • 1
  1. 1.U. S. Department of Health and Human ServicesNational Institute of Mental HealthBethesda
  2. 2.Department of PediatricsGeorgetown University School of MedicineWashington

Personalised recommendations