Skip to main content

Preparation and Use of Subtractive cDNA Hybridization Probes for cDNA Cloning

  • Protocol

Part of the book series: Neuromethods ((NM,volume 16))

Abstract

Molecular cloning is the process of inserting foreign fragments of DNA into a plasmid or bacteriophage vector that is capable of autonomous replication in a suitable host cell. The resulting recombinant DNA molecules can then be amplified by growth in the host and isolated in pure form. The nucleotide sequence of the inserted portion of the recombinant molecule can shed light on the structure of a particular gene or messenger RNA (mRNA) and provide the primary amino acid sequence of the protein it encodes. Because of the greater accuracy and rapidity of nucleotide sequence analysis over conventional protein sequence analysis, this is now the standard method for elucidating the primary structure of a protein. Recombinant clones may be used to generate probes for monitoring mRNA expression either by Northern blotting, RNase protection, or in situ hybridization, and, thus, the developmental and anatomical distribution of the mRNA may be determined. Recombinant clones can be tailored to produce large amounts of the encoded protein in bacterial or mammalian tissue culture systems. The cloned DNA can be altered by any of a number of in vitro mutagenesis procedures, thus altering the amino acid sequence of the encoded protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Aviv H. and Leder R. (1972) Purification of biologically active globin messenger RNA by chromography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci. USA 69, 1408–1412.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhan N., Hahn W. E. (1983) Genetic expression in the developing brain. Science 220, 924–928.

    Article  Google Scholar 

  • Chirgwin J. M., Przybyla A. E., MacDonald R. J., and Rutter W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease Biochemistry 18, 5294–5299.

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi D. M. (1979) Complexity of cytoplasmic polyadenylated and nonpolyadenylated rat brain ribonucleic acid. Biochemistry 18, 3249–3256

    Article  PubMed  CAS  Google Scholar 

  • Dworkin M. B and Dawid I. B. (1980) Use of a cloned library for the study of abundant poly(A)+ RNA during Xenopus laevis development. Dev Biol. 76, 449–464.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg A. P. and Vogelstein B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 132, 6–13

    Article  PubMed  CAS  Google Scholar 

  • Gergen J. P, Stern R. H., and Wensink P. C. (1979) Filter replicas and permanent collections of recombinant DNA plasmids, Nucl Acids Res. 7, 2115–2136

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M. and Wallis J. (1979) Methods in Enzymology (Wu R., ed.), vol. 68, pp 379–389 Academic Press, New York.

    Google Scholar 

  • Hedrick S. M., Cohen D. I, Nielsen E. A., and Davis M. M. (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Hood L. E., Wilson J H., and Wood W. B. (1975) Molecular Biology of Eucaryotic Cells. A Problems Approach, vol. 1, The Benjamin/Cummings Publishing Company, Menlo Park, California.

    Google Scholar 

  • Kaufman D. L., McGinnis J. F., Kneger N. R., and Tobin A. J. (1986) Brain glutamate decarboxylase cloned in λgt-11 Fusion protein produces δ-aminobutyric acid. Science 232, 1138–1140.

    Article  PubMed  CAS  Google Scholar 

  • Kohne D. E., Levison S. A., and Byers M. J. (1977) Room temperature method for increasing the rate of DNA reassociation by many thousandfold: The phenol emulsion reassociation technique. Biochemistry 16, 5329–5341.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T., Fntsch E. G., and Sambrook J. (1982) Molecular Cloning. Cold Spring Harbor, New York: Cold Spring Harbor Laboratories.

    Google Scholar 

  • Masu Y., Nakayama K., Tamaki H., Harada Y., Kuno M., and Nakanishi S. (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329, 836–838

    Article  PubMed  CAS  Google Scholar 

  • Meyuhas O. and Perry R. P. (1979) Relationship between size, stability, and abundance of the messenger RNA or mouse L cells. Cell 16, 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Miller F. D., Naus C. C. G., Higgins G. A., Bloom F. E., and Milner R. J. (1987) Developmentally regulated rat brain mRNAs. Molecular and anatomical characterization. J Neurosci. 7, 2433–2444.

    PubMed  CAS  Google Scholar 

  • Milner R. J. and Sutcliffe J. G. (1983) Gene expression in rat brain Nucl Acids Res. 11, 5497–5520.

    CAS  Google Scholar 

  • Milner R. J., Lai C., Nave K-A., Lenoir D., Ogata J., and Sutcliffe J. G. (1985) Nucleotide sequences of two mRNAs for rat bram myelin proteohpid protein. Cell 42, 931–939.

    Article  PubMed  CAS  Google Scholar 

  • Milner R. J., Bloom F E., and Sutcliffe J G. (1987) Brain specific genes: Strategies and issues. Current Topics in Developmental Biology 21, 117–150.

    Article  PubMed  CAS  Google Scholar 

  • Nathans J., Thomas D., and Hogness D. S. (1986) Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Ogata R. T., Shreffler D. C, Sepich D. S., and Lilly S. P. (1983) cDNA clone spanning the α-δ subunit junction in the precursor of the murine fourth complement component (C4). Proc. Natl Acad. Sci. USA 80, 5061–5065.

    Article  PubMed  CAS  Google Scholar 

  • Okayama H. and Berg P. (1983) A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell. Biol. 3, 280–289.

    PubMed  CAS  Google Scholar 

  • Schibler K, Tosi M., Pittet A.-C, Fabiani L., and Wellauer P. K. (1980) Tissue-specific expression of mouse α-amylase genes. J. Mol. Biol. 142, 93–116.

    Article  PubMed  CAS  Google Scholar 

  • Sikela J. M. and Hahn W. E. (1987) Screening an expression library with a ligand probe: Isolation and sequence of a cDNA corresponding to a brain calmodulin-binding protein Proc. Natl Acad. Set USA 84, 3038–3042.

    Article  CAS  Google Scholar 

  • Sutcliffe J. G. (1988) mRNA in the mammalian central nervous system. Ann. Rev. Neurosct. 11, 157–198.

    Article  CAS  Google Scholar 

  • Timberlake W E. (1980) Developmental gene regulation in Aspergillus nidulans. Dev. Biol. 78, 497–510.

    Article  PubMed  CAS  Google Scholar 

  • Travis G. H., Naus C. G., Morrison J. H., Bloom F. E., and Sutcliffe J. G. (1987) Subtractive cloning of complementary DNAs and analysis of messenger RNAs with regional heterogeneous distributions in primate cortex. Neuropharmacology 26, 845–854

    Article  PubMed  CAS  Google Scholar 

  • Travis G. H. and Sutcliffe J. G. (1988) Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: Isolation of low abundance monkey cortex-specific mRNAs. Proc. Natl. Acad. Sa. USA 85, 1696–1700.

    Article  CAS  Google Scholar 

  • Wietgrefe S., Zupancic M., Haase A., Chesebro B., Race R., Frey II W., Rustan T., and Friedman R. L. (1985) Cloning of a gene whose expression is increased in scrapie and m senile plaques in human brain. Science 230, 1177–1179.

    Article  PubMed  CAS  Google Scholar 

  • Young R. A. and Davis R. W. (1983) Efficient isolation of genes by using antibody probes. Proc. Natl Acad. Set. USA 80, 1194–1198.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc

About this protocol

Cite this protocol

Travis, G.H., Milner, R.J., Sutcliffe, J.G. (1990). Preparation and Use of Subtractive cDNA Hybridization Probes for cDNA Cloning. In: Boulton, A.A., Baker, G.B., Campagnoni, A.T. (eds) Molecular Neurobiological Techniques. Neuromethods, vol 16. Humana Press. https://doi.org/10.1385/0-89603-140-3:49

Download citation

  • DOI: https://doi.org/10.1385/0-89603-140-3:49

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-140-1

  • Online ISBN: 978-1-59259-621-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics