Analysis of Brain mRNAs by Translation in Vitro

  • David R. Colman
Part of the Neuromethods book series (NM, volume 16)


In vitro translation systems are extremely important tools for studying protein biosynthesis. These systems have been most useful in revealing the intracellular sites of synthesis of numerous proteins, the nature of cotranslational proteolytic cleavage events, the process of core glycosylation, and the mechanisms underlying the interaction of nascent polypeptides with organelles (such as mitochondria) and with membrane vesicles (rough microsomes, RM) derived from the rough endoplasmic reticulum (RER) (see Blobel, 1980 1; Sabatini et al., 1982, 9 for reviews). When programmed with the total mRNA from an organ, translation systems will synthesize virtually all the encoded polypeptides, and so can also be useful in identifying antigenically-related proteins. Although precipitating antibodies to the proteins under study have in the past been required for these analyses, it is now possible to synthesize from cloned cDNAs large quantities of individual mRNAs, that, when used to program an in vitro translation system, yield a single polypeptide that can be directly studied.


Wheat Germ Translation System Nascent Polypeptide Column Buffer Wheat Germ Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Blobel G. (1980) Intracellular protein topogenesis. Proc. Natl. Acad, Sci. USA 77, 1496–1500.CrossRefGoogle Scholar
  2. Clemens M. J (1984) In: Transcription and Translation: A practical approach, Hames, B. D and Higgins, S J., eds., pp. 231–270. Oxford, IRL Press.Google Scholar
  3. Colman D., Kreibich G., and Sabatim D. D. (1983) Biosynthesis of myelinspecific proteins. Meth. Enzym. 96, 378–385.PubMedCrossRefGoogle Scholar
  4. Goldman B. M. and Blobel G. (1978) Biogenesis of peroxisomes: intracellular site of synthesis of catalase and uricase. Proc. Natl. Acad Sci. USA 75, 5066PubMedCrossRefGoogle Scholar
  5. Liu C. P., Slate D., Gravel R., and Ruddle F. H. (1979) Biological detection of specific mRNA molecules by microinjection. Proc. Natl. Acad Sci. USA 76, 4503–4506.PubMedCrossRefGoogle Scholar
  6. Marcu K. and Dudock B. (1974) Characterization of a highly efficient protein synthesizing system derived from commercial wheat germ. Nucl. Acids. Res. 1, 1385.PubMedCrossRefGoogle Scholar
  7. Roberts B. E. and Paterson B. M. (1973) Efficient translation of tobacco mosaic virus RNA and rabbit globlin 9s RNA in a cell-free system from commercial wheat germ. Proc. Natl Acad. Set. USA 70, 2330–2334.CrossRefGoogle Scholar
  8. Roman R., Brooker J. D, Seal S. N., and Marcus A. (1978) Inhibition of the transition of a 40s ribosome-met tRNA complex to an 80s ribosomemet tRNA complex by 7 methylguanosine 5′ phosphate. Nature (Lond) 260, 359–360.CrossRefGoogle Scholar
  9. Sabatini D. D., Kreibich G., Monmoto T., and Adesnik M. (1982) Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 92, 1–22.PubMedCrossRefGoogle Scholar
  10. Scheele G., Dobberstein B., and Blobel G (1978) Transfer of proteins across membranes. Biosynthesis in vitro of pretrypsinogen and trypsmogen by cell fractions of canine pancreas. Eur. J. Biochem. 82, 593.PubMedCrossRefGoogle Scholar
  11. Shields D. and Blobel G. (1978) Efficient cleavage and segregation of nascent presecretory proteins m a reticulocyte lysate supplemented with microsomal membranes. J. Biol. Chem. 253, 3753–3756.PubMedGoogle Scholar
  12. Walter P. and Blobel G. (1980) Purification of a membrane associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 77, 7112–7116.PubMedCrossRefGoogle Scholar
  13. Walter P., Ibrahimi I., and Blobel G. (1981) Translocation of proteins across the endoplasmic reticulum I. Signal recognition protein (SRP) binds to in vitro assembled polysomes synthesizing secretory protein. J. Cell Biol. 95, 451–464.Google Scholar

Copyright information

© The Humana Press Inc 1990

Authors and Affiliations

  • David R. Colman
    • 1
  1. 1.Departments of Anatomy and Cell Biology, and Pathology, The Center for Neurobiology and BehaviorColumbia UniversityNew York

Personalised recommendations