Methods in Human Neuropsychology

Contributions of Physiology, Physiological Psychology, Neurology
  • Bryan Kolb
  • Q. Ian
Part of the Neuromethods book series (NM, volume 17)

Abstract

Of all the neurosciences, the task of neuropsychology is by far the most difficult: to account for how the nervous system produces human behavior. As a result, neuropsychologists are found in all branches of neuroscience. It is no accident that a recent survey of the fields of training for basic neuroscientists by the Society for Neuroscience found that more people received their Ph.D. training in neuropsychology (including names such as physiological psychology and psychobiology) than any other single field. Yet, those who actually call themselves neuropsychologists form a small minority of neuroscientists. The multidisciplinary nature of neuropsychology means that the methods of this science must draw heavily on those of other cognate fields. The task of this chapter is to describe how other branches of neuroscience have influenced the current methodology and theory of neuropsychology.

Keywords

Depression Dopamine Schizophrenia Beach Gall 

References

  1. Albert M. L., Goodglass H., Helm N. A., Rubens A. B. and Alexander M. P. (1981) Clinical Aspects of Dysphasia (Springer, New York).CrossRefGoogle Scholar
  2. Badecker W. and Caramazza A. (1985) On considerations of method and theory governing the use of clinical categories in neurolinguistics and cognitive neuropsychology: the case against agrammatism. Cognition 20, 97–125.PubMedCrossRefGoogle Scholar
  3. Beach F. A., Hebb D. D., Morgan C.T.,and Nissen N. W., eds. (1960) The Neuropsychology of Lashley (McGraw-Hill, New York).Google Scholar
  4. Benson O. F. (1986) Aphasia and the lateralization of language. Cortex, 22, 71–86.PubMedGoogle Scholar
  5. Brodmann K. (1909) Vergleichende Lokalisationlehre der Grosshirnrinde in thren Prinzipien dargenstellt auf Grund des Zellenbaues (J. A. Barth, Leipzig).Google Scholar
  6. Bruce D. (1985). On the origin of the term “neuropsychology.” Neuropsychologia, 23, 813–814.PubMedCrossRefGoogle Scholar
  7. Coltheart M., Patterson K., and Marshall J., eds. (1980) Deep Dyslexia. (Routledge & Kegan Paul, London).Google Scholar
  8. Corkin S., Milner B.,and Rasmussen T. (1970) Somatosensory thresholds. Arch. Neurol. 23, 41–58.PubMedCrossRefGoogle Scholar
  9. Geschwind N. (1965) Disconnexion syndromes in animals and man. Brain, 88, 237–294, 585–644.PubMedCrossRefGoogle Scholar
  10. Geschwind N. and Levitsky W. (1968) Left-right asymmetries in temporal speech region. Science, 161, 186–187.PubMedCrossRefGoogle Scholar
  11. Gevins A. S. (1986) Quantitative human neurophysiology, in Experimental Techniques in Human Neuropsychology (Hannay, H. J., ed.), Oxford University Press, New York, pp. 125–162.Google Scholar
  12. Goldstein K. (1939) The Organism: A Holistic Approach to Biology, Derived from Pathological Data in Man (American Book, New York).CrossRefGoogle Scholar
  13. Goltz F. (1960) On the functions of the hemispheres, in The Cerebral Cortex. (von Bonin, J. G., ed.) Charles Thomas, Springfield, III., pp. 118–158.Google Scholar
  14. Gould S. J. (1981) The Mismeasurement of Man (Norton, New York).Google Scholar
  15. Hebb D. O. (1949) The Organization of Behavior (McGraw-Hill, New York).Google Scholar
  16. Hebb D. O. (1939) Intelligence in man after large removals of cerebral tissue: Report of four left frontal lobe cases. J. Gen. Psychol. 21, 73–87.CrossRefGoogle Scholar
  17. Hess W. R. (1957) The Functional Organization of the Diencephalon (Grune & Stratton, New York).Google Scholar
  18. Holmes G. (1918) Disturbances of vision by cerebral lesions. Br.J. Ophthalmol. 2, 353–384.PubMedCrossRefGoogle Scholar
  19. Ingvar D. H. and Risberg J. (1967) Increase of regional blood flow during mental effort in normals and in patients with focal brain disorders. Exper. Brain Res. 3, 195–211.Google Scholar
  20. Jeannerod M. and Biguer B. (1982) Visuomotor mechanisms in reaching within extrapersonal space, in Analysis of Visual Behavior (Ingle D. J., Goodale M. A., and Mansfield R. J. W., eds.), MIT Press, Cambridge, MA.Google Scholar
  21. Kertesz J. A. (1979) Aphasia and Associated Disorders (Grune & Stratton, New York).Google Scholar
  22. Kolb B. and Whishaw I. Q. (1981) Neonatal frontal lesions in the rat: sparing of learned but not species-typical behavior in the presence of reduced brain weight and cortical thickness. J. Compar. Physiol. Psychology, 95, 468–483.CrossRefGoogle Scholar
  23. Kolb B. and Whishaw I. Q. (1983) Generalizing in neuropsychology: problems and principles underlying cross-species comparisons, in Behavioral Approaches to Brain Research (Robinson T. E. ed.) (Oxford University Press, New York), pp. 237–263.Google Scholar
  24. Kolb B. and Whishaw I. Q. (1985a) Can the study of praxis in animals aid in the study of apraxia in humans? in Advances in Psychology: Neuropsychological Studies of Apraxia and Related Disorders, (Roy E. A., ed.) North Holland, Amsterdam, pp. 203–224.Google Scholar
  25. Kolb B.and Whishaw I. Q. (1985b) Fundamentals of Human Neuropsychology (2nd Ed.) (W. H. Freeman & Co., New York).Google Scholar
  26. Lehrman D. S. (1970) Semantic and conceptual issues in the naturenuture problem, in Development and Evolution of Behavior (Aronson L. R., Tobach E., Lehrman D. S., and Rosenblatt J. S., eds.) W. H. Freeman & Co., San Francisco, pp. 17–52.Google Scholar
  27. Lichtheim L. (1885) On aphasia. Brain, 7, 433–484.Google Scholar
  28. Loftus E. F. and Loftus G. R. (1980) On the permanence of stored information in the human brain. Amer Psychologist, 35, 409–420.CrossRefGoogle Scholar
  29. Luciani L. (1915) Human Physiology (Macmillan, London).Google Scholar
  30. Marshall J. (1986) The description and investigation of aphasia language disorder. Neuropsychologia, 24, 5–24.PubMedCrossRefGoogle Scholar
  31. Milner B. (1980) Complementary functional specializations of the human cerebral hemispheres. Pontiftciae Academiae Scientiarum Scripta Varia, 45, 601–625.Google Scholar
  32. Milner B. and Teuber H. L. (1968) Alteration of perception and memory in man: Reflections on methods, in Analysis of Behavioral Change (Weiskrantz L., ed.) Harper & Row, New York, pp. 268–375.Google Scholar
  33. Mishkin M. (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273, 297–298.PubMedCrossRefGoogle Scholar
  34. Nottebohm F., Kasparian S., and Pansazis C. (1981) Brain space for a learned task. Brain Res. 213, 99–109.PubMedCrossRefGoogle Scholar
  35. O’Keefe J. and Nagel L. (1978) The Hippocampus as a Cognitive Map Oxford: (Oxford University Press, Oxford).Google Scholar
  36. Olds J. and Milner P. (1954) Positive reinforcement produced by electrical stimulation of the septal area and other regions of the rat brain. J. Compar. Physiol. Psychol. 47, 419–427.CrossRefGoogle Scholar
  37. Pandya D. N. and Yeterian E. H. (1985) Architecture and connections of cortical association areas, in Cerebral cortex, Vol. 4. (Peters A. and Jones E. G.i eds.), Plenum Press, New York, pp. 3–62.Google Scholar
  38. Papez J. W. (1937) A proposed mechanism of emotion. Arch. Neurol. Psychiatr., 38, 725–744.CrossRefGoogle Scholar
  39. Penfield W. and Jasper H. H. (1954) Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown & Co, Boston).Google Scholar
  40. Penfield W. and Roberts L. (1959) Speech and Brain Mechanisms Princeton: (Princeton University Press, Princeton).Google Scholar
  41. Poeck K. (1983) What do we mean by aphasie syndromes? A neurologist’s view. Brain and Language 20, 79–89.PubMedCrossRefGoogle Scholar
  42. Poeck K. (1986) The clinical examination for motor apraxia. Neuropsychologia 24, 129–134.PubMedCrossRefGoogle Scholar
  43. Risberg J. (1986) Regional blood flow in neuropsychology. Neuropsychologia, 24, 135–140.PubMedCrossRefGoogle Scholar
  44. Ross E. D. (1981) The aprosodias: Functional-anatomical organization of the affective components of language in the right hemisphere. Arch. Neurol. 38, 1344–1354.Google Scholar
  45. Schwartz M. F. (1984) What the classical aphasia categories can’t do for us, and why. Brain and Language 21, 3–8.PubMedCrossRefGoogle Scholar
  46. Scoville W. B. and Milner B. (1954) Loss of recent memory after bilateral hippocampal lesions. J. Neurol., Neurosurg. Psychiatr. 20, 11–21.CrossRefGoogle Scholar
  47. Shallice T. (1979) Case study approach in neuropsychological research. J. Clin. Neuropsychol. 1, 183–211.CrossRefGoogle Scholar
  48. Szechtman H. and Hall W. G. (1980) Ontogeny of oral behavior induced by tail pinch and electrical stimulation of the tail in rats. J. Physiol. Psychol. 94, 436–445.CrossRefGoogle Scholar
  49. Ungerleider L. and Mishkin M. (1982) Two cortical visual systems, in Analysis of Visual Behavior (Ingle D. J., Goodale M. A., and Mansfield R. J. W. eds.), MIT Press, Cambridge, MA.Google Scholar
  50. Valenstein E. (1975) Persistent problems in the physical control of the brain. American Museum of Natural History. Google Scholar
  51. Vanderwolf C. H. and Robinson T. E. (1981) Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis. Behav. and Brain Sci. 4, 459–514.CrossRefGoogle Scholar
  52. Vanderwolf H., Kolb B.,and Cooley R. (1978) Behavior of the rat after removal of the neocortex and hippocampal formation. J. Physiol. Psychol. 92, 156–175.CrossRefGoogle Scholar
  53. Wernicke C. (1874) Der aphasische Symptomenkomplex (Cohn & Weigart, Breslau).Google Scholar
  54. Whishaw I. Q., Bland B.,and Bayer S. (1978) Postnatal hippocampal granule cell agenesis in the rat: effects on two types of rhythmical slow activity (RSA) in two hippocampal generators. Brain Res. 146, 249–268.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1990

Authors and Affiliations

  • Bryan Kolb
    • 1
  • Q. Ian
    • 1
  1. 1.Department of PsychologyUniversity of LethbridgeCanada

Personalised recommendations