Skip to main content

Assessment of Neurochemical Correlates of Operant Behavior

  • Protocol
Psychopharmacology

Part of the book series: Neuromethods ((NM,volume 13))

Abstract

The central nervous system (CNS) is a major focus for investigations of the causes of behavior. In this context, causes may be changes in brain neuronal activity that correlate with a behavior or the underlying neuronal mechanisms resulting in the appearance of behavior. How are the neurobiological mechanisms of these complex processes determined and the neuronal events responsible for the integration of behavior differentiated from other concurrent processes? Although these questions have been considered by scientists for some time, they have no simple solutions have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altar C. A., Walter, Jr., R. J., Neve K. A., and Marshall J. F. (1984) Computer-assisted video analysis of 3H-spiroperidol binding autoradiographs. J. Neurosci. Meth. 10, 173–188.

    Article  CAS  Google Scholar 

  2. Ator N. A. (1979) Differential effects of chlordiazepoxide on comparable rates of responding maintained by food and shock avoidance. Psychopharmacology 66, 227–231.

    Article  PubMed  CAS  Google Scholar 

  3. Baldessarini R. J. and Kopin I. J. (1967) The effect of drugs on the release of 3H-norepinephrine from central nervous system tissues by electrical stimulation in vitro. J. Pharmacol. Exp. Ther. 156, 31–38.

    PubMed  CAS  Google Scholar 

  4. Blaha C. D. and R. F. Lane (1983) Chemically modified electrodes for in vivo monitoring of brain catecholamines. BrainRes. Bull. 10, 861–864.

    Article  CAS  Google Scholar 

  5. Boast C. A., Snowhill E. W., and Altar C. A., eds. (1986) Quantitative Receptor Autoradiography, in Neurology and Neurobiology vol. 19 (A.R. Liss, New York).

    Google Scholar 

  6. Branch M. N. (1974) Behavior is a stimulus: Joint effects of d-amphetamine and pentobarbital. J. Pharmacol Exp. Ther. 189, 33–41.

    PubMed  CAS  Google Scholar 

  7. Branch M. N., Nicholoson E., and Dworkin S. I. (1977) Punishment-specific effects of pentobarbital: Dependency on the type of punisher. J. Exp. Anal. Behav. 28, 285–293.

    Article  PubMed  CAS  Google Scholar 

  8. Broca P. (1861) Remarques Sur Le Siege de La Faculte de Language Articule, Suivies ďune observation ďaphemie. Bull. Soc. Anat. (Paris) 6, 330–357.

    Google Scholar 

  9. Childers S. R., Simantov R., and Snyder S. H. (1977) Enkephalin: Radioimmunoassay and radioreceptor assay in morphine-dependent rats. Eur. J. Pharmacol. 46, 289–293.

    Article  PubMed  CAS  Google Scholar 

  10. Co C, Smith J. E., and Lane J. D. (1982) Use of a single compartment LCEC cell in the determinations of biogenic amine content and turnover. Pharmacol. Bicohem. Behav. 16, 641–646.

    Article  CAS  Google Scholar 

  11. Conti J. C, Strope E, Adams R. N., and Marsden C. A. (1978) Voltammetry in brain tissue: Chronic recording of stimulated dopamine and 5-hydroxytryptamine release. Life Sci. 23, 2705–2716.

    Article  PubMed  CAS  Google Scholar 

  12. Domino E. F. and Wilson A. E. (1972) Psychotropic drug influence on brain acetylcholine utilization. Psychopharmacologia 25, 291–298.

    Article  PubMed  CAS  Google Scholar 

  13. Dworkin S. I. and Goeders N. E. (1986) Effects of 6-OHDA lesions of the nucleus accumbens on amphetamine discrimination. Psychopharmacology 89, 513 (abstract).

    Google Scholar 

  14. Dworkin S. I. and Smith J. E. (1987) Neurobiological aspects of drug seeking behaviors, in Neurobehavioral Pharmacology, Advances in Behavioral Pharmacology vol. 6 (Thompson T., Dews P. B., and Barrett J. E., eds) Lawrence Erlbaum, New Jersey.

    Google Scholar 

  15. Dworkin S. I., Miyauchi T., and Smith J. E. (1986) Neurochemical and Pharmacologic investigations of Punished Behavior in Problems of Drug Dependence—1985 (Harris L. S., ed.) vol. 67, NIDA Research Monographs, Rockville, Maryland.

    Google Scholar 

  16. Glick S. D., Cox, R. D., and Meibach R. C. (1980) Selective effect of reinforcing doses of morphine in striatum. Brain Res. 190, 298–300.

    Article  PubMed  CAS  Google Scholar 

  17. Goochee C, Rasband W., and Sokoloff L. (1980) Computerized densitometry and coding of [14C]-deoxyglucose autoradiographs. Ann, Neurol. 7, 359–370.

    Article  CAS  Google Scholar 

  18. Jeffrey D. R. and Barrett J. E. (1979) Effects of chlordiazepoxide on comparable rates of punished responding. Psychopharmacology 64, 9–11.

    Article  Google Scholar 

  19. Johnston J. M. and Pennypecker H. S. (1980) Strategies and Tactics of Human Behavioral Research Lawrence Erlbaum, New Jersey.

    Google Scholar 

  20. Jones B. N. and Gilligan J. P. (1983) o-phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J. Chromatogr. 266, 471–482.

    Article  PubMed  CAS  Google Scholar 

  21. Joseph M. H. and Davies P. (1982) Electrochemical detection of amino acids. Curr. Sep. 4, 62–65.

    Google Scholar 

  22. Katz J. L. (1982) Rate dependent effect of d-and l-amphetamine in schedule-controlled responding in pigeons and squirrel monkeys. Neuropharmacology 21, 235–242.

    Article  PubMed  CAS  Google Scholar 

  23. Kelleher R. T. and Morse W. H. (1968) Determinants of the specificity of the behavioral effects of drugs. Ergeb. Physiol. Biolog. Chem. Exp. Pharm. 60, 1–56.

    Article  CAS  Google Scholar 

  24. Koch D. D. and Kissinger P. T. (1980) Current concepts. I. Liquid chromatography with pre-column sample enrichment and electrochemical detection. Regional determination of serotonin and 5-hydroxyindoleacetic acid in brain tissue. Life Sci. 26, 1099–1107.

    Article  PubMed  CAS  Google Scholar 

  25. Koe B. K. and A. J. Weissman (1966) p-Chlorophenylalanine: A specific depletor of brain serotonin. J. Pharmacol. Exp. Ther. 154, 499–516.

    PubMed  CAS  Google Scholar 

  26. Lane J. D., Sands, M. P., Co C., Cherek D. R., and Smith J. E. (1982) Biogenic monoamine turnover in discrete rat brain regions is correlated with conditioned emotional response and its conditioning history. Brain Res. 240, 95–108.

    Article  PubMed  CAS  Google Scholar 

  27. Lane R. F., Hubbard A. T., and Blaha C. D. (1978) Brain dopaminergic neurons: In vivo electrochemical information concerning storage, metabolism and release processes. Bioelectrochem. Bioenerg. 5, 504–525.

    Article  CAS  Google Scholar 

  28. Lashley K. S. (1917) The retention of habits by the rat after destruction of the frontal portion of the cerebrum. Psychobiology 1, 3.

    Article  Google Scholar 

  29. Levine T. E., McGuire P. S., Heffner T. E., and Seiden L. S. (1980). DRL performance in 6-hydroxydopamine-treated rats. Pharmacol. Biochem. Behav. 12, 287–221.

    Article  PubMed  CAS  Google Scholar 

  30. Loullis C. C, Felton D. L., and Shea P. A. (1979) HPLC determination of biogenic amines in discrete brain areas in food deprived rats. Pharmacol Biochem. Behav. 11, 89–93.

    Article  PubMed  CAS  Google Scholar 

  31. Loullis C. C, Hingtgen, J. N., Shea, P. A., and Aprison M. H. (1980) In vivo determination of endogenous biogenic amines in rat brain using HPLC and push-pull cannula. Pharmacol. Biochem. Behav. 12, 959–963.

    Article  PubMed  CAS  Google Scholar 

  32. Lyness W. H., Friedle N. M., and Moore K. E. (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: Effects on d-amphetamine self-administration. Pharmacol. Biochem. Behav. 11, 553–556.

    Article  PubMed  CAS  Google Scholar 

  33. Morimoto A., Suzumi M., Sakata Y., and Marakami N. (1984) Activation of bram regions in rats during food-intake operant behavior. Physiol. Behav. 33, 965–968.

    Article  PubMed  CAS  Google Scholar 

  34. Morot-Gaudry Y., Hamon M., Bourgoin S., Ley J. P., and Glowmski J. (1974) Estimation of the rate of 5-HT syntheses in the mouse brain by various methods. Naunyn Schmiedebergs Arch. Pharmacol. 282, 223–238.

    Article  PubMed  CAS  Google Scholar 

  35. Mousa S. A. and Van Loon G. R. (1985) Measurement of proenkephalin A-derived peptides in biological tissue by high pressure liquid chromatography coupled with amperometric electrochemical detection. Life Set. 37, 1795–1802.

    Article  CAS  Google Scholar 

  36. Neff N. H., Ngai S. H., Wang C. T., and Costa E. (1969) Calculation of the rate of catecholamine synthesis from the rate of conversion of tyrosine-14C to catecholamines. Effect of adrenal demedullation on synthesis rates. Mol. Pharmacol. 5, 90–99.

    PubMed  CAS  Google Scholar 

  37. Neff N. H., Spano P. F., Groppetti, A., Wang, C. T. and Costa E (1971) A simple procedure for calculating the synthesis rate of norepinephrine, dopamine and serotonin in rat brain. J. Pharmacol. Exp. Ther. 176 701–10.

    PubMed  CAS  Google Scholar 

  38. Olds J. and Milner P. (1954) Positive reinforcement produced by electrical stimulation of septal and other regions of rat brain. J, Comp. Physiol. Psychol. 47, 419–427.

    Article  CAS  Google Scholar 

  39. Peterson D. W. and Sparber S. B. (1974) Increased fixed-ratio performance and differential d-and l-amphetamine action following norepinephrine depletion by intraventricular 6-hydroxydopamine. J. Pharmacol Exp. Ther. 191, 349–357.

    PubMed  CAS  Google Scholar 

  40. Porrino L. J., Esposito R. U., Seeger T. F., Crane A. M., Pert A., and Sokoloff L. (1984) Metabolic mapping of the brain during rewarding self-stimulation. Science 224, 306–309.

    Article  PubMed  CAS  Google Scholar 

  41. Pycock C. J. and Taberner P. V., eds. (1981) Central Neurotransmitter Turnover University Park Press, London.

    Google Scholar 

  42. Rice M., Oke A. F., Bradberry C. W., and Adams R. N. (1985) Simultaneous voltammetric and chemical monitoring of dopamine release in situ. Brain Res. 340, 151–155.

    Article  PubMed  CAS  Google Scholar 

  43. Robbins T. W., Roberts D. C. S., and Koob G. F. (1983) Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine induced lesions of the nucleus accumbens. J Pharmacol. Exp. Ther. 224, 662–673.

    PubMed  CAS  Google Scholar 

  44. Roberts D. C. S. and Koob G. F. (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 17, 901–904.

    Article  PubMed  CAS  Google Scholar 

  45. Roberts D. C. S., Koob G. F., Klonoff P, and Fibiger H. C. (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 127, 781–787.

    Article  Google Scholar 

  46. Schoenfeld R. I. and Zigmond M. J. (1973). Behavioral Pharmacology of 6-Hydroxydopamine, Frontiers in Catecholamine Research (Usdin E. and Snyder S. H., eds. Pergamon, New York.

    Google Scholar 

  47. Schubert J. (1974) Labelled 5-hydroxytryptamine and 5-hydroxyindoleacetic acid formed in vivo from 3H-tryptophan in rat brain. Effect of probenicid. Acta. Physiol. Scand. 90, 401–408.

    Article  PubMed  CAS  Google Scholar 

  48. Scoville W. B. and Milner B. (1957) Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat. 20, 11–21.

    Article  PubMed  CAS  Google Scholar 

  49. Seiden L. S. and Campbell A. B. (1974) Catecholamines, Drugs, and Behavior: Multiple Interactions, in Neuropharmacology of Monoamines and Their Regulatory Enzymes (Usdin, E., ed.) Raven, New York.

    Google Scholar 

  50. Skinner B. F. (1938) The Behavior of Organisms Appleton-Century-Crofts, New York

    Google Scholar 

  51. Smith J. E. and J. D. Lane (1983) Brain Neurotransmitter Turnover Correlated with Morphine Self-Administration, in The Neurobiology of Opiate Reward Processes (Smith J. E. and Lane J. D., eds.) Elsevier, Amsterdam.

    Google Scholar 

  52. Smith J. E., Co C., Freeman M. E., and Lane J. D. (1982) Brain neurotransmitter turnover correlated with morphine-seeking behavior of rats. Pharmacol Biochem. Behav. 16, 509–519.

    Article  PubMed  CAS  Google Scholar 

  53. Smith J. E., Co C., Freeman M. E., Sands M. P., and Lane J. D. (1980) Neurotransmitter turnover in the striatum of rat brains is correlated with morphine self-administration. Nature (Lond.) 287, 152–154.

    Article  PubMed  CAS  Google Scholar 

  54. Smith J. E., Co C., and Lane J. D. (1984a) Limbic acetylcholine turnover rates correlated with rat morphine-seeking behaviors. Pharmacol. Biochem. Behav. 20, 429–441.

    Article  PubMed  CAS  Google Scholar 

  55. Smith J. E., Co C., and Lane J. D. (1984b) Limbic muscarinic cholinergic and benzodiazepine receptor changes with chronic intravenous morphine and self-administration. Pharmacol. Biochem. Behav. 20, 443–450.

    Article  PubMed  CAS  Google Scholar 

  56. Sokoloff L., Reivich M., Kennedy C, Des Rosiers M. H., Patlak R. S., Pettigrew K. D., Sakurara O., and Shinohara M. (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916.

    Google Scholar 

  57. Ter-Pogossian M. M., Phelps M. E., Hoffman E. J., and Mullani N. A. (1975) A positron-emission transaxial tomography for nuclear medicine imaging (PETT). Radiology 114, 89–98.

    PubMed  CAS  Google Scholar 

  58. Ungerstedt U. (1986) Microdialysis—a new bioanalytical sampling technique. Curr. Sep., 7, 43–46.

    Google Scholar 

  59. Wagner H. N., Burns H. D., Dannals, R. F. Wong, D. F., Langstrom B., Dueffer T., Frost J. J., Ravert H. T., Links J. M., Rosenbloom S., Lukas S. E., Kramer A. V., and Kuhar M. J. (1983) Imaging of dopamine receptors in the human brain by positron tomography. Science 221, 1264–1266.

    Article  PubMed  CAS  Google Scholar 

  60. Wernicke C. (1874) Der aphasische Symptomencomplex cohneweigert. Breslaui, Cohn and Weigert.

    Google Scholar 

  61. Wightman R. W., Strope E., Plotsky P., and Adams R. N. (1978) In vivo voltammetry: Monitoring of dopamine metabolites in CSF following release by electrical stimulation. Brain Res. 159, 58–68.

    Google Scholar 

  62. Woolverton W. L. and Cervo L. (1986) Effects of central dopamine depletion of the d-amphetamine discriminative stimulus in rats. Psychopharmacology 88, 196–200.

    Article  PubMed  CAS  Google Scholar 

  63. Zetterstom T., Sharp T., Marsden C. A., and Ungerstedt U. (1983) In vivo measurement of dopamine and it’s metabolites by intracerebral dialysis: changes after d-amphetamine. J. Neurochem. 41, 1769–1773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this protocol

Cite this protocol

Dworkin, S.I., Smith, J.E. (1989). Assessment of Neurochemical Correlates of Operant Behavior. In: Boulton, A.A., Baker, G.B., Greenshaw, A.J. (eds) Psychopharmacology. Neuromethods, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-129-2:741

Download citation

  • DOI: https://doi.org/10.1385/0-89603-129-2:741

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-129-6

  • Online ISBN: 978-1-59259-618-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics