Skip to main content

Drug Effects on Behaviors Maintained by Electrical Brain Stimulation

  • Protocol
Psychopharmacology

Part of the book series: Neuromethods ((NM,volume 13))

Abstract

Research on electrical stimulation of the brain (ESB) has a long and venerable history. As reviewed elsewhere (Ervin and Kenney, 1971 53; Doty, 1969 48), brain stimulation has made classical contributions to neuroscience research, including the localization of cortical areas subserving motor functions and an understanding of the mechanisms of propagated seizures. Its widespread applications to the study of animal behavior originated largely in three concurrent research advances: the discovery of brain-stimulation reward (intracranial self-stimulation, or ICSS) by Olds and Milner (1954) 146, aversive effects of brain stimulation (Delgado et al., 1954 43), and stimulation-induced defensive behaviors in cats (Hess, 1954 97). An immediate convergence with the coincidentally emerging field of psychopharmacology was achieved by Olds, who described for the first time the now classical finding that chlorpromazine and reserpine attenuate ICSS behavior (Olds et al., 1956 148).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann R. F., Steiner S. S., Bodnar R. J., Jackler F., Greenblatt E., and Ellman S. J. (1977) Characterization of self-stimulation elicited from rat dorsolateral periaqueductal gray. Int. J. Neurosci. 7, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Ando K. (1975) Profile of drug effects on temporally spaced responding in rats. Pharmacol. Biochem. Behav. 3, 833–841.

    Article  PubMed  CAS  Google Scholar 

  • Atrens D. M. (1984) Self-Stimulation and Psychotropic Drugs: A Methodological and Conceptual Critique, in Animal Models in Psychopathology (Bond N. S., ed.) Academic, Sydney, Australia.

    Google Scholar 

  • Atrens D. M. and Becker F. T. (1975) Assessing the aversiveness of intracranial stimulation. Psychopharmacologia (Berl.) 44, 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Atrens D. M. and Becker F. T. (1977) Cardiovascular responses and lateral hypothalamic self-stimulation: Anatomical differentiation and functional significance. Brain Res. 129, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Atrens D. M., Cobbin D. M., and Paxinos G. (1977) Reward-aversion analysis of rat mesencephalon. Neurosci. Lett. 6, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Atrens D. M., Sinden J. D., and Hunt G. E. (1983) Dissociating the determinants of self-stimulation. Physiol. Behav. 31, 787–799.

    Article  PubMed  CAS  Google Scholar 

  • Audi E. A. and Graeff F. G. (1984) Benzodiazepine receptors in the periaqueductal grey mediate anti-aversive drug action. Eur. J. Pharmacol. 103, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Baltzer J. H., Levitt R. A., and Furby, J. E. (1977) Etorphine and shuttle-box self-stimulation in the rat. Pharmacol. Biochem. Behav. 7, 413–416.

    Article  PubMed  CAS  Google Scholar 

  • Bass R. W. (1974) Detection of electrical brain stimulation at hypothalamic and septal sites in rats. J. Comp. Physiol. Psychol. 87, 458–465.

    Article  PubMed  CAS  Google Scholar 

  • Beninger R. J. (1982) A comparison of the effects of pimozide and nonreinforcement on discriminated operant responding in rats. Pharmacol. Biochem. Behav. 16, 667–669.

    Article  PubMed  CAS  Google Scholar 

  • Beninger R. J. and Freedman N. L. (1982) The use of two operants to examine the nature of pimozide-induced decreases in responding for brain stimulation. Physiol. Psychol. 10, 409–412.

    CAS  Google Scholar 

  • Beninger R. J., Bellisle F., and Milner P. M. (1977) Schedule control of behavior reinforced by electrical stimulation of the brain. Science 196, 547–549.

    Article  PubMed  CAS  Google Scholar 

  • Bernard P. S., Bennett D. A., Pastor G., Yokoyama N., and Liebman J. M. (1985) CGS 9896: Agonist-antagonist benzodiazepine receptor activity revealed by anxiolytic, anticonvulsant and muscle relaxation assessment in rodents. J. Pharmacol. Exp. Ther. 235, 98–105.

    PubMed  CAS  Google Scholar 

  • Bovier P., Broekkamp C. L. E., and Lloyd K. G. (1982) Enhancing GABAergic transmission reverses the aversive state in rats induced by electrical stimulation of the periaqueductal grey region. Brain Res. 248, 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Bower G. H. and Miller N. E. (1958) Rewarding and punishing effects from stimulating the same place in the rat’s brain. J. Comp. Physiol. Psychol. 51, 669–674.

    Article  PubMed  CAS  Google Scholar 

  • Bozarth M. A., Gerber G. J., and Wise R. A. (1980) Intracranial self-stimulation as a technique to study the reward properties of drugs of abuse. Pharmacol. Biochem. Behav. 13, (suppl. 1), 245–247.

    Article  PubMed  Google Scholar 

  • Brandao M. L., De Aguiar J. C., and Graeff F. G. (1982) GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacol. Biochem. Behav. 16, 397–402.

    Article  PubMed  CAS  Google Scholar 

  • Brandao M. L., Vasquez E. C, Cabral A. M., and Schmitt P. (1985) Chlordiazepoxide and morphine reduce pressor response to brain stimulation in awake rats. Pharmacol. Biochem. Behav. 23, 1069–1071.

    Article  PubMed  CAS  Google Scholar 

  • Broekkamp C. L. E., Pijnenburg A. J. J., Cools A. R., and Van Rossum J. M. (1975) The effect of microinjections of amphetamine into the neostriatum and the nucleus accumbens on self-stimulation behaviour. Psychopharmacologia (Berl.) 42, 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Brown R. J. and Winocur G. (1973) The fornix as a reward pathway. Physiol Behav. 11, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Campbell K. A., Evans G., and Gallistel C. R. (1985) A microcomputer-based method for physiologically interpretable measurement of the rewarding efficacy of brain stimulation. Physiol. Behav. 35, 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Carey R. J. (1983a) Bromocriptine promotes recovery of self-stimulation in 6-hydroxydopamine-lesioned rats. Pharmacol. Biochem. Behav. 18, 273–276.

    Article  PubMed  CAS  Google Scholar 

  • Carey R. J. (1983b) Reversal of haloperidol induced deficits in self-stimulation by anti-Parkmsonian drugs. Behav Brain Res. 10, 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Carey R. J. (1985) Lateralized decrease in self-stimulation induced by haloperidol in rats with unilateral 6-hydroxydopamine lesions. Behav. Brain Res. 18, 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Carey R. J., Goodall E., and Lorens S. A. (1975) Differential effects of amphetamine and food deprivation on self-stimulation of the lateral hypothalamus and medial frontal cortex. J. Comp. Physiol. Psychol. 88, 224–230.

    Article  PubMed  CAS  Google Scholar 

  • Carr K. D. and Coons E. E. (1982) Rats self-administer nonrewarding brain stimulation to ameliorate aversion. Science 215, 1516–1517.

    Article  PubMed  CAS  Google Scholar 

  • Carr K. D., Bonnet K. A., and Simon E. J. (1982) Mu and kappa opioid agonists elevate brain stimulation threshold for escape by inhibiting aversion. Brain Res 245, 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Cassens G. and Mills A. W. (1973) Lithium and amphetamine: Opposite effects on threshold of intracranial reinforcement. Psy-chopharmacologia 30, 283–290.

    CAS  Google Scholar 

  • Cassens G., Shaw C, Dudding K., and Mills A. (1975) On-line brain stimulation and monitor: Measurement of threshold of reinforcement. Behav. Res. Meth. Instrum. 7, 145–150.

    Article  Google Scholar 

  • Cassens G., Actor C, Kling M., and Schildkraut J. J. (1981) Amphetamine withdrawal: Effects on threshold of intracranial reinforcement. Psychopharmacology 73, 318–322.

    Article  PubMed  CAS  Google Scholar 

  • Cazala P. and Garrigues A.M. (1983) Effects of apomorphine, clonidine or 5-methoxy-N,N-dimethyltryptamine on approach and escape components of lateral hypothalamic and mesencephalic central gray stimulation in two inbred strains of mice. Pharmacol. Biochem. Behav. 18, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Clarke A. and File S. E. (1982) Effects of ACTH, benzodiazepines and 5-HT antagonists on escape from periaqueductal grey stimulation in the rat. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 6, 27–35.

    Article  CAS  Google Scholar 

  • Clavier R. M. and Gerfen C. R. (1982) Intracranial self-stimulation in the thalamus of the rat. Brain Res. Bull. 8, 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Clavier R. M. and Routtenberg A. (1980) In Search of Reinforcement Pathways: A Neuroanatomical Odyssey, in The Biology of Reinforcement, Academic, New York.

    Google Scholar 

  • Colpaert F. C, Niemegeers C. J. E., and Janssen P. A. J. (1977) Haloperidol blocks the discriminative stimulus properties of lateral hypothalamic stimulation, Eur. J. Pharmacol. 42, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Colpaert F. C, Maroli A. N., and Meert T. (1982) Parametric effects in the discrimination of intracranial stimulation: Some methodological and analytical issues. Physiol. Behav. 28, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  • Coons E. E., Schupf N., and Ungerleider L. G. (1976) Uses of doublepulse stimulation behaviorally to infer refractoriness, summation, convergence and transmitter characteristics of hypothalamic reward systems. J. Comp. Physiol. Psychol. 90, 317–342.

    Article  PubMed  CAS  Google Scholar 

  • Corbett D., Fox E., and Milner P. M. (1982) Fiber pathways associated with cerebellar self-stimulation in the rat: A retrograde and anterograde tracing study. Behav. Brain Res. 6, 167–184.

    Article  PubMed  CAS  Google Scholar 

  • Crow T J (1972) A map of the rat mesencephalon for electrical self-stimulation. Brain Res. 36, 265–273.

    Article  PubMed  CAS  Google Scholar 

  • Delgado J. M. R. (1976) New Orientations in Brain Stimulation in Man, in Brain-Stimulation Reward (Wauquier A. and Rolls E. T., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Delgado J. M. R. (1981) Depth Stimulation of the Brain, in Electrical Stimulation Research Techniques (Patterson M. and Kesner R. P., eds.) Academic, New York.

    Google Scholar 

  • Delgado J. M. R., Roberts W. W., and Miller N. E. (1954) Learning motivated by electrical stimulation of the brain. Am. J. Physiol. 179, 587–593.

    PubMed  CAS  Google Scholar 

  • Dennis S. G., Yeomans J. S., and Deutsch J. A. (1976) Adaptation of aversive brain stimulation. III. Excitability characteristics of behaviorally relevant neuronal substrates. Behav. Biol. 18, 531–544.

    Article  PubMed  CAS  Google Scholar 

  • De Witte P. (1982) Enhanced self-stimulation in the home cage but not in a novel cage environment after naloxone injection. Arch. Int. Pharmacodyn. 260, 255–264.

    PubMed  Google Scholar 

  • De Witte P., Colpaert F., and Schmitt P. (1983) The self-regulation of hypothalamic rewarding brain stimulus after innoculation of Mycobacterium butyricum inducing chronic arthritis. Physiol. Psychol. 11, 201–204.

    Google Scholar 

  • D’Mello G. D. (1981) A comparison of some behavioural effects of amphetamine and electrical brain stimulation of the mesolimbic dopamine system in rats. Psychopharmacology 75, 184–192.

    Article  CAS  Google Scholar 

  • Doty R. W. (1969) Electrical stimulation of the brain in behavioral context. Ann. Rev. Psychol 20, 289–320.

    Article  CAS  Google Scholar 

  • Edmonds D. E. and Gallistel C. R. (1974) Parametric analysis of brain stimulation reward in the rat. III. Effects of performance variables on the reward summation function. J. Comp. Physiol. Psychol. 87, 876–883.

    Article  PubMed  CAS  Google Scholar 

  • Edmonds D. E. and Gallistel C. R. (1977) Reward versus performance in self-stimulation: Electrode-specific effects of alpha-methyl-p-tyrosine on reward in the rat. J. Comp Physiol. Psychol. 91, 962–974.

    Article  PubMed  CAS  Google Scholar 

  • Edwards M., Wishik J., and Sinnamon H. M. (1979) Catecholaminergic and cholinergic agents and duration regulation of ICSS in the rat. Pharmacol. Biochem. Behav. 10, 723–731.

    Article  PubMed  CAS  Google Scholar 

  • Emmett-Oglesby M. W., Spencer D. G., Jr., and Arnoult D. E. (1982) A TRS-80-based system for the control of behavioral experiments. Pharmacol. Biochem. Behav. 17, 583–587.

    Article  PubMed  CAS  Google Scholar 

  • Ervin F. R. and Kenney G. J. (1971) Electrical Stimulation of the Brain, in Methods in Psychobiology vol. 1 (Myers R. D., ed.), Academic, New York.

    Google Scholar 

  • Esposito R. U. and Kornetsky C. (1978) Opioids and rewarding brain stimulation. Neurosci. Biobehav. Rev. 2, 115–122.

    Article  CAS  Google Scholar 

  • Esposito R. U., Faulkner W., and Kornetsky C. (1979) Specific modulation of brain stimulation reward by haloperidol. Pharmacol. Biochem. Behav. 10, 937–940.

    Article  PubMed  CAS  Google Scholar 

  • Esposito R. U., Perry W., and Kornetsky C. (1980) Effects of d-amphetamine and naloxone on brain stimulation reward. Psychopharmacology 69, 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Esposito R. U., Porrino L. J., Seeger T. F., Crane A. M., Everist H. D., and Pert A. (1984) Changes in local cerebral glucose utilization during rewarding brain stimulation. Proc. Natl. Acad. Sci. USA 81, 635–639.

    Article  PubMed  CAS  Google Scholar 

  • Ettenberg A., Cinsavich S. A., and White N. (1979) Performance effects with repeated-response measures during pimozide-produced dopamine receptor blockade. Pharmacol. Biochem. Behav. 11, 557–561.

    Article  PubMed  CAS  Google Scholar 

  • Fenton H. M. and Liebman J. M. (1982) Self-stimulation response decrement patterns differentiate clonidine, baclofen and dopamine antagonists from drugs causing performance deficit. Pharmacol. Biochem. Behav. 17, 1207–1212.

    Article  PubMed  CAS  Google Scholar 

  • Fenton H. M., Hall N. R., Gerhardt S., Noreika L., Neale R., and Liebman J. M. (1983) Avoidance and ICSS behavioral models dissociate TL-99 and 3-PPP from dopamine receptor antagonists. Eur. J. Pharmacol. 91, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger H. C. (1978) Drugs and reinforcement mechanisms: A critical review of the catecholamine theory. Ann. Rev. Pharmacol. Toxicol. 18, 37–56.

    Article  CAS  Google Scholar 

  • Fibiger H. C. and Phillips A. G. (1981) Increased intracranial self-stimulation in rats after long-term administration of desipramine. Science 214, 683–685.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger H. C., Carter D. A., and Phillips A. G. (1976) Decreased intracranial self-stimulation after neuroleptics or 6-hydroxydopamine: Evidence for mediation by motor deficits rather than by reduced reward. Psychopharmacology 47, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Flanigin H. F., Nashold B. S., Jr., Wilson W. P., and Nebes R. (1976) Stimulation of the Temporal Lobe and Thalamus in Man and Its Relation to Memory and Behavior, in Brain-Stimulation Reward (Wauquier A. and Rolls E. T., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Fouriezos G. and Nawiesniak E. (1982) Comparison of two methods of estimating thresholds of intracranial self-stimulation. Soc. Neurosci. Abstr. 8, 624.

    Google Scholar 

  • Fouriezos G. and Wise R. A. (1976) Pimozide-induced extinction of intracranial self-stimulation: Response patterns rule out motor or performance deficits. Brain Res. 103, 377–380.

    Article  PubMed  CAS  Google Scholar 

  • Fouriezos G. and Wise R. A. (1984) Current-distance relation for rewarding brain stimulation. Behav. Brain Res. 14, 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Fouriezos G., Hansson P., and Wise R. A. (1978) Neuroleptic-induced attenuation of brain stimulation reward in rats. J. Comp. Physiol. Psychol. 92, 661–671.

    Article  PubMed  CAS  Google Scholar 

  • Francis N., Marley E., and Stephenson J. D. (1978) Effects of spiperone on self-stimulation and other activities of the mongolian gerbil. Br. J. Pharmacol 63, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Frank R, A. and Williams H. P. (1985) Both response effort and current intensity affect self-stimulation train duration thresholds. Pharmacol. Biochem. Behav. 22, 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Frank R. A,, Markou A., and Wiggins L. L. (1987) A systematic evaluation of the properties of self-stimulation train duration response functions. Behav. Neurosci., 101, 546–559.

    Article  PubMed  CAS  Google Scholar 

  • Franklin K. B. J. (1978) Catecholamines and self-stimulation: Reward and performance effects dissociated. Pharmacol. Biochem. Behav. 9, 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Franklin K. B. J. and McCoy S. N. (1979) Pimozide-induced extinction in rats: Stimulus control of responding rules out motor deficit. Pharmacol. Biochem. Behav. 11, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Franklin K. B. J. and Robertson A. (1982) Effects and interactions of naloxone and amphetamine on self-stimulation of the prefrontal cortex and dorsal tegmentum. Pharmacol. Biochem. Behav. 16, 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Gallistel C. R. (1974) Note on temporal summation in the reward system. J. Comp. Physiol. Psychol. 87, 870–875.

    Article  PubMed  CAS  Google Scholar 

  • Gallistel C. R. (1981) Subcortical Stimulation for Motivation and Reinforcement, in Electrical Stimulation Research Techniques (Patterson M. M. and Kesner R. P., eds.) Academic, New York.

    Google Scholar 

  • Gallistel C. R. and Davis A. J. (1983) Affinity for the dopamine D2 receptor predicts neuroleptic potency in blocking the reinforcing effect of MFB stimulation. Pharmacol. Biochem. Behav. 19, 867–872.

    Article  PubMed  CAS  Google Scholar 

  • Gallistel C. R. and Karras D. (1984) Pimozide and amphetamine have opposing effects on the reward summation function. Pharmacol. Biochem. Behav. 20, 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Gallistel C. R., Shizgal P., and Yeomans J. S. (1981) A portrait of the substrate for self-stimulation. Psychol. Rev. 88, 228–273.

    Article  PubMed  CAS  Google Scholar 

  • Gallistel C. R., Boytim M., Gomita Y., and Klebanoff L. (1982) Does pimozide block the reinforcing effect of brain stimulation? Pharmacol. Biochem. Behav. 17, 769–781.

    Article  PubMed  CAS  Google Scholar 

  • Gallistel C. R., Gomita Y., Yadin E., and Campbell K. A. (1985) Forebrain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide. J. Neurosci. 5, 1246–1261.

    PubMed  CAS  Google Scholar 

  • Gerhardt S. and Liebman J. M. (1981) Differential effects of drug treatments on nose-poke and bar-press self-stimulation. Pharmacol. Biochem. Behav. 15, 767–771.

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt S., Prowse J., and Liebman J. M. (1982) Anxiolytic drugs selectively increase preferred duration of rewarding brain stimulation in a shuttlebox test. Pharmacol. Biochem. Behav. 16, 795–799.

    Article  PubMed  CAS  Google Scholar 

  • German D. C. and Bowden D. M. (1974) Catecholamine systems as the neural substrate for intracranial self-stimulation: A hypothesis. Brain Res. 73, 381–419.

    Article  PubMed  CAS  Google Scholar 

  • Graeff F. G. (1981) Minor tranquilizers and brain defense systems. Brazilian J. Med. Biol. Res. 14, 239–265.

    CAS  Google Scholar 

  • Graeff F. G. (1984) The anti-aversive action of minor tranquilizers. Trends Pharmacol. Sci. 5, 230–233.

    Article  CAS  Google Scholar 

  • Gratton A. and Wise R. A. (1985) Hypothalamic reward mechanism: Two first-stage fiber populations with a cholinergic component. Science 227, 545–548.

    Article  PubMed  CAS  Google Scholar 

  • Greenshaw A. J. (1985) Electrical and Chemical Stimulation of Brain Tissue In Vivo, in Neuromethods: General Neurochemical Techniques (Boulton A. A. and Baker G. B., eds.) Humana, Clifton, New Jersey.

    Google Scholar 

  • Greenshaw A. J., Blackman D. E., and Thomas G. V. (1981a) Microcomputers in operant conditioning laboratories: Some general comments. Behav. Anal. Lett. 1, 237–240.

    Google Scholar 

  • Greenshaw A. J., Sanger D. J., and Blackman D. E. (1981b) The effects of pimozide and of reward omission on fixed-interval behavior of rats maintained by food and electrical brain stimulation. Pharmacol. Biochem, Behav. 15, 227–233.

    Article  CAS  Google Scholar 

  • Greenshaw A. J., Sanger D. J., and Blackman D. E. (1983) Effects of chlordiazepoxide on the self-regulated duration of lateral hypothalamic stimulation in rats. Psychopharmacology 81, 236–238.

    Article  PubMed  CAS  Google Scholar 

  • Greenshaw A. J., Aleksanyan Z. A., Kundu S. N., Bracha V., and Bures J. (1985) A response-specific conditioned aversion to rewarding hypothalamic stimulation in rats. Brain Res. 339, 130–135.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton A. L., Stellar J. R., and Hart E. B. (1985) Reward, performance and the response strength method in self-stimulating rats: Validation and neuroleptics. Physiol. Behav. 35, 897–904.

    Article  PubMed  CAS  Google Scholar 

  • Hand T. H. and Franklin K. B. J. (1983) The influence of amphetamine on preference for lateral hypothalamic versus prefrontal cortex or ventral tegmental area self-stimulation. Pharmacol. Biochem. Behav. 18, 695–699.

    Article  PubMed  CAS  Google Scholar 

  • Hand T. H. and Franklin K. B. J. (1986) Associative factors in the effects of morphine on self-stimulation. Psychopharmacology 88, 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Herrnstein R. J. (1974) Formal properties of the matching law. J. Exp. Anal. Behav. 21, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Hess W. R. (1954) Diencepalon: Autonomic and extrapyramidal functions. Grune and Stratton, New York.

    Google Scholar 

  • Hirschorn I. D., Hayes R. L., and Rosecrans J. A. (1975) Discriminative control of behavior by electrical stimulation of the dorsal raphe nucleus: Generalization to lysergic acid diethylamide (LSD). Brain Res. 86, 134–138.

    Article  Google Scholar 

  • Hodos W. and Valenstein E. S. (1962) An evaluation of response rate as a measure of rewarding intracranial stimulation. J. Comp. Physiol. Psychol. 55, 1962.

    Article  Google Scholar 

  • Hunt G. E., Atrens D. M., Becker F. T., and Paxinos G. (1978) α-Adrenergic modulation of hypothalamic self-stimulation: Effects of phenoxybenzamine, yohimbine, dexamphetamine and their interactions with clonidine. Eur. J. Pharmacol. 53, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Huston J. P. and Borbely A. A. (1973) Operant conditioning in forebrain ablated rats by use of rewarding hypothalamic stimulation. Brain Res. 50, 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Huston J. P. and Mills A. W. (1971) Threshold of reinforcing brain stimulation. Commun. Behav. Biol. 5, 331–340.

    PubMed  CAS  Google Scholar 

  • Isaacson R. L. (1981) Brain Stimulation Effects Related to Those of Lesions, in Electrical Stimulation Research Techniques (Patterson M. M. and Kesner R. P., eds.) Academic, New York.

    Google Scholar 

  • Jenck F., Schmitt P., and Karli P. (1983) Morphine applied to the mesencephalic central gray suppresses brain stimulation induced escape. Pharmacol. Biochem. Behav. 19, 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins O. F., Atrens D. M., and Jackson D. M. (1983) Self-stimulation of the nucleus accumbens and some comparisons with hypothalamic self-stimulation. Pharmacol. Biochem. Behav. 18, 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Katz R. J. (1981) The temporal structure of motivation. IV. A reexamination of extinction effects in intracranial reward. Behav. Neural Biol. 32, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Keesey R. E. (1962) The relation between pulse frequency, intensity, and duration and the rate of responding for intracranial stimulation. J. Comp. Physiol. Psychol. 55, 671–678.

    Article  PubMed  CAS  Google Scholar 

  • Kiser R. S. and German D. C. (1978) Opiate effects on aversive midbrain stimulation in rats. Neurosci. Lett. 10, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Kiser R. S. and Lebovitz R. M. (1975) Monoaminergic mechanisms in aversive brain stimulation. Physiol. Behav. 15, 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Kiser R. S., Lebovitz R. M., and German D. C. (1978) Anatomic and pharmacologic differences between two types of aversive midbrain stimulation. Brain Res. 155, 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Koob G. F. (1977) Incentive shifts in intracranial self-stimulation produced by different series of stimulus intensity presentations. Physiol. Behav. 18, 131–135.

    Article  PubMed  CAS  Google Scholar 

  • Koob G. F., Winger G. D., Meyerhoff J. L., and Annau Z. (1977) Effects of d-amphetamine on concurrent self-stimulation of forebrain and brain stem loci. Brain Res. 137, 109–126.

    Article  PubMed  CAS  Google Scholar 

  • Kornetsky C. and Esposito R. U. (1981) Reward and detection thresholds for brain stimulation: Dissociative effects of cocaine. Brain Res. 209, 496–500.

    Article  PubMed  CAS  Google Scholar 

  • Kucharski L. T., Williams J. E. G., and Kornetsky C. (1983) The effects of levonantradol on rewarding brain stimulation thresholds in the rat. Pharmacol. Biochem. Behav. 19, 149–151.

    Article  PubMed  CAS  Google Scholar 

  • Lappuke R., Schmitt P., and Karli P. (1982) Discriminative properties of aversive brain stimulation. Behav. Neural Biol. 34, 159–179.

    Article  PubMed  CAS  Google Scholar 

  • Leith N. J. and Barrett R. J. (1980) Effects of chronic amphetamine or reserpine on self-stimulation responding: Animal model of depression? Psychopharmacology 72, 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Leith N. J. and Barrett R. J. (1981) Self-stimulation and amphetamine: Tolerance to d and l isomers and cross tolerance to cocaine and methylphenidate. Psychopharmacology 74, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Leroux A. G. and Myers R. D. (1975a) Action of serotonin microinjected into hypothalamic sites at which electrical stimulation produced aversive reactions in the rat. Physiol. Behav. 14, 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Leroux A. G. and Myers R. D. (1975b) New multi-purpose chemitrodes for electrical and chemical stimulation or localized perfusion of the brain. Pharmacol. Biochem. Behav. 3, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Levitt R. A., Baltzer J. H., Evers T. M., Stilwell D. J., and Furby, J. E. (1977) Morphine and shuttlebox self-stimulation in the rat: A model for euphoria. Psychopharmacology 54, 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Liebman J. M. (1983) Discriminating between reward and performance: A critical review of intracranial self-stimulation methodology. Neurosci. Biobehav. Rev. 7, 45–72.

    Article  PubMed  CAS  Google Scholar 

  • Liebman J. M. (1985) Anxiety, anxiolytics and brain stimulation reinforcement. Neurosci. Biobehav. Rev. 9, 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Liebman J. M. and Segal D. S. (1977) Differential effects of morphine and d-amphetamine on self-stimulation from closely adjacent regions in rat midbrain. Brain Res. 136, 103–117.

    Article  PubMed  CAS  Google Scholar 

  • Liebman J. M., Mayer D. J., and Liebeskind J. C. (1973) Self-stimulation loci in the midbrain central gray matter of the rat. Behav. Biol. 9, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Liebman J. M., Hall N., and Prowse J. (1982) Effects of various catecholamine receptor antagonists, muscle relaxation and physical hindrance on shuttlebox self-stimulation. Pharmacol Biochem. Behav. 16, 785–790.

    Article  PubMed  CAS  Google Scholar 

  • Liebman J. M., Hall N. R., Prowse J., Gerhardt S., Noreika L., and Fenton H. M. (1984) Comparative effects of beta-2 adrenoceptor agonists on intracranial self-stimulation, Sidman avoidance, and motor activity in rats. Psychopharmacology 84, 336–341.

    Article  PubMed  CAS  Google Scholar 

  • Lynch M. R. and Wise R. A. (1985) Relative effectiveness of pimozide, haloperidol and trifluoperazine on self-stimulation rate-intensity functions. Pharmacol. Biochem. Behav. 23, 777–780.

    Article  PubMed  CAS  Google Scholar 

  • Lyons H. I. and Freedman N. L. (1982) Task-dependent properties of brain stimulation reward. Behav. Brain Res. 4, 339–358.

    Article  PubMed  CAS  Google Scholar 

  • Marcus R. and Kornetsky C. (1974) Negative and positive intracranial reinforcement thresholds: Effects of morphine. Psychopharmacologia (Berl.) 38, 1–13.

    Article  CAS  Google Scholar 

  • Mason P. A., Milner P. M., and Miousse R. (1985) Preference paradigm: Provides better self-stimulation reward discrimination than a rate-dependent paradigm. Behav. Neural Biol. 44, 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Maxim P. E. (1977) Self-stimulation of a hypothalamic site in response to tension or fear. Physiol. Behav. 18, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson J. and Freed W. J. (1973) Do rats terminate hypothalamic stimulation only in order to turn it on again? Behav. Biol. 8, 619–628.

    Article  PubMed  CAS  Google Scholar 

  • Miliaressis E. (1977) Serotonergic basis of reward in median raphe of the rat. Pharmacol. Biochem. Behav. 7, 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Miliaressis E. (1986) The curve-shift paradigm in self-stimulation. Physiol. Behav. 37, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Miller N. E. (1957) Objective Techniques for Studying Motivational Effects of Drugs on Animals, in Psychotropic Drugs (Garattini S. and Ghetti V., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Miller N. E. (1960) Motivational effect of brain stimulation and drugs. Fed. Proc. 19, 846–854.

    PubMed  CAS  Google Scholar 

  • Montgomery C. E., Apicella S. X., Inzerillo J., and Sinnamon H. M. (1981) Latency to turn ICSS off and on: On time is more sensitive than off time to frequency and current variations. Physiol. Behav. 26, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Mora F. (1978) The neurochemical substrates of prefrontal cortex self-stimulation: A review and an interpretation of some recent data. Life Set. 22, 919–930.

    Article  CAS  Google Scholar 

  • Morato de Carvalho S., De Aguiar J. C, and Graeff F. G. (1981) Effect of minor tranquilizers, tryptamine antgonists and amphetamine on behavior punished by brain stimulation. Pharmacol. Biochem. Behav. 15, 351–356.

    Google Scholar 

  • Moreau J.-L., Schmitt P., and Karli P. (1985) Morphine applied to the ventral tegmentum differentially affects centrally and peripherally induced aversive effects. Pharmacol. Biochem. Behav. 23, 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima S. and McKenzie G. M. (1986) Reduction of the rewarding effect of brain stimulation by a blockade of dopamine Dl receptor with SCH 23390. Pharmacol. Biochem. Behav. 24, 919–923.

    Article  PubMed  CAS  Google Scholar 

  • Nelson W. T. Jr., Steiner S. S., Brutus M., Farrell R., and Ellman S. J. (1981) Brain site variations in effects of morphine on electrical self-stimulation. Psychopharmacology 74, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Olds M. E. (1966) Facilitatory action of diazepam and chlordiazepoxide on hypothalamic reward behavior. J. Comp. Physiol. Psychol. 62, 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Olds M. E. (1975) Effects of intraventricular 6-hydroxydopamine and replacement therapy with norepinephrine, dopamine and serotonin on self-stimulation in diencephalic and mesencephalic regions in the rat. Brain Res. 98, 327–342.

    Article  PubMed  CAS  Google Scholar 

  • Olds M. E. and Domino E. F. (1969) Differential effects of cholinergic agonists on self-stimulation and escape behavior. J. Pharmacol. Exp. Ther. 170, 157–167.

    PubMed  CAS  Google Scholar 

  • Olds J. and Milner P. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Olds J. and Travis R. P. (1960) Effects of chlorpromazine, meprobamate, pentobarbital and morphine on self-stimulation. J. Pharmacol. Exp. Ther. 128, 397–404.

    PubMed  CAS  Google Scholar 

  • Olds J., Killam K. F., and Bach-y-Rita P. (1956) Self-stimulation of the brain used as a screening method for tranquilizing drugs. Science 124, 265–266.

    Article  PubMed  CAS  Google Scholar 

  • Olds M. E., Hogberg D., and Olds J. (1964) Tranquilizer action on thalamic and midbrain escape behavior. Am. J. Physiol. 206, 515–520.

    PubMed  CAS  Google Scholar 

  • Ornstein K. and Huston J. P. (1977) Interaction between morphine and reinforcing lateral hypothalamic stimulation. Psychopharmacology 54, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J. (1986) The neurochemistry of behavior. Ann. Rev. Psychol. 37, 77–107.

    Article  CAS  Google Scholar 

  • Panksepp J. and Trowill J. A. (1970) Positive incentive contrast with rewarding electrical stimulation of the brain. J. Comp. Physiol. Psychol. 70, 358–363.

    Article  Google Scholar 

  • Panksepp J., Gandelman R., and Trowill J. (1970) Modulation of hypothalamic self-stimulation and escape behavior by chlordiaz-epoxide. Physiol. Behav. 5, 965–969.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1982) The Rat Brain in Stereotaxic Coordinates Academic, Sydney.

    Google Scholar 

  • Phillips A. G. (1984) Brain reward circuitry: A case for separate systems. Brain Res. Bull 12, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Phillips A. G. and Fibiger H. C. (1979) Decreased resistance to extinction after haloperidol: Implications for the role of dopamine in reinforcement. Pharmacol. Bwchem. Behav. 10, 751–760.

    Article  CAS  Google Scholar 

  • Phillips A. G. and LePiane F. G. (1986) Effects of pimozide on positive and negative incentive contrast with rewarding brain stimulation. Pharmacol. Biochem. Behav. 24, 1577–1582.

    Article  PubMed  CAS  Google Scholar 

  • Phillips A. G., Cox V. C., Kakolewski J. W., and Valenstein E. S. (1969) Object-carrying by rats: An approach to the behavior produced by brain stimulation. Science 166, 903–905.

    Article  PubMed  CAS  Google Scholar 

  • Poschel B. P. H. (1966) Comparison of reinforcing effects yielded by lateral versus medial hypothalamic stimulation. J. Comp. Physiol. Psychol. 61, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Poschel B. P. H. and Ninteman F. W. (1965) Self-determined aversive thresholds from the medial hypothalamus of the rat. Psychol. Rep. 16, 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Prado-Alcala R., Streather A., and Wise R. A. (1984) Brain stimulation reward and dopamine terminal fields. II. Septal and cortical projections. Brain Res. 301, 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Robertson A., Kucharczyk J., and Mogenson G. J. (1976) Subfornical organ: A site of brain stimulation. Brain Res. 114, 511–516.

    Article  PubMed  CAS  Google Scholar 

  • Robertson A., LaFerriere A., and Franklin K. B. J. (1981) Amphetamine and increases in current intensity modulate reward in the hypothalamus and substantia nigra but not in the prefrontal cortex. Physiol. Behav. 26, 809–813.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld J. P. and Rice P. E. (1979) Effects of naloxone on aversive trigeminal and thalamic stimulation, and on peripheral nociception: A hypothesis of selective action and variability in naloxone testing. Brain Res. 178, 609–612.

    Article  PubMed  CAS  Google Scholar 

  • Ross A. R. (1973) A simple method for determining relative reward value of brain stimulation. Physiol. Behav. 11, 399–401.

    Article  PubMed  CAS  Google Scholar 

  • Sasson S. and Kornetsky C. (1983) Naloxone lowers brain-stimulation escape thresholds. Pharmacol. Biochem. Behav. 18, 231–233.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer G. J. and Holtzman S. G. (1979) Free-operant and auto-titration brain self-stimulation procedures in the rat: A comparison of drug effects. Pharmacol. Biochem. Behav. 10, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer G. J. and Michael R. P. (1980) Acute effects of neuroleptics on brain self-stimulation thresholds in rats. Psychopharmacology 67, 9–15.

    Article  Google Scholar 

  • Schaefer G. J and Michael R. P. (1981) Threshold differences for naloxone and naltrexone in the hypothalamus and midbrain using fixed ratio brain self-stimulation in rats. Psychopharmacology 74, 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer G. J. and Michael R. P. (1985a) Effects of opioid antagonists and their quaternary derivatives on locomotor activity and fixed ratio responding for brain self-stimulation in rats. Pharmacol. Biochem. Behav. 23, 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer G. J. and Michael R. P. (1985b) The discriminative stimulus properties and detection thresholds of intracranial self-stimulation: Effects of d-amphetamine, morphine and haloperidol. Psychopharmacology 85, 289–294.

    Article  Google Scholar 

  • Schenberg L. C. and Graeff F. G. (1978) Role of the periaqueductal gray substance in the antianxiety action of benzodiazepines. Pharmacol. Biochem. Behav. 9, 287–295.

    Article  PubMed  CAS  Google Scholar 

  • Schenk S., Coupal A., Williams T., and Shizgal P. (1981) A within-subject comparison of the effects of morphine on lateral hypothalamic and central gray self-stimulation. Pharmacol. Biochem. Behav. 15, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Schenk S., Williams T., Coupal A., and Shizgal P. (1980) A comparison between the effects of morphine on the rewarding and aversive properties of lateral hypothalamic and central gray stimulation. Physiol. Psychol. 8, 372–378.

    CAS  Google Scholar 

  • Schmitt P. and Karli P. (1981) Decours temporel des effets aversif et appetif induits par stimulation intracerebrale. Physiol. Behav. 26, 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt P., Sandner G., and Karli P. (1981) Escape and approach induced by brain stimulation: A parametric analysis. Behav. Brain Res. 2, 49–79.

    Article  PubMed  CAS  Google Scholar 

  • Schutz M. T. B., de Aguiar J. C, and Graeff, F. G. (1985) Anti-aversive role of serotonin in the dorsal periaqueductal grey matter. Psychopharmacology 85, 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Seeger T. F., Carlson K. R., and Nazzaro J. M. (1981) Pentobarbital induces a naloxone-reversible decrease in mesolimbic self-stimulation threshold. Pharmacol. Biochem. Behav. 15, 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Sem-Jacobsen C. W. (1976) Electrical Stimulation and Self-Stimulation in Man with Chronic Implanted Electrodes. Interpretation and Pitfalls of Results, in Brain-Stimulation Reward (Wauquier A. and Rolls E. T., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Shaw S. G., Vives F., and Mora F. (1984) Opioid peptides and self-stimulation of the medial prefrontal cortex in the rat. Psychopharmacology 83, 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Shettleworth S. J. and Juergensen M. R. (1980) Reinforcement and the organization of behavior in golden hamsters: Brain stimulation reinforcement for seven action patterns. J. Exp. Psychol: Anitn. Behav. Proc. 6, 352–375.

    Article  CAS  Google Scholar 

  • Sidman M. (1960) Tactics of Scientific Research Basic Books, New York, p. 297.

    Google Scholar 

  • Sidman M., Brady J. V., Boren J. J., and Conrad D. G. (1955) Reward schedules and behavior maintained by intracranial self-stimulation. Science 122, 830–831.

    Article  PubMed  CAS  Google Scholar 

  • Simon H., Stinus L., Tassin J. P., Lavielle S., Blanc G., Thierry A., Glowinski J., and Le Moal M. (1979) Is the dopaminergic mesocorticolimbic system necessary for intracranial self-stimulation? Behav. Neural Biol. 27, 125–145.

    Article  PubMed  CAS  Google Scholar 

  • Sinden J. D. and Atrens D. M. (1983) Dopaminergic and noradrenergic inhibition of hypothalamic self-stimulation: Differentiation of reward and performance effects. Eur. J. Pharmacol. 86, 237–246.

    Article  Google Scholar 

  • Spence S. J., Silverman J. A., and Corbett D. (1985) Cortical and ventral tegmental systems exert opposing influences on self-stimulation from the prefrontal cortex. Behav. Brain Res. 17, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Spencer J. and Revzin A. (1976) Amphetamine, chlorpromazine and clonidine effects on self-stimulation in caudate or hypothalamus of the squirrel monkey. Pharmacol. Biochem. Behav. 5, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Stein L. (1968) Chemistry of Reward and Punishment, in Psychopharmacology: A Review of Progress (Efron D. H., ed.) US Government Printing Office, Washington, DC.

    Google Scholar 

  • Stein L. and Ray O. S. (1960) Brain stimulation reward “thresholds” self-determined in rat. Psychopharmacologia 1, 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Stellar J. R. and Stellar E. (1985) The Neurobiology of Motivation and Reward Springer-Verlag, New York.

    Book  Google Scholar 

  • Stellar J. R., Kelley A. E., and Corbett D. (1983) Effects of peripheral and central dopamine blockade on lateral hypothalamic self-stimulation: Evidence for both reward and motor deficits. Pharmacol. Biochem. Behav. 18, 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Stiglick A. and White N. (1977) Effects of lesions of various medial forebrain bundle components on lateral hypothalamic self-stimulation. Brain Res. 133, 45–63.

    Article  PubMed  CAS  Google Scholar 

  • Stutz R. M., Butcher R. E., and Rossi R. (1969) Stimulus properties of reinforcing brain shock. Science 163, 1081–1082.

    Article  PubMed  CAS  Google Scholar 

  • Stutz R. M., Rossi R. R., Hastings L., and Brunner R. L. (1974) Discriminability of intracranial stimuli: The role of anatomical connectedness. Physiol. Behav. 12, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland R. J. and Nakajima S. (1981) Self-stimulation of the habenular complex in the rat. J. Comp. Physiol. Psychol. 95, 781–791.

    Article  PubMed  CAS  Google Scholar 

  • Unterwald E. M. and Kornetsky C. (1984) Effects of concomitant pentazocine and tripelennamine on brain-stimulation reward. Pharmacol Biochem. Behav. 21, 961–964.

    Article  PubMed  CAS  Google Scholar 

  • Valenstein E. S. (1964) Problems of measurement and interpretation with reinforcing brain stimulation. Psychol. Rev. 71, 415–437.

    Article  PubMed  CAS  Google Scholar 

  • Valenstein E. S., Cox V. C, and Kakolewski J. W. (1970) Reexamination of the role of the hypothalamus in motivation. Psychol Rev. 77, 16–31.

    Article  PubMed  CAS  Google Scholar 

  • Van der Kooy D. and Phillips A. G. (1979) Involvement of the trigeminal motor system in brain stem self-stimulation and stimulation-induced behavior. Brain Behav. Evol 16, 293–314.

    Article  PubMed  Google Scholar 

  • Van der Kooy D., Schiff B. B., and Steele D. (1978) Response-dependent effects of morphine on lateral hypothalamic self-stimulation. Psychopharmacology 58, 63–67.

    Article  PubMed  Google Scholar 

  • Van Wolfswinkel L. and Van Ree J. M. (1985a) Differential effect of naloxone on food and self-stimulation rewarded acquisition of a behavioral response pattern. Pharmacol. Biochem. Behav. 23, 199–202.

    Article  PubMed  Google Scholar 

  • Van Wolfswinkel L. and Van Ree J. M. (1985b) Effects of morphine and naloxone on thresholds of ventral tegmental electrical self-stimulation. Naunyn Schmiedebergs Arch. Pharmacol. 330, 84–92.

    Article  PubMed  Google Scholar 

  • Van Wolfswinkel L. and Van Ree J. M. (1985c) Site of rewarding action of morphine in the mesolimbic system determined by intracranial electrical self-stimulation. Brain Res. 358, 349–353

    Article  PubMed  Google Scholar 

  • Vives F. and Mora F. (1986) Effects of agonists and antagonists of cholinergic receptors on self-stimulation of the medial prefrontal cortex of the rat. Gen. Pharmacol. 17, 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Wada J. A. and Matsuda M. (1971) Learned escape behavior induced by brain electrical stimulation and various neuroactive agents. Exp. Neurol. 32, 357–365.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman E. M., Gomita Y., and Gallistel C. R. (1982) Pimozide blocks reinforcement but not priming from MFB stimulation in the rat. Pharmacol. Biochem. Behav. 17, 783–787.

    Article  PubMed  CAS  Google Scholar 

  • West C. H. K., Schaefer G. J., and Michael R. P. (1983) Increasing the work requirements lowers the threshold of naloxone for reducing self-stimulation in the midbrain of rats. Pharmacol. Biochem. Behav. 18, 705–710.

    Article  PubMed  CAS  Google Scholar 

  • Wheeling H. S. and Kornetsky C. (1984) Effects of antipsychotic drugs on brain-stimulation detection: Preliminary observations. Pharmacol. Biochem. Behav. 21, 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Wheeling H. S., Sasson S., and Kornetsky C. (1981) Tolerance to the effect of morphine on escape from reticular formation stimulation. Subst. Ale. Actions/Misuse 2, 107–114.

    CAS  Google Scholar 

  • White N. (1976) Strength-duration analysis of the organization of reinforcement pathways in the medial forebrain bundle of rats. Brain Res. 110, 575–591.

    Article  PubMed  CAS  Google Scholar 

  • White N., Brown Z., and Yachnin M. (1978) Effects of catecholamine manipulations on three different self-stimulation behaviors. Pharmacol. Biochem. Behav. 9, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Wolf G. (1971) Elementary Histology for Neuropsychologists, in Methods in Psychobiology (Myers R. D., ed.) Academic, New York.

    Google Scholar 

  • Yeomans J. S., Kofman O., and McFarlane V. (1985) Cholinergic involvement in lateral hypothalamic rewarding brain stimulation. Brain Res. 329, 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Zacharko R. M. and Wishart T. B. (1979) Facilitation of self-stimulation with high doses of amphetamine in the rat. Psychopharmacology 64, 247–248.

    Article  PubMed  CAS  Google Scholar 

  • Zarevics P. and Setler P. E. (1979) Simultaneous rate-independent and rate-dependent assessment of intracranial self-stimulation: Evidence for the direct involvement of dopamine in brain reinforcement mechanisms. Brain Res. 169, 499–512.

    Article  PubMed  CAS  Google Scholar 

  • Zarevics P. and Setler P. E. (1981) Effects of GABAergic drugs on brain stimulation reward as assessed by a ‘threshold’ method. Brain Res. 215, 201–209.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this protocol

Cite this protocol

Liebman, J.M. (1989). Drug Effects on Behaviors Maintained by Electrical Brain Stimulation. In: Boulton, A.A., Baker, G.B., Greenshaw, A.J. (eds) Psychopharmacology. Neuromethods, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-129-2:447

Download citation

  • DOI: https://doi.org/10.1385/0-89603-129-2:447

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-129-6

  • Online ISBN: 978-1-59259-618-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics