Skip to main content

Conditioned Drug Effects on Spatial Preference

Critical Evaluation

  • Protocol
Psychopharmacology

Part of the book series: Neuromethods ((NM,volume 13))

Abstract

The study of the neural substrates of reinforcement has been facilitated greatly by the diversity of behavioral indices of reinforcement accessible to investigators. Intracranial self-stimlation (ICSS), intravenous self-administration (SA), conditioned approach/avoidance, conditioned taste preference/aversion, and place conditioning (PC) paradigms are distinct tools for studying reinforcement, each with particular advantages that can be manipulated to optimally address questions of interest. In a simple version of the PC paradigm (Fig. 1), animals experience two distinct neutral environments paired spatially and temporally with distinct unconditioned stimuli (UCS). These animals are later given an opportunity to enter either environment, and the time spent in each environment is used as an index of the reinforcing value of each UCS. A reinforcer is operationally defined here as any event that “increases the probability of a response.” Animals spend more time in environments paired with appetitive reinforcers than in those paired with neutral stimuli; conversely, animals spend less time in environments paired with aversive reinforcers than in those paired with neutral stimuli. This choice to spend more or less time in an environment is assumed to be the animals’ expression of their appetitive or aversive experience within that environment; with a positive reinforcing UCS, the previously neutral environmental cues become secondary positive reinforcers, whereas with an aversive UCS, the paired environmental cues become secondary negative reinforcers.

Simple version of the place conditioning paradigm. Animals experience two distinct neutral environments (here “black” and “white” shaded) paired spatially and temporally with distinct unconditioned stimuli (here “drug” on days 2, 4, and 6, and “saline” on days 3, 5, and 7). Later (day 8), animals are given an opportunity to enter either environment, and the time spent in each environment is used as an index of the reinforcing value of each UCS. These time values are often compared to a “baseline” preference for each environment (here, measured day 1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advokat C. (1985) Evidence of place conditioning after chronic intrathecal morphine in rats. Pharmacol. Biochem. Behav. 22, 271–277.

    PubMed  CAS  Google Scholar 

  • Amalric M., Blasco T. A., Smith N. T., Lee D. E., Swerdlow N. R., and Koob G. F. (1986a) “Catatonia” produced by alfentanil is reversed by methylnaloxomum microinjections into the brain. Brain Res 386, 287–295.

    PubMed  CAS  Google Scholar 

  • Amalric M., Chne E. J, Martinez J. L. Jr., Bloom F. E., and Koob G. F. (1986b) Rewarding properties of beta-endorphin as measured by conditioned place preference. Psychopharmacology 91, 14–19.

    Google Scholar 

  • Asin K. E. and Wirtshafter D (1985) Clomdine produces a conditioned place preference in rats. Psychopharmacology 85, 383–385.

    PubMed  CAS  Google Scholar 

  • Asm K. E., Wirtshafter D., and Tabakoff B. (1983) Conditioned place preference and ethanol. Soc Neurosci. Abstr. 9, 1241.

    Google Scholar 

  • Asin K. E., Wirtshafter D., and Tabakoff B. (1985) Failure to establish a conditioned place reference with ethanol in rats. Pharmacol. Biochem. Behav. 22, 169–173.

    PubMed  CAS  Google Scholar 

  • Balster R. L. and Schuster C. R. (1973) A comparison of d-amphetamine, amphetamine and methamphetamine self-administration in Resus monkeys. Pharmacol Biochem. Behav 1, 67–71.

    PubMed  CAS  Google Scholar 

  • Bardo M. T., Miller J. S., and Neisewander J. L. (1984) Conditioned place preference with morphine: The effect of extinction training on the reinforcing CR. Pharmacol Biochem. Behav. 21, 545–549.

    PubMed  CAS  Google Scholar 

  • Barr G. A., Paredes W., and Bridger W. H. (1985) Place conditioning with morphine and phencyclidine. Dose dependent effects. Life Sci. 36, 363–368.

    PubMed  CAS  Google Scholar 

  • Beach H. D. (1957) Morphine addiction in rats. Can. J. Psychol. 11, 104–112.

    PubMed  CAS  Google Scholar 

  • Bechara A. and van der Kooy D. (1985) Opposite motivational effects of endogenous opiods in brain and periphery. Nature 314, 533–534.

    PubMed  CAS  Google Scholar 

  • Best P. J., Best M. R., and Mickley G. A. (1973) Conditioned aversion to distinct environmental stimuli resulting from gastrointestinal distress. J. Comp Physiol. Psychol 85, 250–257

    PubMed  CAS  Google Scholar 

  • Blackburn J. R. and Phillips A. G. (1986) Dopamine and preparatory behavior. I. Effects of pimozide, submitted.

    Google Scholar 

  • Black R. W., Albiniak T., Davis M., and Schumpert J. (1973) A preference in rats for cues associated with intoxication. Bull. Psychonom. Soc. 2, 423–424.

    Google Scholar 

  • Blander A., Hunt T., Blair R., and Amit Z. (1984) Conditioned place preference An evaluation of morphine’s positive reinforcing properties. Psychopharmacology 84, 124–127.

    PubMed  CAS  Google Scholar 

  • Bozarth M. A. and Wise R. A. (1981) Heroin reward is dependent upon a dopaminergic substrate. Life Sci. 29, 1881–1886.

    PubMed  CAS  Google Scholar 

  • Byck R. and Van Dyke C. (1977) What Are the Effects of Cocaine in Man?, in NIDA Research Monograph (Peterson R. C. and Stillman R. C., eds.) US Government Printing Office, Washington, DC.

    Google Scholar 

  • Carroll M. E., France C. P., and Meisch R. A. (1981) Intravenous self-administration of etonitazene, cocaine and phencyclidine in rats during food deprivation and satiation. J. Pharmacol. Exp. Ther. 217, 241–247.

    PubMed  CAS  Google Scholar 

  • Carr G. D. and White N. M. (1983) Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sci. 33, 2551–2557.

    PubMed  CAS  Google Scholar 

  • Carr G. D., Phillips A. G., and Fibiger H. C. (1987) Independence of amphetamine reward from locomotor stimulation demonstrated by conditioned place preference, Psychopharmacology, in press.

    Google Scholar 

  • Cunningham C. L. (1979) Flavor and location aversions produced by ethanol. Behav. Neural Biol. 27, 362–367.

    PubMed  CAS  Google Scholar 

  • Cunningham C. L. (1980) Spatial aversion conditioning with ethanol. Pharmacol. Biochem. Behav. 14, 263–264.

    Google Scholar 

  • Dackis C. A and Gold M. S. (1985) New concepts in cocaine addiction: The dopamine depletion hypothesis. Neurosci. Biobehav. Rev. 9, 469–477.

    PubMed  CAS  Google Scholar 

  • Davis W. M. and Smith S. G. (1977) Catecholamine mechanisms of reinforcement: Direct assessment by drug self-administration. Life Sci. 20, 483–492.

    PubMed  CAS  Google Scholar 

  • Deneau G. A., Yanagita T., and Seevers M. H. (1969) Self-administration of psychoactive substances by the monkeys. Psychopharmacolgica 16, 30–48.

    CAS  Google Scholar 

  • De Wit H. and Wise R. A. (1977) Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine and phenoxybenzamine. Can. J. Psychol. 31, 195–203.

    PubMed  Google Scholar 

  • di Scala G., Martin-Iverson M. T., Phillips A. G., and Fibiger H. C. (1985) The effects of progabide (SL 76002) on locomotor activity and conditioned place preference induced by d-amphetamine. Eur. J. Pharmacol. 107, 271–274.

    PubMed  Google Scholar 

  • Esposito R. and Kornetsky C. (1977) Morphine lowering of self-stimulation thresholds: Lack of tolerance with long-term administration. Science 95, 189–191.

    Google Scholar 

  • Ettenberg A., Petit H. O., Bloom F. E., and Koob G. F. (1982) Heroin and cocaine self-administration in rats: Mediation by separate neural systems, Psychopharmacology 78, 204–209.

    PubMed  CAS  Google Scholar 

  • Ettenberg A., van der Kooy D., Le Moal M., Koob G. F., and Bloom F. E. (1983) Can aversive properties of peripherally-injected vasopressin account for its putative role in memory? Behav. Brain Res. 7, 331–350.

    PubMed  CAS  Google Scholar 

  • Fibiger H. C., Carter D. A., and Phillips A. G. (1976) Decreased intracranial mediation by motor deficits rather than by reduced reward. Psychopharmacology 47, 21–27.

    PubMed  CAS  Google Scholar 

  • Fudala P. J., Teoh K. W., and Iwamoto E. T. (1985) Pharmacological characterization of nicotine-induced conditioned place preference. Pharmacol. Biochem. Behav. 22, 237–241.

    PubMed  CAS  Google Scholar 

  • Garcia J., Kimeldorf D. J., and Hunt E. L. (1958) Spatial avoidance in the rat as a result of exposure to ionizing radiation. Br. J. Radiat. 30, 318–321.

    Google Scholar 

  • Gilbert D. B. and Cooper S. J. (1983) β-Phenylethylamine-, d-amphetamine-and α-amphetamine-induced place preference conditioning in rats. Eur. J. Pharmacol. 95, 311–314.

    PubMed  CAS  Google Scholar 

  • Glimcher P. W., Margolin D. H., and Hoebel B. G. (1982) Rewarding effect of neurotensin in the brain. Ann. NY Acad. Sci. 400, 422–424.

    Google Scholar 

  • Glimcher P. W., Margolin D. H., Giovino A. A., and Hoebel B. G. (1984) Neurotensin: A new “reward peptide.”. Brain Res, 291, 119–124.

    PubMed  CAS  Google Scholar 

  • Glowa J. R. and Barrett J. E. (1983) Drug history modifies the behavioral effects of pentobarbital. Science 220, 333–335.

    PubMed  CAS  Google Scholar 

  • Goldberg S. R., Spealman R. D., and Goldberg D. M. (1981) Persistant behavior at high rates maintained by intravenous self-administration of nicotine. Science 214, 573–575.

    PubMed  CAS  Google Scholar 

  • Goldstein J. M. and Malick J. B. (1977) Effects of substance P on medial forebrain bundle self-stimulation in rats following intracerebral administration. Pharmacol. Biochem. Behav. 7, 475–478.

    PubMed  CAS  Google Scholar 

  • Graeff F. G. and Arisawa E. A. (1978) Effect of intracerebroventricular bradykinin, angiotensin II, and substance P on multiple fixed-interval fixed-ratio responding in rabbits. Psychopharmacology 57, 89–95.

    PubMed  CAS  Google Scholar 

  • Joyce E. M. and Koob G. F. (1981) Amphetamine-, scopolamine-and caffeine-induced locomotor activity following 6-hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacology 73, 311–313.

    PubMed  CAS  Google Scholar 

  • Kalivas P. W., Nemeroff C. B., and Prange A. J. (1981) Increase in spontaneous motor activity following infusion of neurotensin into the ventral tegmental area. Brain Res. 229, 525–529.

    PubMed  CAS  Google Scholar 

  • Katz R. J. and Gormezano G. (1979) A rapid and inexpensive technique for assessing the reinforcing effects of opiate drugs. Pharmacol. Biochem. Behav. 11, 231–233.

    PubMed  CAS  Google Scholar 

  • Kelly P. H. and Iversen S. D. (1976) Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: Abolition of psychostimulant induced locomotor activity in rats. Eur. J. Pharmacol. 40, 45–56.

    PubMed  CAS  Google Scholar 

  • Kelley A. E. and Stinus L. (1986) Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with L-dopa. Behav. Neurosa., in press.

    Google Scholar 

  • Koob G. F., Fray P. J., and Iversen S. D. (1978) Self-stimulation at the lateral hypothalamus and locus coeruleus after specific unilateral lesions of the dopamine system. Brain Res 146, 123–140

    PubMed  CAS  Google Scholar 

  • Kumar R. (1972) Morphine dependence in rats: Secondary reinforcement from environmental stimuli. Psychopharmacologia 25, 332–338.

    PubMed  CAS  Google Scholar 

  • Lett B. T. (1986) Conditioned slowing of stomach emptying produced by Pavlovian pairings of a drug CS or a place with lithium chloride. Psychopharmacology 90, 49–53.

    PubMed  CAS  Google Scholar 

  • Lyness W. H., Friedle N. M., and Moore K. E. (1979) Destruction of dopaminergic nerve terminals in the nucleus accumbens: Effect on d-amphetamine self-administration. Pharmacol. Biochem. Behav. 11, 553–556.

    PubMed  CAS  Google Scholar 

  • Mackey W. B. and van der Kooy D. (1985) Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning. Pharmacol. Biochem. Behav. 22, 101–105.

    PubMed  CAS  Google Scholar 

  • Martin J. C. and Ellinwood E. H. (1974) Conditioned aversions in spatial paradigms following methamphetamine injection. Psychopharmacologia 36, 323–335.

    PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T., Ortmann R., and Fibiger H. C. (1985) Place preference conditioning with methylphenidate and nomifensine. Brain Res. 332, 59–67.

    PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T., Radke J. M., and Vincent S. R. (1986) The effects of cysteamine on dopamine-mediated behaviors: Evidence for dopamine-somatostatin interactions in the striatum. Pharmacol Biochem. Behav. 24, 1707–1714.

    PubMed  CAS  Google Scholar 

  • Messier C. and White N. M. (1984) Contingent and non-contingent actions of sucrose and saccharin reinforcers: Effects on taste preferences and memory. Physiol. Behav. 32, 195–203.

    PubMed  CAS  Google Scholar 

  • Mucha R. F. and Herz A. (1986) Preference conditioning produced by opioid active and inactive isomers of levorphanol and morphine in rat. Life Sci. 38, 241–249.

    PubMed  CAS  Google Scholar 

  • Mucha R. F. and Herz A. (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86, 274–280.

    PubMed  CAS  Google Scholar 

  • Mucha R. F. and Iversen S. D. (1984) Reinforcing properties of morphine and naloxone revealed by conditioned place preference: A procedural examination. Psychopharmacology 82, 241–247.

    PubMed  CAS  Google Scholar 

  • Mucha R. F., van der Kooy D., O’Shaughnessy M., and Bucenieks P. (1982) Drug reinforcement studied by the use of place conditioning in rat. Brain Res. 243, 91–105.

    PubMed  CAS  Google Scholar 

  • Mucha R. F., Millan M. J., and Herz A. (1985) Aversive properties of naloxone in non-dependent (naive) rats may involve blockade of central β-endorphin. Psychopharmacology 86, 281–285.

    PubMed  CAS  Google Scholar 

  • Olds M. E. (1976) Effectiveness of morphine and ineffectiveness of diazepam and phenobarbital on the motivational properties of hypothalamic self-stimulation behavior. Neuropharmacology 15, 117–131.

    PubMed  CAS  Google Scholar 

  • Olds J. and Milner P. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427.

    PubMed  CAS  Google Scholar 

  • Ortmann R. (1985) The conditioned place preference paradigm in rats: Effect of bupropion. Life Sci. 37, 2021–2027.

    PubMed  CAS  Google Scholar 

  • Pert A. and Sivit C. (1977) Neuroanatomical focus for morphine and endephalin-induced hypermotility. Nature 265, 645.

    PubMed  CAS  Google Scholar 

  • Petit H. O., Ettenberg A., Bloom F. E., and Koob G. F. (1984) Destruction of dopamine in the nucleus accumbens selectively attentuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167–173.

    Google Scholar 

  • Phillips A. G. and LePiane F. G. (1980) Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacol. Biochem. Behav. 12, 965–968.

    PubMed  CAS  Google Scholar 

  • Phillips A. G. and LePiane F. G. (1982) Reward produced by microinjection of (D-ala 2), Met 5-enkephalinamide into the ventral tegmental area. Behav. Brain Res. 5, 225–229.

    PubMed  CAS  Google Scholar 

  • Phillips A. G., Brook S. M., and Fibiger H. C. (1975) Effects of amphetamine isomers and neuroleptics on self-stimulation from the nucleus accumbens and dorsal noradrenergic bundle. Brain Res. 85, 13–22.

    PubMed  CAS  Google Scholar 

  • Phillips A. G., Spyraki C., and Fibiger H. C. (1982) Conditioned Place Preference with Amphetamine and Opiates as Reward Stimuli: Attenuation by Haloperidol, in The Neural Basis of Feeding and Reward (Hoebel B. G. and Novin D., eds.) Haer Institute, Brunswick.

    Google Scholar 

  • Phillips A. G., Broekkamp C. L., and Fibiger H. C. (1983a) Strategies for studying the neurochemical substrates of drug reinforcement in rodents. Prog. Neuropsychopharmacol. Biol. Psychiat. 7, 585–590.

    CAS  Google Scholar 

  • Phillips A. G., LePiane F. G., and Fibiger H. C. (1983b) Dopaminergic mediation of reward produced by direct injection of enkephalin into the ventral tegmental area of the rat. Life Sci. 33, 2505–2511.

    PubMed  CAS  Google Scholar 

  • Pickens R. and Harris W. C. (1968) Self-administration of d-amphetamine by rats. Psychopharmacologia 12, 158–163.

    PubMed  CAS  Google Scholar 

  • Pickens R. and Thompson T. (1968) Cocaine-reinforcement behavior in rats: Effects of reinforcement magnitude and fixed ratio size. J. Pharmacol. Exp. Ther. 161, 122–129.

    PubMed  CAS  Google Scholar 

  • Pickens R., Meisch R. A., and Dougherty J. A. (1968) Chemical interactions in amphetamine reinforcement. Psychol. Rep. 23, 1267–1270.

    PubMed  CAS  Google Scholar 

  • Pickens R., Meisch R. A., and Thompson T. (1978) Drug Self-Administration: An Analysis of the Reinforcing Effects of Drugs, in Handbook of Psychopharmacology vol. 12 (Iversen L. L., Iversen S. D., and Snyder S. H., eds.) Plenum, New York.

    Google Scholar 

  • Randrupp A. and Munkrad I. (1970) Biochemical, Anatomical and Psychological Investigations of Stereotyped Behaviour Induced by Amphetamiens, in Amphetamines and Related Compounds: Proceedings of the Mario Negri Institute for Pharmacological Research (Costa E. and Garattini S., eds.) Raven, New York.

    Google Scholar 

  • Reed A., Jr. and Kane A. W. (1972) Phencydlidine (PCP): Another illicit psychedelic drug. J. Psychedelic Drugs 5, 8–12.

    Google Scholar 

  • Reicher M. A. and Holman E. W. (1977) Location preference and flavor aversion reinforced by amphetamine in rats Anim. Learn. Behav. 5, 343–346.

    Google Scholar 

  • Reid L. D., Hunter G. A., Beaman C. M., and Hubbell C. L. (1985) Toward understanding ethanol’s capacity to be reinforcing: A conditioned place preference following injections of ethanol. Pharmacol. Biochem. Behav. 22, 483–487.

    PubMed  CAS  Google Scholar 

  • Resnick R. B., Kestenbaum R. S., Washton A., and Poole D. (1977) Naloxone-precipitated withdrawal: A method for rapid induction onto naltrexone. Clin. Pharmacol. Ther. 21, 409–413.

    PubMed  CAS  Google Scholar 

  • Revusky S. H. and Bedarf E. W. (1967) Association of illness with prior ingestion of novel foods. Science 155, 343–346.

    Google Scholar 

  • Risner M. E. and Goldberg S. R. (1983) A comparison of nicotine and cocaine self-administration in the dog. Fixed-ratio and progressive ratio schedules of intravenous drug infusion. J. Pharmacol. Exp. Ther. 224, 319–326.

    PubMed  CAS  Google Scholar 

  • Risner M. E. and Jones B. E. (1977) Charactristics of β-phenylethylamine self-administration by dog. Pharmacol. Biochem. Behav. 6, 689–696.

    PubMed  CAS  Google Scholar 

  • Robbins T. W. and Koob G. F. (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285, 409–412.

    PubMed  CAS  Google Scholar 

  • Roberts D. C. S. and Koob G. F. (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 17, 901–904.

    PubMed  CAS  Google Scholar 

  • Roberts D. C. S., Corcoran M. E., and Fibiger H. C. (1977) On the role of ascending catecholamine systems in intravenous self-administration of cocaine. Pharmacol. Biochem. Behav. 6, 615–620.

    PubMed  CAS  Google Scholar 

  • Roberts D. C. S., Koob G. F., Klonoff P., and Fibiger H. C. (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 12, 781–787.

    PubMed  CAS  Google Scholar 

  • Rossi N. A. and Reid L. D. (1976) Affective states associated with morphine injections. Physiological Psychol. 4, 269–274.

    Google Scholar 

  • Schaefer G. J and Michael R. P. (1984) Drug interactions on spontaneous locomotor activity in rats. Neuropharmacology 23, 909–914.

    PubMed  CAS  Google Scholar 

  • Schenck S., Hunt T., Colle L., and Amit Z. (1982) Isolation versus grouped housing in rats: Differential effects of low doses of heroin in the place preference paradigm. Life Set. 32, 1129–1134.

    Google Scholar 

  • Schenk S., Hunt T., Colle L., and Amit Z. (1983) Isolation versus grouped housing in rats: Differential effects of low doses of heroin in the place preference paradigm. Life Sci. 32, 1129–11234.

    PubMed  CAS  Google Scholar 

  • Schenk S., Ellison F., Hunt T., and Amit Z. (1985) An examination of heroin conditioning in preferred and nonpreferred environments and in differentially housed mature and immature rats. Pharmacol. Biochem. Behav. 22, 215–220.

    PubMed  CAS  Google Scholar 

  • Schenk S., Hunt T.; Malovechko R., Robertson A., Klukowski G., and Amit Z. (1986) Differential effects of isolation housing on the conditioned place preference produced by cocaine and amphetamine. Pharmacol. Biochem Behav 24, 1793–1796.

    PubMed  CAS  Google Scholar 

  • Schwartz A. S. and Marchok P. L. (1974) Depression of morphine-seeking behavior by dopamine inhibition. Nature 248, 257–258.

    PubMed  CAS  Google Scholar 

  • Shearman G. T., Hynes M., and Lai H. (1981) Self-Administration of Clonidine by the Rat, in Psychopharmacology of Clonidine (Lai H. and Fielding S., eds.) Liss, New York.

    Google Scholar 

  • Spyraki C, Fibiger H. C, and Phillips A. G. (1982a) Attenuation by haloperidol of place preference conditioning using food reinforcement. Psychopharmacology 77, 379–382.

    PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger H. C., and Phillips A. G. (1982b) Cocaine-induced place preference conditioning: Lack of effects of neuroleptics and 6-hydroxydopamine lesions. Brain Res. 253, 195–203.

    PubMed  CAS  Google Scholar 

  • Spyraki C., Fibiger H. C., and Phillips A. G. (1982c) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res. 253, 185–193.

    PubMed  CAS  Google Scholar 

  • Spyraki C., Fibiger H. C, and Phillips A. G. (1983) Attenuation of heroin reward in rats by disruption of the mesolimbic dopamine system. Psychopharmacology 79, 278–283.

    PubMed  CAS  Google Scholar 

  • Spyraki C., Kazandjian A., and Varonos D. (1985) Diazepam-induced place preference conditioning: Appetitive and antiaversive properties. Psychopharmacology 87, 225–232.

    PubMed  CAS  Google Scholar 

  • Stapleton J. M., Lind M. D., Merriman V. J., Bozarth M. A., and Reid L. D. (1979) Affective consequences and subsequent effects on morphine self-administration of d-ala 2-methionine enkephalin. Physiol. Psychol. 7, 146–152.

    CAS  Google Scholar 

  • Staubli U. and Huston J. P. (1979) Differential effects on learning by ventromedial vs. lateral hypothalamic posttrial injection of substance. P. Pharmacol. Biochem. Behav 10, 783–786.

    CAS  Google Scholar 

  • Staubli U. and Huston J. P. (1980) Facilitation of learning by posttrial injection of substance P into the medial septal nucleus. Behav. Brain Res. 1, 245–255

    PubMed  CAS  Google Scholar 

  • Staubli U. and Huston J. P. (1985) Central action of substance P: Possible role in reward. Behav. Neural Biol. 43, 100–108.

    PubMed  CAS  Google Scholar 

  • Staunton D. A., Magistretti P. J., Koob G. F., Shoemaker W. J., and Bloom F. E. (1982) Dopaminergic supersensitivity induced by denervation and chronic receptor blockade is additive. Nature 299, 72–74.

    PubMed  CAS  Google Scholar 

  • Stewart R. B. and Grupp L. A. (1981) An investigation of the interaction between and reinforcing properties of food and ethanol using the place preference paradigm. Prog. Neuropsychopharmacol. 5, 609–613.

    PubMed  CAS  Google Scholar 

  • Stolerman I. P., Pilcher C. W., and D’Mello G. D. (1978) Stereospecific aversive property of narcotic antagonists in morphine-free rats. Life Set. 22, 1755–1762.

    CAS  Google Scholar 

  • Strecker R. E., Roberts D. C. S., and Koob G. F. (1982) Apomorphine-induced facilitation of ICSS and locomotor behavior following dopamine denervation of the nucleus accumbens. Pharmacol. Biochem. Behav 17, 1015–1018

    PubMed  CAS  Google Scholar 

  • Swerdlow N. R. and Koob G. F. (1984) Restrained rats learn amphetamine-conditioned locomotion, but not place preference. Psychopharmacology 84, 163–166.

    PubMed  CAS  Google Scholar 

  • Swerdlow N. R., van der Kooy D., Koob G. F., and Wenger J. R. (1983) Cholecystokinin produces conditioned place-aversions, not place-preferences in food-deprived rats. Evidence against involvement in satiety. Life Sci. 32, 2087–2093.

    PubMed  CAS  Google Scholar 

  • Swerdlow N. R., Swanson L. W., and Koob G. F. (1984) Electrolytic lesions of the substantia innominata and lateral preoptic region attenuate the’ supersensitive’ locomotor response to apomorphine following denervation of the nucleus accumbens. Brain Res. 306, 141.

    PubMed  CAS  Google Scholar 

  • Syme L. A. (1973) Social isolation at weaning. Some effects on two measures of activity. Anim. Learn. Behav. 1, 161–163.

    Google Scholar 

  • Tombaugh T. N., Grandmaison L. J., and Zito K. A. (1982) Establishment of secondary reinforcement in sign tracking and place preference tests following pimozide treatment. Pharmacol. Biochem. Behav. 17, 665–670.

    PubMed  CAS  Google Scholar 

  • van der Kooy D., Mucha R. F., O’Shaughnessy M., and Bucenieks P. (1979) Reinforcing effects of opiate drugs. Pharmacol. Biochem. Behav. 11, 231–233.

    Google Scholar 

  • van der Kooy D., O’Shaughnessy M., Mucha R. F., and Kalant H. (1983a) Motivational properties of ethanol in naive rats as studied by place conditioning. Pharmacol. Biochem. Behav. 19, 441–445.

    PubMed  Google Scholar 

  • van der Kooy D., Swerdlow N. R., and Koob G. F. (1983b) Paradoxical reinforcing properties of apomorphine: Effects of nucleus accumbens and area postrema lesions. Brain Res. 259, 111–118.

    PubMed  Google Scholar 

  • Van Ree J. M., Gaffori C, and deWied D. (1983) In rats the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents. Eur. J. Pharmacol. 93, 63–78.

    PubMed  Google Scholar 

  • White N. M. and Carr G. D. (1985) The conditioned place preference is affected by two independent reinforcement processes. Pharmacol. Biochem. Behav. 23, 37–42.

    PubMed  CAS  Google Scholar 

  • Wise R. A. (1978) Catecholamine theories of reward: A critical review. Brain Res. 152, 215–217.

    PubMed  CAS  Google Scholar 

  • Wise R. A. (1982) Neuroleptics and operant behaior: The anhedonia hypothesis. Behav. Brain Sci. 5, 39–87.

    Google Scholar 

  • Woolverton W. L., Wessinger W. D., and Balster R. L. (1982) Reinforcing properties of clonidine in rhesus monkeys. Psychopharmacology 77, 17–23.

    PubMed  CAS  Google Scholar 

  • Yokel R. A. and Pickens R. (1974) Drug level of d-and l-amphetamine during intravenous self-administration. Psychopharmacologia 34, 233–264.

    Google Scholar 

  • Young P. T. and Masden C. H. (1963) Individual isohedons in sucrose-sodium chloride and sucrose-saccharin gustatory areas. J. Comp. Physiol. Psychol. 56, 903–909.

    PubMed  CAS  Google Scholar 

  • Zito K. A., Vickers G., and Roberts D. C. S. (1985) Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 23, 1029–1036.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this protocol

Cite this protocol

Swerdlow, N.R., Gilbert, D., Koob, G.F. (1989). Conditioned Drug Effects on Spatial Preference. In: Boulton, A.A., Baker, G.B., Greenshaw, A.J. (eds) Psychopharmacology. Neuromethods, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-129-2:399

Download citation

  • DOI: https://doi.org/10.1385/0-89603-129-2:399

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-129-6

  • Online ISBN: 978-1-59259-618-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics