Skip to main content

Techniques for Assessing the Effects of Drugs on Nociceptive Responses

  • Protocol
Psychopharmacology

Part of the book series: Neuromethods ((NM,volume 13))

Abstract

Animal pain tests have been developed primarily for the screening of potential analgesic drugs. In this context, the most important characteristic of a test is that it correctly identify compounds that are analgesic in pathological pain in humans and correctly eliminate compounds without this activity (Taber, 1974 206; Frazer and Harris, 1967 92; Jacob, 1966 128). By this standard, the tail-flick test of D’Amour and Smith (1941) 56 is very accurate in detecting morphine-like drugs, though it is less successful with nalorphine-like drugs and very insensitive to aspirin-like drugs. Other tests have different profiles of sensitivity, and although there seems to be no ideal single laboratory test procedure for the evaluation of analgesics, a combination of several tests has considerable power to identify analgesics (Wood, 1984 237).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott F. V. (1986) Qualitative differences in effects of opioids in man: Preliminary evidence for multiple mechanisms of action. Pharmacol. Biochem. Behav. 24, 1247–1251.

    PubMed  CAS  Google Scholar 

  • Abbott F. V. and Franklin K. B. J. (1986) Noncompetitive antagonism of morphine analgesia by diazepam in the formalin test. Pharmacol. Biochem. Behav. 24, 319–321.

    PubMed  CAS  Google Scholar 

  • Abbott F. V. and Melzack R. (1982) Brainstem lesions dissociate neural mechanisms of morphine analgesia in different kinds of pain. Brain Res. 251, 149–155.

    PubMed  CAS  Google Scholar 

  • Abbott F. V., English M. J. M., Franklin K. B. J., Jeans M. E., and Young S. N. (1986a) Effects of tryptophan loading on pain and morphine requirements after surgery Int. Study Group Tryptophan Res. Abstract No. C5.

    Google Scholar 

  • Abbott F. V., Franklin K. B. J., and Connell B. (1986b) The stress of a novel environment reduces formalin pain: Possible role of serotonin. Eur. J. Pharmacol. 126, 141–144.

    PubMed  CAS  Google Scholar 

  • Abbott F. V., Franklin K. B. J., and Libman R. B. (1986c) A dose-ratio comparison of mu and kappa agonists in formalin and thermal pain. Life Sci. 39, 2017–2024.

    PubMed  CAS  Google Scholar 

  • Abbott F. V., Melzack R., and Leber B. F. (1982) Morphine analgesia and tolerance in the tail flick and formalin tests: Dose-response relationships. Pharmacol. Biochem. Behav. 17, 1213–1219.

    PubMed  CAS  Google Scholar 

  • Adams W. H., Yeh S. Y., Woods L. A., and Mitchell C. L. (1969) Drug-test interaction as a factor in the development of tolerance to the analgesic effect of morphine. J. Pharmacol. Exp. Ther. 168, 251–257.

    PubMed  CAS  Google Scholar 

  • Alreja M., Mutalik P., Nayar V., and Manchanda S. K. (1984) The formalin test: A tonic pain model in the primate. Pain 20, 97–105.

    PubMed  CAS  Google Scholar 

  • Andrews H. L. and Workman W. (1941) Pain threshold measurements in the dog. J. Pharmacol. Exp. Ther. 73, 99–103.

    CAS  Google Scholar 

  • Appelbaum B. D. and Holtzman S. G. (1985) Restraint stress enhances morphine induced analgesia in the rat without changing apparent affinity of receptor. Life Sci. 36, 1069–1074.

    PubMed  CAS  Google Scholar 

  • Armstrong D., Keele C. A., Jepson J. B., and Stewart J. W. (1954) Development of pain-producing substance in human plasma. Nature 714, 791–792.

    Google Scholar 

  • Arner S. and Arner B, (1985) Differential effects of epidural morphine in the treatment of cancer-related pain. Acta Anaesthsiol. Scand. 29, 32–36.

    CAS  Google Scholar 

  • Awouters F., Lenaerts F. M., and Neimegeers C. J E. (1976) Increased incidence of adjuvant arthritis in Wistar rats. Arzneimittelforsch. 26, 40–43.

    PubMed  CAS  Google Scholar 

  • Awouters F., Niemegeers C. J. E., Lenaerts F. M., and Janssen P. A. J. (1975) The effects of suprofen in rats with mycobaterium butyricum-induced arthritis. Arzneimittelforsch. 25, 1526–1537.

    PubMed  CAS  Google Scholar 

  • Azerad J. and Woda A. (1977) Sensation evoked by bipolar intrapulpal stimulation in man. Pain 4, 145–152.

    PubMed  CAS  Google Scholar 

  • Bardo M. T., Wellman P. J., and Hughes R. A. (1981) The role of hot plate and general environmental stimuli in morphine analgesic tolerance. Pharmacol. Biochem Behav. 14, 757–760.

    PubMed  CAS  Google Scholar 

  • Basbaum A. I. and Fields H. L. (1984) Endogenous pain control systems. Ann. Rev. Neurosci. 7, 309–338.

    PubMed  CAS  Google Scholar 

  • Beecher H. K. (1959) The Measurement of Subjective Responses: Quantitative Effects of Drugs Oxford University Press, New York.

    Google Scholar 

  • Bentley G. A., Newton S. H., and Starr J. (1981) Evidence for an action of morphine and the encephalins on sensory nerve endings in the mouse perineum. Br. J. Pharmacol. 73, 325–332.

    PubMed  CAS  Google Scholar 

  • Bentley G. A., Newton S. H., and Starr J. (1983) Studies the antinociceptive action of α-agonist drugs and their interactions with opioid mechanisms. Br. J. Pharmacol. 79, 125–134.

    PubMed  CAS  Google Scholar 

  • Bianchi C. and Francheschini J. (1954) Experimental observations on Haffner’s method for testing analgesic drugs. Br. J. Pharmacol. Chemother. 9, 280–284.

    PubMed  CAS  Google Scholar 

  • Bloss J. L. and Hammond D. L. (1985) Shock titration in th Rhesus monkey: Effects of opiate and nonopiate analgesics. J. Pharmacol. Exp. Ther. 235, 423–430.

    PubMed  CAS  Google Scholar 

  • Blumberg H. and Janig W. (1984) Discharge pattern of afferent fibers from a neuroma. Pain 20, 335–353.

    PubMed  CAS  Google Scholar 

  • Blumberg H., Wolf P. S., and Dayton H. B. (1965) Use of writhing test for evaluating analgesic activity of narcotic antagonists. Proc. Soc. Exp. Biol. Med. 118, 763–766.

    PubMed  CAS  Google Scholar 

  • Bonnet K. A. and Peterson K. E. (1975) A modification of the flinch-jump technique for measuring pain sensitivity in rats. Pharmacol. Biochem. Behav. 3, 47–55.

    PubMed  CAS  Google Scholar 

  • Bonnycastle D. D. (1962) The Use of Animals in the Study of Analgesic Drugs, in The Assessment of Pain in Man and Animals (Keele C. A. and Smith R., eds.) Livingstone, London.

    Google Scholar 

  • Bonnycastle D. D., Cook L., and Ipsen J. Jr. (1953) Action of some analgesic drugs in intact and chronic spinal rats. Acta Pharmacol. Toxicol. 9, 322–336.

    Google Scholar 

  • Bowsher D. (1978) Pain pathways and mechanisms. Anaesthesia. 33, 935–944.

    PubMed  CAS  Google Scholar 

  • Brittain R. T., Leherer D. N., and Spencer P. S. (1963) Phenylquinone writhing test: Interpretation of data. Nature 200, 895–896.

    PubMed  CAS  Google Scholar 

  • Brune K., Bucher K., and Walz D. (1974) The avian microcrystal arthritis II Central versus peripheral effects of sodium salicylate, acetaminophen and colchicine. Agents Actions 4, 27–33.

    CAS  Google Scholar 

  • Burgess P. R. and Perl E. R. (1973) Cutaneous Mechanorecptors and Nociceptors, in Handbook of Sensory Physiology, Somatosensory System (Iggo A., ed.) Springer Verlag, New York.

    Google Scholar 

  • Butler S. H., Weil-Fugazza J., Godefroy F., and Besson J. M. (1985) Reduction of arthritis and pain behavior following chronic administration of amytriptyline or impramine in rats with adjuvant-induced arthritis. Pain 23, 159–175.

    PubMed  CAS  Google Scholar 

  • Byers M. R. (1984) Dental sensory receptors. Int. Rev. Neurobiol. 25, 39–94.

    PubMed  CAS  Google Scholar 

  • Carroll M. N. and Lim R. K. S. (1958) Mechanism of phenylquinone writhing. Fed. Proc. 17, 357.

    Google Scholar 

  • Carroll M. N. and Lim R. K. S. (1960) Observation on the neuropharmacology of morphine and morphine-like analgesia. Arch. Int. Pharmacodyn. 125, 383–403.

    PubMed  CAS  Google Scholar 

  • Castillo R., Kissin I., and Bradley E. L. (1986) Selective kappa opioid agonist for spinal analgesia without the risk of respiratory depression. Anesth. Analg. 65, 350–354.

    PubMed  CAS  Google Scholar 

  • Chang Y. H., Pearson C. M., and Chedid L. (1981) Adjuvant polyarthritis. V. Induction by n-acetylmuramyl-l-alanyl-d-isoglutamine, the smallest peptide subunit of bacterial peptidoglycan. J. Exp. Med. 153, 1021–1026.

    PubMed  CAS  Google Scholar 

  • Chapman C. R., Murphy T. M., and Butler S. (1973) Analgesic strength of 33 percent nitrous oxide: A signal detection theory analysis. Science 179, 1246–1248.

    PubMed  CAS  Google Scholar 

  • Chapman L. F., Dingman H. F., and Ginzberg S. P. (1965) Failure of analgesic agents to alter the absolute sensory threshold for simple detection of pain. Brain. 88, 1101.

    Google Scholar 

  • Chernov H. I., Wilson D. E., Fowler F., and Plummer A. J. (1967) Non-specificity of the mouse writhing test. Arch. Int. Pharmacodyn. Ther. 167, 171–178.

    PubMed  CAS  Google Scholar 

  • Chery-Croze S. (1983) Painful sensation induced by a thermal cutaneous stimulus. Pain 17, 109–137.

    PubMed  CAS  Google Scholar 

  • Chudler E. H. and Dong W. K. (1983) Neuroma pain model: Correlation of motor behavior and body weight with autotomy in rats. Pain 17, 341–351.

    PubMed  CAS  Google Scholar 

  • Clark W. C. (1969) Sensory decision theory analysis of the placebo effect on the criterion for pain and thermal sensitivity. J. Abnorm. Psychol. 74, 363–371.

    PubMed  CAS  Google Scholar 

  • Coderre T. J., Abbott F. V., and Melzack R. (1984a) Effects of peripheral antisympathetic treatments in the tail-flick, formalin and autotomy tests. Pain 18, 13–23.

    PubMed  CAS  Google Scholar 

  • Coderre T. J., Abbott F. V., and Melzack R. (1984b) Behavioral evidence for a peptidergic-noradrenergic interaction in cutaneous sensory function. Neurosci. Lett. 47, 113–118.

    PubMed  CAS  Google Scholar 

  • Coderre T. J., Grimes R. W., and Melzack R. (1986) Deafferentation and chronic pain in animals: An evaluation of evidence suggesting autotomy is related to pain. Pain 26, 61–84.

    PubMed  CAS  Google Scholar 

  • Coffman J. D. (1965) The effect of aspirin on pain and hand blood flow responses to intra-artenal injection of bradykinin in man. Clin. Pharmacol. Ther. 7, 26–37.

    Google Scholar 

  • Cohen S. R., Abbott F. V., and Melzack R. (1984) Unilateral analgesia produced by intraventricular morphine. Brain Res. 303, 227–287.

    Google Scholar 

  • Collier H. O. J. and Schneider C. (1969) Profiles of activity in rodents of some narcotic and narcotic antagonist drugs. Nature 224, 610–612.

    PubMed  CAS  Google Scholar 

  • Colpaert F. C, DeWitte P., Maroli A. N., Awouters F., Niemegeers J. E., and Janssen P. A. J. (1980) Self administration of the analgesic suprofen in arthritic rats: Evidence of mycobacterium-induced arthritis as an experimental model of chronic pain. Life Sci. 27, 921–928.

    PubMed  CAS  Google Scholar 

  • Colpaert F. C, Mert T., DeWitte P., and Schmitt P. (1982) Further evidence validating adjuvant arthritis as an experimental model of chronic pain in the rat. Life Sci. 31, 67–75.

    PubMed  CAS  Google Scholar 

  • Cooper B. Y. and Vierck C.J. (1986) Measurement of pain and morphine hypalgesia in monkeys. Pain 26, 361–392.

    PubMed  CAS  Google Scholar 

  • Cooper B. Y., Vierck Jr., C. J., and Yeomans D. C. (1986) Selective reduction of second pain sensations by systemic morphine in humans. Pain 24, 93–116.

    PubMed  CAS  Google Scholar 

  • Crocker A. D. and Russell R. W. (1984) The up-and-down method for the determination of nociceptive thresholds in rats. Pharmacol. Biochem. Behav. 21, 133–136.

    PubMed  CAS  Google Scholar 

  • D’Amour F. E. and Smith D. L. (1941) A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 72, 74–79.

    Google Scholar 

  • Dahlstrom B., Paalzow G., and Paalzow L. (1975) A pharmacokinetic approach to morphine analgesia and its relation to regional turnover of brain catecholamines. Life Sci. 17, 11–16.

    PubMed  CAS  Google Scholar 

  • Dennis S. G. and Melzack R. (1977) Pain signalling systems in the dorsal and ventral spinal cord. Pain 4, 97–132.

    PubMed  CAS  Google Scholar 

  • Dennis, S. G. and Melzack R. (1980) Pain modulation by 5-hydroxytryptaminergic agents and morphine as measured by three pain tests. Exp. Neurol. 69, 260–270.

    PubMed  CAS  Google Scholar 

  • Dennis S. G. and Melzack R. (1983) Effects of cholinergic and dopaminergic agents on pain and morphine analgesia measured by three pain tests. Exp. Neurol 81, 167–176.

    PubMed  CAS  Google Scholar 

  • Dennis S. G., Melzack R., Gutman S., and Boucher T. (1980) Pain modulation by adrenergic agents and morphine as measured by three pain tests. Life Sci. 26, 1247–1259.

    PubMed  CAS  Google Scholar 

  • Devor M., Imbal R., and Govrin-Lippman R. (1982) Genetic Factors in the Development of Chronic Pain, in Genetics of the Brain (Lieblich I., ed.) Elsevier, Amsterdam.

    Google Scholar 

  • Dewey W. L and Harris L. S. (1971) Antinociceptive activity of the narcotic antagonist analgesics and antagonistic activity m rodents. J. Pharmacol. Exp. Ther. 179, 652–659.

    CAS  Google Scholar 

  • Dews P. B. (1958) Studies on behavior. IV. Stimulant actions of methamphetamine. J. Pharmacol. Exp. Ther. 122, 137–147.

    PubMed  CAS  Google Scholar 

  • Dickerson G. D., Engle R. J., Guzman F., Rodgers D. W., and Lim R. K. S. (1965) The intraperitoneal bradykinin-evoked pain test for analgesia. Life Sci. 4, 2063–2069.

    PubMed  CAS  Google Scholar 

  • Dixon W. J. (1965) The up and down method for small samples. J. Am. Stat. Assoc. 60, 967–968.

    Google Scholar 

  • Dubuisson D. and Dennis S. G. (1977) The formalin test: A quantitative study of the analgesic effects of morphine, meperidine and brainstem stimulation in rats and cats. Pain 4, 161–174.

    PubMed  CAS  Google Scholar 

  • Duckrow R. B. and Taub A. (1977) The effect of diphenylhydantoin on self-mutilation in rats produced by unilateral multiple rhizotomy. Exp. Neurol. 54, 31–41.

    Google Scholar 

  • Duggan A. W. (1982) Brainstem control of the responses of spinal neurons to painful skin stimuli. Trends Neurosci. 75, 127–130.

    Google Scholar 

  • Dykstra L. A. (1983) Effects of ketocyclazocine and ethylketocyclazocine on electric shock titration. Eur. J. Pharmacol. 94, 19–26.

    PubMed  CAS  Google Scholar 

  • Dykstra L. A. (1985) Effects of buprenorphine on shock titration in squirrel monkeys. J. Pharmacol. Exp. Ther. 235, 20–25.

    PubMed  CAS  Google Scholar 

  • Dykstra L. A. and McMillan D. E. (1977) Electric shock titration: Effects of morphine, methadone, pentazocine, nalorphine, naloxone, diazepam and amphetamine. J. Pharmacol. Exp. Ther. 202, 660–669.

    PubMed  CAS  Google Scholar 

  • Eckhardt E. T., Cheplovity F., Lipo M., and Govier W. M. (1958) Etiology of chemically induced writhing in mouse and rat. Proc. Soc. Exp. Biol. Med. 98, 186–188.

    PubMed  CAS  Google Scholar 

  • Eddy N. B. (1928) Studies on hypnotics of the barbituric acid series. J. Pharmacol. 33, 43–68.

    CAS  Google Scholar 

  • Eddy N. B. and Leimbach D. (1953) Synthetic analgesics. II. Dithienylbutenyl and dithienylbutylamines. J. Pharmacol. Exp. Ther. 107, 385–393.

    PubMed  CAS  Google Scholar 

  • Eddy N. B., Touchberry C. E., and Lieberman J. E. (1950) Synthetic analgesics. I. Methadone isomers and derivatives. J. Pharmacol. Exp. Ther. 98, 121–137.

    PubMed  CAS  Google Scholar 

  • Emele J. F. and Shanaman J. (1963) Bradykinin writhing: A method for measuring analgesia. Proc. SOc. Exp. Biol. Med. 107114, 680–682.

    Google Scholar 

  • Esposito R. U. and Kornetsky C. (1978) Opioids and rewarding brain stimulation. Neurosci. Biobehav. Rev. 2, 115–122.

    CAS  Google Scholar 

  • Evans W. O. (1961) A new technique for the investigation of some analgesic drugs on reflexive behaviour in the rat. Psychopharmacologia 2, 318–325.

    CAS  Google Scholar 

  • Evans W. O. (1962) A comparison of the analgesic potency of some analgesics as measured by the ‘flinch-jump’ procedure. Psychopharmacologia 3, 51–54.

    Google Scholar 

  • Evans W. O. and Bergner D. P. (1964) A comparison of the analgesic potencies of morphine, pentazocine and a mixture of methamphetamine and pentazocine in the rat. J. New Drugs. 4, 82–85.

    Google Scholar 

  • Faires J. S. and McCartey Jr., D. J. (1962) Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet II, 682–685.

    Google Scholar 

  • Fanselow M. S. and Baackes M. P. (1982) Conditioned fear-induced opiate analgesia on the formalin test: Evidence for two aversive motivational systems. Learn. Mohvat. 13, 200–221.

    Google Scholar 

  • Feather B. W., Chapman C. R., and Fisher S. B. (1972) The effect of a placebo on the perception of painful radiant heat stimuli. J. Psychosom. Med. 34, 290–294.

    CAS  Google Scholar 

  • Ferreira S. H. and Nakamura M. (1979) II-Prostaglandin hyperalagesia: The peripheral analgesic activity of morphine, enkephalins and opioid antagonists. Prostaglandins 18, 191–200.

    PubMed  CAS  Google Scholar 

  • Fitzgerald M. (1978) The sensitization of cutaneous nociceptors by spread from a nearby injury and its blockade by local anaesthesia. J. Physiol. 278, 44–45.

    Google Scholar 

  • Fitzgerald T. J., Williams B., and Vyeki E. M. (1971) Efects of antimitotic and antiinflammatory agents on sodium urate-induced paw swelling in mice. Pharmacology 6, 265–273.

    PubMed  CAS  Google Scholar 

  • Foreman J. C. and Jordan C. C. (1984) Neurogenic inflammation. Trends Pharmacol. Sci. 5, 116–119.

    CAS  Google Scholar 

  • Forrest Jr., W. H., Brown B. W., Defalque R., Gold M., Gordon H. E., James K. E., Katz J., Mahler D. L., Schroff P., and Teutsch G. (1977) Dextroamphetamine with morphine for the treatment of postoperative pain. New Engl. J. Med. 296, 712–715.

    PubMed  Google Scholar 

  • Frankstein S. I. (1981). Acute injury, inflammation, and pain. Exp. Neurol. 72, 708–710.

    PubMed  CAS  Google Scholar 

  • Frankstein S. I., Bijasheva Z. G., and Smolin L. N. (1965) Inhibitory synapses and inflammation. Nature 205, 294–295.

    PubMed  CAS  Google Scholar 

  • Frazer H. and Harris L. S. (1967) Narcotic and narcotic antagonist analgesics. Ann. Rev. Pharmacol. 7, 277–300.

    Google Scholar 

  • Freeman D. G., Volanakis J, E., and Stroul R. M. (1975) Acute Inflammation and Its Chemical Mediators: Hypersensitivity Reactions, in Biologic Basis of Wound Healing (Menaker L. ed.) Harper & Row, Hagerstown, Maryland.

    Google Scholar 

  • Fung, D. T. H., Hwang J., and Chung S. (1978) Correlative study of pain perception and masticatory muscle reflexes in man. Oral Surg. 45, 44–50.

    PubMed  CAS  Google Scholar 

  • Gebhart G. F. (1983) Recent developments in the neurochemical bases of pain and analgesia. Natl. Inst. Drug Abuse Monogr. Ser. 45, 19–35.

    CAS  Google Scholar 

  • Gebhart G. F., Sherman A. D., and Lewis V. A. (1980) A signal detection analysis of centrally active drugs in mice. Life Sci. 27, 2633–2638.

    PubMed  CAS  Google Scholar 

  • Gelfand S. (1964) The relationship of experimental pain tolerance to pain threshold. Can. J. Psychol. 18, 36–42.

    PubMed  CAS  Google Scholar 

  • Gilfoil T. M., Klavins I., and Grumbach L. (1963) Effects of acetylsalicylic acid on the edema and hyperesthesia of the experimentally inflamed rat’s paw. J. Pharmacol. 142, 1–5.

    CAS  Google Scholar 

  • Gold R. H. (1978) Treatment of low back syndrome with oral orphenadrine citrate. Curr. Ther. Res. 23, 271–276.

    Google Scholar 

  • Govrin-Lippman R. and Devor M. (1978) Ongoing activity in severed nerves: Source and variation with time. Brain Res. 159, 406–410.

    Google Scholar 

  • Gray W. D., Osterberg A. C, and Scuto T. J. (1970) Measurement of the analgesic efficacy and potency of pentazocine by the D’Amour and Smith method. J. Pharmacol. Exp. Ther. 172, 154–162.

    PubMed  CAS  Google Scholar 

  • Green A. F., Ruffel G. K., and Walton E. K. (1954) Morphine derivatives with anti-analgesic actions. J. Pharm. Pharmacol. 6, 390–397.

    PubMed  CAS  Google Scholar 

  • Grotto M. and Sulman F. G. (1967) A modified receptacle method for animal analgesimetry. Arch Int. Pharmacodyn. 165, 152–159.

    PubMed  CAS  Google Scholar 

  • Greene L. C. and Hardy J. D. (1958) Spatial summation of pain. J. Appl. Physiol. 13, 457–464.

    PubMed  CAS  Google Scholar 

  • Green D. and Swets J. A. (1966) Signal Detection Theory and Psychophysics John Wiley, New York.

    Google Scholar 

  • Green A. F. and Young P. A. (1951) A comparison of heat and pressure analgesiometric methods in rats. Br. J. Pharmacol. Chemother. 6, 572–585.

    PubMed  CAS  Google Scholar 

  • Grumbach L. (1966) The Prediction of Analgesic Activity in Man by Animal Testing, in Pain (Knight R. S. and Dumke P. R., eds.) Little, Brown, Boston.

    Google Scholar 

  • Grumbach L. and Chernov H. (1965) The analgesic effect of opiate-opiate antagonist combinations in the rat. J. Pharmacol. Exp. Ther. 149, 385–396.

    PubMed  CAS  Google Scholar 

  • Ha H., Wu R., Contreras R., and Tan E. (1978) Measurement of pain threshold by electrical stimulation of tooth pulp afferents in the monkey. Exp. Neurol. 61, 260–269.

    PubMed  CAS  Google Scholar 

  • Haffner F. (1929) Experminetelle Prufung schmerzstillender Mittel. Dtsch. Med. Wochenschr. 55, 731–733.

    Google Scholar 

  • Hallin R. G. and Torebjork H. E. (1976) Studies on cutaneous A and C fibre afferents, skin nerve blocks and perception. Werner-Gren Center International Symposium Series 27, 137–148.

    Google Scholar 

  • Hannington-Kiff J. G. (1974) Pain Relief Heineman, London.

    Google Scholar 

  • Hardy J. D., Stoll A. M., Cunningham D., Benson W. M., and Greene L. (1957) Responses of the rat to thermal radiation. Am. J. Physiol. 189, 1–5.

    PubMed  CAS  Google Scholar 

  • Hardy J. D., Stolwyk J. A. J., Hammel H. T., and Murgatroyd D. (1965) Skin temperature and cutaneous pain during warm water immersion. J. Appl. Physiol. 20, 1014–1021.

    PubMed  CAS  Google Scholar 

  • Hardy J. D., Wolff H. G., and Goodell H. (1940) Studies on pain. A new method for measuring pain threshold: Observations on the spatial summation of pain. J. Clin. Invest. 19, 649–657.

    PubMed  CAS  Google Scholar 

  • Hardy J. D., Wolff H. G., and Goodell H. (1952) Pain sensations and reactions. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Harris L. S. and Pierson A K. (1964) Some narcotic antagonists in the benzomorphan series J. Pharmacol Exp Ther. 143, 141–148

    PubMed  CAS  Google Scholar 

  • Hayashi G. and Takemori A. E. (1971) The type of analgesic-receptor interaction involved in certain analgesic assays. Eur. J. Pharmacol 16, 63–66.

    PubMed  CAS  Google Scholar 

  • Helsley G. C., Richman J. A., Lunsford C. D., Jenkins H., Mays R. P., and Funderburk W. H. (1968) Analgetics. Esters of 3-pyrrohdinemethanols. J. Med. Chem. 11, 472–475.

    PubMed  CAS  Google Scholar 

  • Hendershot L. C. and Forsaith J. (1959) Antagonism of the frequency of phenylquinone-induced writhing on the mouse by weak analgesics and non-analgesics. J. Pharmacol. Exp. Ther. 125, 237–240.

    PubMed  CAS  Google Scholar 

  • Hoffmeister F. and Kroneberg G. (1966) Experimental Studies in Animals on the Differentiation of Analgesic Activity, in Methods in Drug Evaluation (Manteguzzi P. and Piccinini F., eds) North Holland, Amsterdam.

    Google Scholar 

  • Hunskaar S., Berge O. G., and Hole K. (1985a) Antinociceptive effects of orphenadrine citrate in mice. Eur. J. Pharmacol. III, 221–226.

    Google Scholar 

  • Hunskaar S., Fasmer O. B., and Hole K. (1985b) Formalin test in mice, a useful technique for evaluating mild analgesics. J. Neurosci. Meth. 14, 69–76.

    CAS  Google Scholar 

  • Hunskaar S., Fasmer O. B., and Hole K. (1985c) Acetylsalicylic acid, paracetamol and morphine inhibit behavioral responses to intrathecally administered substance P or capsaicin. Life Sci. 37, 1835–1841.

    PubMed  CAS  Google Scholar 

  • Hunskaar S., Berge O. G., and Hole K. (1986) A modified hot plate test sensitive to mild analgesics. Behav. Brain Res. 21, 101–108.

    PubMed  CAS  Google Scholar 

  • Imne R. C. (1976) Animal models of arthritis. Lab. Animal Set. 26, 345–351.

    Google Scholar 

  • Jacob J. (1962) Experimental Analysis of an Algesimetnc Method. Differential Susceptibility of Reactions to Morphine, in The Assessment of Pain in Man and Animals (C. A. Keele and R. Smith, eds.) Livingstone, London.

    Google Scholar 

  • Jacob J. (1966) Evaluation of Narcotic Analgesics, in Methods in Drug Evaluation (Mantegazza P. and Piccinini F., eds) North Holland, Amsterdam.

    Google Scholar 

  • Jaffe J. H. and Martin W. R. (1985) Opioid Analgesics and Antagonists, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics 7 edn. (Gilman A. G., Goodman L. S., Wall T. W., and Murad F., eds.) Macmillan, New York.

    Google Scholar 

  • Janssen P. A. J., Neimegeers C. J. E., and Dony J. G. H. (1963) The inhibitory effect of fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal reflex in rats. Arzneimtttelforsch. 13, 502–507.

    CAS  Google Scholar 

  • Javert C. T. and Hardy J. D. (1951) Inflence of analgesics on pain intensity during labor. Anesthesiology 12, 189–215.

    PubMed  CAS  Google Scholar 

  • Johanneson T. and Woods L. A. (1964) Analgesic action and brain and plasma levels of morphine and codeine in morphine-tolerant, codeine-tolerant, and nontolerant rats. Acta Pharmacol. Toxicol. 21, 381–396.

    Google Scholar 

  • Jones R. S. and Ward J. R. (1966) Adjuvant-induced polyarthritis in rats. Meth. Arch Exp. Path. 1, 607–638.

    Google Scholar 

  • Kaiko R. F., Wallenstein S. L., Rogers A. G., and Houde R. W. (1983) Sources of variation in analgesic responses in cancer patients with chronic pain receiving morphine. Pain 15, 191–200.

    PubMed  CAS  Google Scholar 

  • Kantor T. G., Cantor R., and Tom E. (1980) A study of hospitalized surgical patients on methadone maintenance. Drug Alcohol Depend. 6, 137–140.

    Google Scholar 

  • Kawajiri S. and Satoh M. (1985) Analgesic effects of cyclazocine and morphine microinjected into the rat dorsomedial hypothalamus demonstrated by the bradykinin-induced flexor reflex test. Eur. J Pharmacol. III, 117–120.

    Google Scholar 

  • Kawakita K. and Funakoshi M. (1987) A quantitative study on tail flick test in the rat Physiol. Behav. 39, 235–240.

    PubMed  CAS  Google Scholar 

  • Kayser V., Besson J. M., and Guilbaud G. (1986) Analgesia produced by low doses of the opiate antagonist naloxone in arthritic rats is reduced in morphine-tolerant animals. Brain Res. 371, 37–41.

    PubMed  CAS  Google Scholar 

  • Kelly S. J. and Franklin K. B. J. (1985) An increase in tryptophan in brain may be a general mechanism for the effect of stress on sensitivity to pain. Neuropharmacology 24, 1019–1025.

    PubMed  CAS  Google Scholar 

  • Kissin I. and Jebeles B. S. (1984) Halothane antagonizes effect of morphine on the motor reaction threshold in rats. Anesthesiology 61, 671–676.

    PubMed  CAS  Google Scholar 

  • Kohashi C, Aihera K., Ozawa A., Kotani S., and Azuma I. (1982) A new model of a synthetic adjuvant, N-acetyl-l-alanyl-d-isoglutamine-induced arthritis. Clinical and histologic studies in athymic nude and euthymic rats. Lab. Invest. 47, 27–36.

    PubMed  CAS  Google Scholar 

  • Kopin I. J. (1980) Catecholamines, Adrenal Hormones and Stress, in Neuroendocnnology (Krieger D. T. and Hughes J. C., eds.) Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Koster R., Anderson M., and DeBeer E. J. (1959) Acetic acid for analgesic screening. Fed. Proc. 18, 412.

    Google Scholar 

  • Kuraishi Y., Harada Y., Aratani S., Satoh M., and Takagi H. (1983) Separate involvement of the spinal nonadrenergic and serotonergic systems in morphine analgesia: The differences in mechanical and thermal analgesic tests. Brain Res. 271, 245–252.

    Google Scholar 

  • Kvetnansky R. and Mikulaj L. (1970) Adaptation to repeated immobilization stress. Endocrinology 87, 738–743.

    PubMed  CAS  Google Scholar 

  • LaMotte R. J. and Campbell J. N. (1978) Comparisons of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain. J. Neurophysiol. 41, 509.

    PubMed  CAS  Google Scholar 

  • Lembeck F. (1983) Sir Thomas Lewis’s nocifensor system, histamine and substance P-containing primary afferent nerves. Trends Neurosci. 6, 106–108.

    Google Scholar 

  • Levine J. D. and Gordon N. C. (1982) Pain in prelingual children and its evaluation by pain-induced vocalization. Pain 14, 85–93.

    PubMed  CAS  Google Scholar 

  • Levine J. D., Feldmesser M., Tecott L., Gordon N. C, and Izdebski K. (1984) Pain-induced vocalization in the rat and its modification by pharmacological agents. Brain Res. 296, 121–127.

    PubMed  CAS  Google Scholar 

  • Levine J. D., Murphy D. D., Seidenwurm D., Cortes A., and Fields H. L. (1980) A study of the quantal (all-or-none) change in reflex latency produced by opiate analgesics. Brain Res. 201, 129.

    PubMed  CAS  Google Scholar 

  • Lineberry C. G. and Kulics A. T. (1978) The effects of diazepam, morphine and hdocaine on nociception in Rhesus monkeys: A signal detection analysis. J. Pharmacol. Exp. Ther. 205, 312–310

    Google Scholar 

  • Livingston W. K. (1943) Pain Mechanisms MacMillan, New York.

    Google Scholar 

  • Loh L. and Nathan P. W. (1978) Painful peripheral states and sympathetic blocks. Neurol. Neurosurg. Psychiat. 41, 644–671.

    Google Scholar 

  • Lombard M. C, Jarlet M. A., and Daheb S. (1984) Correlation between deafferentation, self-mutiliation, neuronal rhythmical activity and sleep distribution in the rat. Pain 2, (suppl.) 544S.

    Google Scholar 

  • Macaraeg Jr, P. V. C, Bianchine J. R., and Lasagna L. (1968) Tolerance to drug-induced writhing in mice. J. Pharmacol Exp. Ther. 161, 130–140.

    PubMed  CAS  Google Scholar 

  • MacLeod J. (1983) Clinical Examination 6th edn. Churchill Livingston, New York.

    Google Scholar 

  • Marriott A. S., Skingle M., and Tyers M. B. (1975) Evaluation of narcotic and narcotic antagonist analgesic drugs in the dog dental pulp stimulation test. Br. J. Pharmacol. 55, 314.

    Google Scholar 

  • Martin W. R. (1979) History and development of mixed opioid agonists, partial agonists and antagonists. Br. J. Clin. Pharmacol. 7, 2735–2795.

    Google Scholar 

  • Mason P., Strassman A., and Maciewicz R. (1985) Is the jaw opening reflex a valid model of pain. Brain Res. 357, 137–146.

    PubMed  CAS  Google Scholar 

  • Matsumoto C. and Nickander R. (1967) Epinephrine-induced writhing in mice. Fed. Proc. 26, 619.

    Google Scholar 

  • Matthews B. and Searle B. N. (1976) Electrical stimulation of teeth. Pain 2, 245–251.

    PubMed  CAS  Google Scholar 

  • Melzack R., Wall P. D., and Ty T. C. (1982) Acute pain in an emergency clinic: Latency of onset and descriptor patterns related to different injuries. Pain 14, 33–43.

    PubMed  CAS  Google Scholar 

  • Menetrey D. and Besson J. M (1982) Electrophysiological characteristics of dorsal horn cells in rats with cutaneous inflammation resulting from chronic arthritis. Pain 13, 343–364.

    PubMed  CAS  Google Scholar 

  • Meyer R. A. and Campbell J. N. (1981) Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science 213, 1527–1529.

    PubMed  CAS  Google Scholar 

  • Mielens Z. E. and Rozitis Jr., J. (1964) Acute periarticular inflammation induced in rats by oral sulfanilyl-mdazole. Proc. Soc. Exp. Biol. Med. 117, 751–755.

    PubMed  CAS  Google Scholar 

  • Mitchell C. L. (1964) A comparison of drug effects upon the jaw jerk response to electrical stimulation of the tooth pulp in dogs and cats. J. Pharmacol. Exp. Ther. 146, 1–6.

    PubMed  CAS  Google Scholar 

  • Mitchell D and Hellon R. F. (1977) Neuronal and behavioral responses in rats during noxious stimulation of the tail. Proc. Roy. Soc. 197, 169–194.

    CAS  Google Scholar 

  • Morton D. B. and Griffiths P. H. M. (1985) Guidelines on the recognition of pain, distress and discomfort in experimental animals and a hypothesis for assessment. Vet. Rec. 16, 431–436.

    Google Scholar 

  • Mountcastle V. B. (1980) Pain and Temperature Sensibilities, in Medical Physiology vol 1 (Mountcastle V. B., ed.) C. V. Mosby, St. Louis.

    Google Scholar 

  • Murray W. J. and Miller J. W. (1960) Oxytocin-induced “cramping” in the rat. J. Pharmacol. Exp. Ther. 128, 372–379.

    PubMed  CAS  Google Scholar 

  • Neil A. and Teremus L. (1982) An improved foot-shock titration procedure in rats for centrally acting analgesics. Acta Pharmacol. Toxicol. 50, 93–99.

    CAS  Google Scholar 

  • Nilsen P. L. (1961) Studies on algesimetry by electrical stimulation of the mouse tail. Acta Pharmacol. Toxicol. 18, 10–22.

    CAS  Google Scholar 

  • O’Callaghan J. P. and Holtzman S. G. (1975) Quantification of the analgesic activity of narcotic antagonists by a modified hot plate procedure. J. Pharmacol. Exp. Ther. 192, 497–505.

    Google Scholar 

  • Oden D. L. and Oden K. L. (1982) A minimum stress procedure for repeated measurements of nociceptive threshold and analgesia. Life Sci. 31, 1245–1248.

    PubMed  CAS  Google Scholar 

  • Ohlsson L. (1953) Algesimetric studies by the hot plate method in mice. Acta Pharmacol. Toxicol. 9, 322–331.

    CAS  Google Scholar 

  • Oliveras J. L., Woda A., Guilbaud G., and Besson J. M. (1974) Inhibition of the jaw opening reflex by electrical stimulation of the periaqueductal gray matter in the awake, unrestrained cat. Brain Res. 72, 328–331.

    PubMed  CAS  Google Scholar 

  • Otsuki T., Nakahama H., Niizuma H., and Suzuki J. (1986) Evaluation of the analgesic effects of capsaicin using a new rat model for tonic pain. Brain Res. 365, 233–240.

    Google Scholar 

  • Paalzow L. (1969) An electrical method for estimation of analgesic activity in mice, part I and II. Acta Pharm. Suec 6, 193–220.

    PubMed  CAS  Google Scholar 

  • Pajot J., Vassel A., Aigouy L., Rajona J., and Woda A. (1984) Variations of the jaw opening reflex observed in awake, freely moving rats. Arch. Int. Pharmacodyn. Ther. 270, 309–317.

    PubMed  CAS  Google Scholar 

  • Pearl J., Aceto M. D., and Harris L. S. (1968) Prevention of writhing and other effects of narcotics and narcotic antagonists in mice. J. Pharmacol. Exp. Ther 160, 217–230.

    PubMed  CAS  Google Scholar 

  • Pearl J. Harris L. S., and Fitzgerald J. J. (1966) Effects of analgesic antagonists on vocalizing and jumping of rats to electric shock. Arch. Int. Pharmacodyn. 161, 359–363.

    PubMed  CAS  Google Scholar 

  • Pearl J. Stander H., and McKean D. (1969) Effects of analgesics and other drugs on mice in phenylquinone and rotarod tests. J. Pharmacol. Exp. Ther 167, 9–13.

    PubMed  CAS  Google Scholar 

  • Pearson C. M. (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc. Soc. Exp. Biol. Med. 91, 95–101.

    PubMed  CAS  Google Scholar 

  • Pearson C. M. and Wood F. D. (1959) Studies of polyarthritis and other lesions induced in rats by injections of mycobacterial adjuvant. I. General clinical and pathologic characteristics and some modifying factors. Arthritis Rheum. 2, 440–459.

    Google Scholar 

  • Perrine T. D., Atwell L., Tice I. B., Jacobson A. E., and May E. L. (1972) Analgesic activity as determined by the Nilsen method. J. Pharm. Sci. 61, 86–88.

    PubMed  CAS  Google Scholar 

  • Piercey M. F. and Schroeder L. A. (1980) A quantitative analgesic assay in the rabbit based on the response to tooth pulp stimulation. Arch. Int. Pharmacodyn. Ther. 248, 294–304.

    PubMed  CAS  Google Scholar 

  • Pirico A. W., Fedele C. T., and Bierwagen M. E. (1975) A new method for the evaluation of analgesic activity using adjuvant-induced arthritis in the rat. Eur. J. Pharmacol. 31, 207–215.

    Google Scholar 

  • Prkachin K. M., Currie N. A., and Craig K. D. (1983) Judging nonverbal expressions of pain. Can. J. Behav. Sci. 15, 408–420.

    Google Scholar 

  • Randall L. O. and Selitto J. J. (1957) A method for measurement of analgesic activity on inflamed tissue. Arch. Int. Pharmacodyn. 61, 409–419.

    Google Scholar 

  • Regoli D. and Barabe J. (1980) Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32, 1–46.

    PubMed  CAS  Google Scholar 

  • Rodin B. E. and Kruger L. (1984) Deafferentation in animals as a model for the study of pain: An alternative hypothesis. Brain Res. Rev. 1, 213–228.

    Google Scholar 

  • Romer D. (1980) Pharmacological evaluation of mild analgesics. Br. J. Clin. Pharmacol. 10, 2475–2515.

    Google Scholar 

  • Ryan S. M., Watkins L. R., Mayer D. J., and Maier S. F. (1985) Spinal pain suppression mechanisms may differ for phasic and tonic pain. Brain Res. 334, 173–175.

    Google Scholar 

  • Satoh M., Kawajiri S., Yamamoto M., Foong F. W., and Masuda C. (1979) Analgesic action of cyclazocine: Blocking nociceptive responses induced by intra-arterial bradykinin-mjection and tooth pulp stimulation. Arch. Int. Pharmacodyn. 241, 300–306.

    PubMed  CAS  Google Scholar 

  • Scadding J. W. (1981) Development of ongoing activity, mechanosensitivity and adrenaline sensitivity in severed peripheral nerve axons. Exp. Neurol. 73, 345–364.

    PubMed  CAS  Google Scholar 

  • Schumacher G. A., Goodell H., Hardy J. D., and Wolff H. G. (1940) Uniformity of the pain threshold in man. Science 92, 110–112.

    PubMed  CAS  Google Scholar 

  • Sherrington C. S. (1929) Some functional organization of the spinal cord. Proc. Roy. Soc B-105, 332–362.

    Google Scholar 

  • Shyu K. W. and Lin M. T. (1985) Hypothalamic monoaminergic mechanisms of aspirin induced analgesia in monkeys. J. New. Transm. 62, 285–293.

    CAS  Google Scholar 

  • Siegel S. (1975) Evidence from rats that morphine tolerance is a learned response. J. Comp. Physiol. Psychol. 89, 498–506.

    PubMed  CAS  Google Scholar 

  • Siegmund E., Cadmus R., and Lu G. (1957) A method for evaluating both nonnarcotic and narcotic analgesia. Proc. Sol. Exp. Biol. Med. 95, 729–731.

    CAS  Google Scholar 

  • Skaburskis M. (1980) Amphetamine-induced analgesia on the formalin test: Antagonism by pimozide, a dopamine blocker. Masters Thesis, McGill University.

    Google Scholar 

  • Smith J. B. (1985) Effects of single and repeated daily injections of morphine, clonidine and L-nantradol on responding of squirrel monkeys under escape titration. J. Pharmacol. Exp. Ther. 234, 94–99.

    PubMed  CAS  Google Scholar 

  • Smith D. L., D’Amour M. C., and D’Amour F. E. (1943) The analgesic properties of certain drugs and drug combinations. J. Pharmacol. Exp. Ther. 77, 184–193.

    CAS  Google Scholar 

  • Steinfels G. F. and Cook L. (1986) Antinociceptive profiles of mu and kappa opioid agonists in a rat tooth pulp stimulation procedure. J. Pharmacol. Exp. Ther. 236, 111–117.

    PubMed  CAS  Google Scholar 

  • Stevens J. C. and Stevens S. S. (1960) Warmth and cold: Dynamics of sensory intensity. J. Exp. Psychol. 60, 183.

    PubMed  CAS  Google Scholar 

  • Taber R. I. (1974) Predictive Value of Analgesic Assays in Mice and Rats, in Narcotic Antagonists; Advances in Biochemical Pharmacology (Braude M. C, Harris L. C, May I. L., Smith J. P., and Villareul J. E., eds.) vol. 8, Raven, New York.

    Google Scholar 

  • Taber R. I. and Latranyi M. B. (1981) Antagonism of the analgesic effect of opioid and non-opioid agents by p-chlorophenylalanine (PCPA). Eur. J. Pharmacol. 75, 215–222.

    PubMed  CAS  Google Scholar 

  • Takagi H., Inukai T., and Nakama M. (1966) A modification of Haffner’s method for testing analgesics. Japn. J. Pharmacol. 16, 287–294.

    CAS  Google Scholar 

  • Tchakarov L., Abbott F. V., Ramirez Gonzales M. D., and Kunos G. (1985) Clonindine’s analgesic effects are reversible with naloxone in spontaneously hypertensive rats. Brain Res. 328, 33–40.

    Google Scholar 

  • Tenen S. S. (1968) Antagonism of the analgesic effect of morphine and other drugs by p-chlorophenylalanine, a serotonin depletor. Psychopharmacologia 12, 278–285.

    PubMed  CAS  Google Scholar 

  • Torebjork H. E. and Hallin R. G. (1976) Skin receptors supplied by unmyelinated (C) fibres in man. Werner-Gren Center International Symposium Series 27, 475–485.

    Google Scholar 

  • Twycross R. G. (1974) Clinical experience with diamorphine in advanced malignant disease. Int. J. Clin. Pharmacol. 9, 184–198.

    Google Scholar 

  • Tyers M. B. (1980) A classification of opiate receptors that mediate anti-nociception in animals. Br. J. Pharmacol. 69, 503–512.

    PubMed  CAS  Google Scholar 

  • VanderWende C. and Margolin S. (1956) Analgesic tests based upon experimentally induced acute abdominal pain in rats. Fed. Proc. 15, 494.

    Google Scholar 

  • Vierck C. J., Cooper B. Y., Franzen O., Ritz L. A., and Greenspoon J. D. (1983) Behavioural Analysis of CNS Pathways and Transmitter Systems Involved in Conduction and Inhibition of Pain Sensations and Reactions in Primates, in Progress in Psychobiology and Physiological Psychology (Sprague J. M. and Epstein E. N., eds.) vol. 10, Academic, New York.

    Google Scholar 

  • Volanakis J. E., Freeman D. G., and Stroud R. M. (1975) Acute Inflammation and Its Chemical Mediators: The Complement System, in Biological Basis of Wound Healing (Menaker L., ed.) Harper & Row, Hagerstown, Maryland.

    Google Scholar 

  • vonVoightlander P. F., Lahti R. A., and Ludens J. M. (1983) U-50,488: A selective and structurally novel non-mu (kappa) opioid agonist. J. Pharmacol. Exp. Ther. 224, 7–12.

    Google Scholar 

  • Wall P. D. and Fitzgerald M. (1981) Effects of capsaicin applied locally to adult peripheral nerve. Pain 11, 363–378.

    PubMed  CAS  Google Scholar 

  • Wall P. D., Devor M., Scadding J. W., Schonfeld D., Seltzer Z., and Tomkiewicz M. M. (1979) Autotomy following peripheral nerve lesions: Experimental anaesthesia dolorosa. Pain 7, 103–113.

    PubMed  CAS  Google Scholar 

  • Ward J. R. and Jones R. S. (1962a) The pathogenesis of mycoplasmal (PPLO) arthritis in rats. Arthritis Rheum. 5, 163–175.

    PubMed  CAS  Google Scholar 

  • Ward J. R. and Jones R. S. (1962b) Studies on adjuvant-induced polyarthritis in rats. I. Adjuvant composition, route of injection, and removal of deposition site. Arthritis Rheum. 5, 557–564.

    PubMed  CAS  Google Scholar 

  • Weiss B. and Laties V. G. (1958) Fractional escape and avoidance on a titration schedule. Science 128, 1575.

    PubMed  CAS  Google Scholar 

  • Weiss B. and Laties V. G. (1961) Changes in pain tolerance and other behavior produced by salicilates J. Pharmacol. Exp. Ther. 131, 120–129.

    PubMed  CAS  Google Scholar 

  • Weller C. and Sulman F. (1970) Drug action on tail shock-induced vocalization in mice and its relevance to analgesia. Eur. J. Pharmacol. 9, 227–234.

    PubMed  CAS  Google Scholar 

  • Whittle B. A. (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non-narcotic analgesics. Br J. Pharmacol. 22, 246–253.

    CAS  Google Scholar 

  • Wiesenfeld Z. and Hallin R. G. (1980) Stress-related pain behavior in rats with peripheral nerve injuries. Pain 8, 279–284.

    PubMed  CAS  Google Scholar 

  • Wiesenfeld Z. and Hallin R. G. (1983) Continuous naloxone administration via osmotic mini-pump decreases autotomy but has no effect on nociceptive threshold in the rat. Pain 16, 145–153.

    PubMed  CAS  Google Scholar 

  • Wiesenfeld Z. and Hallin R. G. (1984) The effect of intrathecal morphine and naltrexone on autotomy in sciatic nerve sectioned rats. Pain 18, 267–278.

    Google Scholar 

  • Wiesenfeld Z. and Lindblom V. (1980) Behavioral and electrophysiological effects of various types of peripheral nerve lesions in the rat: A comparison of possible models for chronic pain. Pain 8, 283–298.

    Google Scholar 

  • Wilder R. L., Allen J. B., Wahl L. M., Calandra G. B., and Wahl S. M. (1983) The pathogenesis of a group of streptococcal cell wall-induced polyarthritis in the rat. Arthritis Rheum. 26, 1442–1451.

    PubMed  CAS  Google Scholar 

  • Willer J. C. and Bussel B. (1980) Evidence for a direct spinal mechanism in morphine-induced inhibition of nocioceptive reflexes in humans. Brain Res. 187, 212–215.

    PubMed  CAS  Google Scholar 

  • Willer J. C., Boureau F., and Albe-Fessard D. (1980) Human nociceptive reactions: Effects of spatial summation of afferent input from relatively large diameter fibers. Brain Res. 201, 465–470.

    PubMed  CAS  Google Scholar 

  • Wilson S. and Reid K. H. (1978) Reflex versus behavioural responses to tooth pulp stimulation in the cat. Physiol. Behav. 20, 717–722.

    PubMed  CAS  Google Scholar 

  • Winder C. V. (1959) Aspirin and analgesimetry. Nature 184, 494–497.

    PubMed  CAS  Google Scholar 

  • Winter C. A. and Flataker L. (1951) The effect of cortisone, desoxycorticosterone and adrenocorticotrophic hormone upon the responses of animals to analgesic drugs. J. Pharmacol. Exp. Ther. 103, 93–105.

    PubMed  CAS  Google Scholar 

  • Winter C. A. and Flataker L. (1965) Reaction thresholds to pressure in edematous hindpaws of rats and responses to analgesic drugs. J. Pharmacol. Exp. Ther. 150, 165–171.

    PubMed  CAS  Google Scholar 

  • Wood P. L. (1984) Animal Models in Analgesic Testing, in Analgesics: Neurochemical, Behavioral and Clinical Perspectives (Kular M. and Pasternak G., eds.) Raven, New York.

    Google Scholar 

  • Wood P. L., Rackham A., and Richard J. (1981) Spinal analgesia: Comparison of the mu agonist morphine and the kappa agonist ethylketazocine. Life Sci. 28, 2119–2125.

    PubMed  CAS  Google Scholar 

  • Woodworth R. S. and Schlosberg H. (1954), Experimental Psychology 3rd edn., Methuen, London.

    Google Scholar 

  • Woolf C. J. (1984) Long term alterations in the excitability of the flexion reflex produced by peripheral tissue injury in the chronic decerebrate rat. Pain 18, 325–343.

    PubMed  CAS  Google Scholar 

  • Woolfe G. and McDonald A. D. (1944) The evaluation of the analgesic action of pethidine hydrochloride (Demerol). J. Pharmacol. Exp. Ther. 80, 300–307.

    CAS  Google Scholar 

  • Wynn R. J., El’Baghdadi Y. M., Ford R. D., Thut P. D., and Rudo F. G. (1984) A rabbit tooth-pulp assay to determine ED50 values and duration of analgesics. J. Pharmacol Meth. 11, 109–117.

    CAS  Google Scholar 

  • Wynn Parry C. B. (1980) Pain in avulsion lesions of the brachial plexus. Pain 9, 41–53.

    Google Scholar 

  • Yaksh T. L. and Rudy T. A. (1977) A dose-ratio comparison of the interaction between morphine and cyclazocine with naloxone in rhesus monkeys on the shock titration task. Eur. ]. Pharmacol. 46, 83–92.

    CAS  Google Scholar 

  • Yaksh T. L. and Rudy T. A. (1978) Narcotic analgesics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4, 299–359.

    PubMed  CAS  Google Scholar 

  • Yim G. K. W., Keasling H. H., Grass E. G., and Mitchell C. W. (1955) Simultaneous respiratory minute volume and tooth pulp threshold changes following levarphan, morphine and levarphan-levallarphan mixture in rabbits. J. Pharmacol Exp. Ther 115, 96–105

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Little Brown and Co., Boston, MA for permission to reproduce Fig. 1. We also thank Drs. Kawakita and Funakoshi for permission to use their data. Any errors of interpretation of their data are ours. F.V. Abbott was supported by a Frazer, Monat and MacPherson McGill University Associateship

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this protocol

Cite this protocol

Franklin, K.B.J., Abbott, F.V. (1989). Techniques for Assessing the Effects of Drugs on Nociceptive Responses. In: Boulton, A.A., Baker, G.B., Greenshaw, A.J. (eds) Psychopharmacology. Neuromethods, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-129-2:145

Download citation

  • DOI: https://doi.org/10.1385/0-89603-129-2:145

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-129-6

  • Online ISBN: 978-1-59259-618-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics