Methods for Determining the Effects of Drugs on Learning

  • Richard J. Beninger
Part of the Neuromethods book series (NM, volume 13)

Abstract

Associative learning can occur as a result of the arrangement of contingencies between stimuli and outcomes. The experimenter controls the occurrence of these events in classical conditioning (Pavlov, 1927) 131. In instrumental conditioning, the experimenter arranges the environment in such a way that a response is required for a particular outcome to occur (Skinner, 1938) 153. There may be other procedures that produce associative learning, and there are certainly other forms of learning, including habituation, various forms of perceptual learning (e.g., released image recognition learning; Suboski and Bartashunas, 1984 166), verbal learning, and the learning of complex motor sequences. The present chapter focuses on methods for determining the effects of drugs on associative learning with particular reference to instrumental conditioning. Classical conditioning also will be covered briefly, but no discussion of these other forms of learning will be included. This should not be taken as a reflection on the relative importance of various forms of learning.

Keywords

Foam Dopamine Serotonin Norepinephrine Disulfide 

References

  1. Ahlenius S., Archer T., Tandberg B., and Hillegaart V. (1984) Effects of (−)3-PPP on acquisition and retention of a conditioned avoidance response in the rat. Psychopharmacology 84, 441–445.PubMedGoogle Scholar
  2. Angrist B. (1983) Psychoses Induced by Central Nervous System Stimulants and Related Drugs, in Stimulants: Neurochemical, Behavioral, and Clinical Perspectives (Creese I., ed.) Raven, New York.Google Scholar
  3. Angrist B., Rotrosen J., and Gershon S. (1980) Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects. Psychopharmacology 67, 31–38.PubMedGoogle Scholar
  4. Anisman H., Corradini A., Tombaugh T. N., and Zacharko R. M. (1982a) Avoidance performance, cue and response-choice discrimination after neuroleptic treatment. Pharmacol. Biochem. Behav. 17, 1245–1249.PubMedGoogle Scholar
  5. Anisman H., Irwin J., Zacharko R. M., and Tombaugh T. N. (1982b) Effects of dopamine receptor blockade on avoidance performance: Assessment of effects on cue-shock and response-outcome associations. Behav. Neural Biol. 36, 280–290.PubMedGoogle Scholar
  6. Archer T. (1982) DSP4 (N-2-chloroethyl-N-ethyl-2-bromobenzylamine), a new noradrenaline neurotoxin, and stimulus conditions affecting acquisition of two-way active avoidance. J. Comp. Physiol. Psychol. 96, 476–490.PubMedGoogle Scholar
  7. Armstrong D. M., Saper C. B., Levey A. I., Wainer B. H., and Terry R. D. (1983) Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase. J. Comp. Neurol. 216, 53–68.PubMedGoogle Scholar
  8. Azmitia E. C. (1978) The Serotonin-Producing Neurons of the Midbrain Median and Dorsal Raphe Nuclei, in Handbook of Psychopharmacology vol. 9 (Iversen L. L., Iversen S. D., and Snyder S. H., eds.) Plenum, New York.Google Scholar
  9. Barr G. A., Sharpless N. S., Cooper S., Schiff S. R., Paredes W., and Bridger W. H. (1983) Classical conditioning, decay and extinction of cocaine-induced hyperactivity and stereotypy. Life Sci. 33, 1341–1351.PubMedGoogle Scholar
  10. Bartus R. T., Flicker C, Dean R. L., Pontecorvo M., Figueiredo J. C., and Fisher S. K. (1985) Selective memory loss following nucleus basalis lesions: Long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol. Biochem. Behav. 23, 125–135.PubMedGoogle Scholar
  11. Bechara A. and van der Kooy D. (1985) Opposite motivational effects of endogenous opioids in brain and periphery. Nature 314, 533–534.PubMedGoogle Scholar
  12. Beninger R. J. (1982) A comparison of the effects of pimozide and nonreinforcement on discriminated operant responding in rats. Pharmacol. Biochem. Behav. 16, 667–669.PubMedGoogle Scholar
  13. Beninger R. J. (1983) The role of dopamine in locomotor activity and learning. Brain Res. Rev. 6, 173–196.Google Scholar
  14. Beninger R. J. and Freedman N. L. (1982) The use of two operants to examine the nature of pimozide-induced decreases in responding for brain stimulation. Physiol. Psychol. 10, 409–412.Google Scholar
  15. Beninger R. J. and Hahn B. L. (1983) Pimozide blocks establishment but not expression of amphetamine-produced environment-specific conditioning. Science 220, 1304–1306.PubMedGoogle Scholar
  16. Beninger R. J. and Herz R. S. (1986) Pimozide blocks establishment but not expression of cocaine-produced environment-specific conditioning. Life Sci. 38, 1425–1431.PubMedGoogle Scholar
  17. Beninger R. J. and Phillips A. G. (1979) Possible involvement of serotonin in extinction. Pharmacol. Biochem. Behav. 10, 37–41.PubMedGoogle Scholar
  18. Beninger R. J. and Phillips A. G. (1980) The effect of pimozide on the establishment of conditioned reinforcement. Psychopharmacology 68, 147–153.PubMedGoogle Scholar
  19. Beninger R. J. and Phillips A. G. (1981) The effects of pimozide during pairing on the transfer of classical conditioning to an operant discrimination. Pharmacol. Biochem. Behav. 14, 101–105.PubMedGoogle Scholar
  20. Beninger R. J., Phillips A. G., and Fibiger H. C. (1983) Prior training and intermittent retraining attenuate pimozide-induced avoidance deficits. Pharmacol. Biochem. Behav. 18, 619–624.PubMedGoogle Scholar
  21. Beninger R. J., Jhamandas K., Boegman R., and El-Defrawy S. R. (1986) Effects of scopolamine and unilateral lesions of the basal forebrain on T-maze spatial discrimination and alternation in rats. Pharmacol. Biochem. Behav. 24, 1353–1360.PubMedGoogle Scholar
  22. Beninger R. J., Hanson D. R, and Phillips A. G. (1981) The acquisition of responding with conditioned reinforcement: Effects of cocaine, (+)-amphetamine and pipradrol. Br. J. Pharmacol 74, 149–154.PubMedGoogle Scholar
  23. Beninger R. J., Hanson D. R., and Phillips A. G. (1980a) The effects of pipradrol on the acquisition of responding with conditioned reinforcement: A role for sensory preconditioning. Psychopharmacology 69, 235–242.PubMedGoogle Scholar
  24. Beninger R.J., Mason S. T., Phillips A. G., and Fibiger H. C. (1980b) The use of extinction to investigate the nature of neuroleptic-induced avoidance deficits. Psychopharmacology 69, 11–18.PubMedGoogle Scholar
  25. Beninger R. J., Mason S. T., Phillips A. G., and Fibiger H. C. (1980c) The use of conditioned suppression to evaluate the nature of neuroleptic-induced avoidance deficits. J. Pharmacol. Exp. Ther. 213, 623–627.PubMedGoogle Scholar
  26. Bindra D. (1978) How adaptive behavior is produced: A perceptual-motivational alternative to response-reinforcement. Behav. Brain Set. 1, 41–91.Google Scholar
  27. Bolles R. C. (1970) Species-specific defense reactions and avoidance learning. Psychol. Rev. 77, 32–48.Google Scholar
  28. Bolles R. C. and Fanselow M. S. (1982) Endorphins and behavior. Ann Rev. Psychol 33, 87–101.Google Scholar
  29. Botwinick C. Y., Quartermain D., Freedman L S., and Hallock M. F. (1977) Some characteristics of amnesia induced by FLA-63, an inhibitor of dopamine beta hydroxylase. Pharmacol. Biochem. Behav. 6, 487–491.PubMedGoogle Scholar
  30. Bower G. and Crusec T. (1964) Effect of prior Pavlovian discrimination training upon learning an operant discrimination. J. Exp. Anal. Behav. 7, 401–404.PubMedGoogle Scholar
  31. Bowers W., Hamilton M., Zacharko R. M., and Anisman H. (1985) Differential effects of pimozide on response-rate and choice accuracy in a self-stimulation paradigm in mice. Pharmacol Biochem. Behav 22, 521–526.PubMedGoogle Scholar
  32. Bozarth M. A. and Wise R. A. (1981) Heroin reward is dependent on a dopaminergic substrate. Life Sci. 29, 1881–1886.PubMedGoogle Scholar
  33. Broderick P. (1985) In vivo electrochemical studies of rat striatal dopamine and serotonin release after morphine. Life Sci. 26, 2269–2275.Google Scholar
  34. Brogden R. N., Speight T. M., and Avery G. S. (1971) Levodopa: A review of its pharmacological properties and therapeutic use with particular reference to parkinsonism. Drugs 2, 262–400.PubMedGoogle Scholar
  35. Carlton P. L. and Advokat C. (1973) Attenuated habituation due to parachlorophenylalanine. Pharmacol. Biochem. Behav. 1, 657–663.PubMedGoogle Scholar
  36. Carlton P. L. and Manowitz P. (1984) Dopamine and schizophrenia: An analysis of the theory. Neurosci. Biobehav. Rev. 8, 137–151.PubMedGoogle Scholar
  37. Carr G. D. and White N. M. (1983) Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Set. 33, 2551–2557.Google Scholar
  38. Carr G. D. and White N. M. (1986) Anatomical disassociation of amphetamine’ rewarding and aversive effects: An intracranial microinjection study. Psychopharmacology 89, 340–346.PubMedGoogle Scholar
  39. Connell P. H. (1958) Amphetamine Psychosis Chapman & Hall, London.Google Scholar
  40. Conner R. L., Stolk J. M., Barchas J. D., and Levine S. (1970) Parachlorophenylalanine and habituation to repetitive auditory startle stimuli in rats. Physiol. Behav. 5, 1215–1219.PubMedGoogle Scholar
  41. Cook L. and Kelleher R. T. (1963) Effects of drugs on behavior. Ann. Rev. Pharmacol. 3, 205–222.Google Scholar
  42. Cooper B. R., Howard J. L., Grant L. D., Smith R. D., and Breese G. R. (1974) Alteration of avoidance and ingestive behavior after destruction of central catecholamine pathways with 6-hydroxydopamine. Pharmacol. Biochem. Behav. 2, 639–649.PubMedGoogle Scholar
  43. Costall B. and Naylor R. J. (1979) Behavioural Aspects of Dopamine Agonists and Antagonists, in The Neurobiology of Dopamine (Horn A. S., Korf J., and Westerink B. H. C., eds.) Academic, London.Google Scholar
  44. Cross T. J., Crow T. J., and Owen F. (1981) 3H-Flupenthixol binding in post-mortem brains of schizophrenics: Evidence for a selective increase in dopamine D2 receptors. Psychopharmacology 74, 122–124.PubMedGoogle Scholar
  45. Crow T. J. (1978) An Evaluation of the Dopamine Hypothesis of Schizophrenia, in The Biological Basis of Schizophrenia (Hemmings G. and Hemmings W. A., eds.) University Park Press, Baltimore.Google Scholar
  46. Crow T. J. (1979) Catecholamine reward pathways and schizophrenia: The mechanisms of the antipsychotic effect and the site of the primary disturbance. Fed. Proc. 38, 2462–2467.PubMedGoogle Scholar
  47. Davis W. M. and Smith S. G. (1975) Effects of haloperidol on (+)-amphetamine self-administration. J. Pharm. Pharmacol. 27, 540–541.PubMedGoogle Scholar
  48. Davis W. M. and Smith S. G. (1977) Catecholaminergic mechanisms of reinforcement: Direct assessment by drug self-administration. Life Sci. 20, 483–492.PubMedGoogle Scholar
  49. Delacour J., Echavarria M. T., Senault B., and Houcine O. (1977) Specificity of avoidance deficits produced by 6-hydroxydopamme lesions of the nigrostriatal system of the rat. J. Comp. Physiol. Psychol. 91, 875–885.PubMedGoogle Scholar
  50. Deutsch J. A. and Rogers J. B. (1979) Cholinergic Excitability andMemory: Animal Studies and Their Clinical Implications, in Brain Acetylcholine and Neuropsychiatnc Disease (Davis K. L. and Berger P. A., eds.) Plenum, New York.Google Scholar
  51. de Wied D. (1971) Long-term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature 232, 58–60.PubMedGoogle Scholar
  52. de Wied D. (1984) Neurohypophyseal Hormone Influences on Learning and Memory Processes, in Neurobiology of Learning and Memory (Lynch G., McGaugh J. L., and Weinberger N. M., eds.) Guilford, New York.Google Scholar
  53. de Wied D. and van Ree J. M. (1982) Neuropeptides, mental performance and aging. Life So. 31, 709–719.Google Scholar
  54. Duvoisin R. C. (1984) Parkinson’ Disease: A Guide for Patient and Family 2nd edn. Raven, New York.Google Scholar
  55. Emson P. C, ed. (1983) Chemical Neuroanatomy Raven, New York.Google Scholar
  56. Ernst A. M. (1967) Mode of action of apomorphine and dextroamphetamine on gnawing compulsion in rats. Psychopharmacology 10, 316–323.Google Scholar
  57. Ettenberg A., van der Kooy D., Le Moal M., Koob G. F., and Bloom F. E. (1983) Can aversive properties of (peripherally-injected) vasopressin account for its putative role in memory? Behav. Brain Res. 7, 331–350.PubMedGoogle Scholar
  58. Evenden J. L. and Robbins T. W. (1985) The effects of d-amphetamine, chlordiazepoxide and alpha-flupenthixol on food-reinforced tracking of a visual stimulus by rats. Psychopharmacology 85, 361–366.PubMedGoogle Scholar
  59. Everitt B. J., Robbins T. W., Gaskin M., and Fray P. J. (1983) The effects of lesions to ascending noradrenergic neurons on discrimination learning and performance in the rat. Neuroscience 10, 397–410.PubMedGoogle Scholar
  60. Ferster C. B. and Skinner B. F. (1957) Schedules of Reinforcement Appleton-Century-Crofts, New York.Google Scholar
  61. Fibiger H. C. (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. Rev 4, 327–388.Google Scholar
  62. Fibiger H. C., Phillips A. G., and Zis A. (1974) Deficits in instrumental responding after 6-hydroxydopamine lesions of the nigro-neostnatal dopaminergic projections. Pharmacol. Biochem. Behav 2, 87–96.PubMedGoogle Scholar
  63. Fibiger H. C, Zis A. P., and Phillips A. G. (1975) Haloperidol-induced disruption of conditioned avoidance responding: Attenuation by prior training or by anticholinergic drugs. Eur. J. Pharmacol. 30, 309–314.PubMedGoogle Scholar
  64. Flood J F., Landry D. W., and Jarvik M. E. (1981) Cholinergic receptor interactions and their effects on long-term memory processing. Brain Res. 215, 177–185.PubMedGoogle Scholar
  65. Flood J. F., Smith G. E., and Cherkin A. (1983) Memory retention: Potentiation of cholinergic stimulation in mice. Pharmacol. Biochem. Behav. 20, 161–163.Google Scholar
  66. Flood J. F., Smith G. E., and Cherkin A. (1984) Memory retention: Effects of prolonged cholinergic drug combinations in mice. Neurobiol. Aging 4, 37–43.Google Scholar
  67. Flood J. F., Smith G. E., and Cherkin A. (1985) Memory enhancement: Supraadditive effect of subcutaneous cholinergic drug combinations in mice. Psychopharmacology 86, 61–67.PubMedGoogle Scholar
  68. Fonnum F., Soreide A., Kvale I., Walker J., and Walaas I. (1981) Glutamate in Cortical Fibres, in Glutamate as a Neurotransmitter (DiChiara G. and Gessa G. L., eds.) Raven, New York.Google Scholar
  69. Fouriezos G., Hansson P., and Wise R. A. (1978) Neuroleptic-induced attentuation of brain stimulation reward in rats. J. Comp. Physiol. Psychol. 92, 661–671.PubMedGoogle Scholar
  70. Franklin K. B. J. and McCoy S. N. (1979) Pimozide-induced extinction in rats: Stimulus control of responding rules out motor deficit. Pharmacol. Biochem. Behav. 11, 71–75.PubMedGoogle Scholar
  71. Gallagher M., King R. A., and Young N. B. (1983) Opiate agonists improve spatial memory. Science 221, 975–976.PubMedGoogle Scholar
  72. Gilbert D. and Cooper S. J. (1983) β-Phenylethylamine-, d-amphetamine-and-amphetamine-induced place preference conditioning in rats. Eur. J. Pharmacol. 95, 311–314.PubMedGoogle Scholar
  73. Glimcher P. W., Margolin D. H., Biovino A. A., and Hoebel B. G. (1984) Neurotensin: A new “reward peptide.” Brain Res. 291, 119–124.PubMedGoogle Scholar
  74. Gray T. and Wise R. A. (1980) Effects of pimozide on lever pressing behavior maintained on an intermittent reinforcement schedule. Pharmacol. Biochem. Behav. 12, 931–935.PubMedGoogle Scholar
  75. Grecksch G., Wetzel W., and Matthies H. (1978) Effect of n-dipropylacetate on the consolidation of a brightness discrimination. Pharmacol. Biochem. Behav. 9, 269–271.PubMedGoogle Scholar
  76. Greenshaw A. J., Sanger D. J., and Blackman D. E. (1981) The effects of pimozide and of reward omission on fixed-interval behavior of rats maintained by food and electrical brain stimulation. Pharmacol. Biochem. Behav. 15, 227–233.PubMedGoogle Scholar
  77. Gysling K. and Wang R. Y. (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res. 277, 119–127.PubMedGoogle Scholar
  78. Hayashi T., Ohashi K., and Tadokoro S. (1980) Conditioned drug effects to d-amphetamine-and morphine-induced motor acceleration in mice: Experimental approach for placebo effect. Japn. J. Pharmacol. 30, 93–100.Google Scholar
  79. Hemmings G. and Hemmings W. A., eds. (1978) The Biological Basis of Schizophrenia University Park Press, Baltimore.Google Scholar
  80. Hepler D. J., Olton D. S., Wenk G. L., and Coyle J. T. (1985) Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J., Neurosci. 5, 866–873.Google Scholar
  81. Hill R. T. (1970) Facilitation of Conditioned Reinforcement as a Mechanism of Psychomotor Stimulation, in Amphetamine and Related Compounds (Costa E. and Garattini S., eds.) Raven, New York.Google Scholar
  82. Hoffman D. C. and Beninger R. J (1985) The effects of pimozide on the establishment of conditioned reinforcement as a function of the amount of conditioning. Psychopharmacology 87, 454–460.PubMedGoogle Scholar
  83. Hoffman D. C. and Beninger R. J. (1986) Feeding behavior in rats is differentially affected by pimozide treatment depending on prior experience. Pharmacol. Bwchem. Behav. 24, 259–262.Google Scholar
  84. Hokfelt T., Lundberg J. M., Schultzberg M., Johansson O., Ljungdahl A., and Rehfeld J. (1980) Coexistance of Peptides and Putative Transmitters in Neurons, in Neural Peptides and Neuronal Communications (Costa E. and Trabucci M., eds.) Raven, New York.Google Scholar
  85. Huston J. P. and Staubli U. (1978) Retrograde amnesia produced by post-trial injection of substance P into substantia nigra. Brain Res. 159, 468–472.PubMedGoogle Scholar
  86. Huston J. P. and Staubli U. (1979) Post-trial injection of substance P into lateral hypothalamus and amygdala, respectively, facilitates and impairs learning. Behav. Neural Biol. 27, 244–248.PubMedGoogle Scholar
  87. Irwin S. and Armstrong P. M. (1961) Conditioned locomotor response with drug as the unconditioned stimulus: Individual differences. Neuropsychopharmacology 2, 151–157.Google Scholar
  88. Ishikawa K. and Saito S. (1978) Effect of intraventricular gamma-aminobutyric acid (GABA) on discrimination learning in rats. Psychopharmacology 56, 127–132.PubMedGoogle Scholar
  89. Janowsky D. S., El-Yousef M. K., Davis J. M., and Sekerke H. J. (1973) Provocation of schizophrenic symptoms by intravenous administration of methylphenidate. Arch. Gen. Psychiat. 38, 185–191.Google Scholar
  90. Katz R. J. and Liebler L (1978) GABA involvement in memory consolidation: evidence from posttnal ammo-oxyacetic acid. Psychopharmacology 56, 191–193.PubMedGoogle Scholar
  91. Kokkinidis L. and Anisman H. (1981) Amphetamine psychosis and schizophrenia: A dual model. Neurosci. Biobehav. Rev. 5, 449–461.PubMedGoogle Scholar
  92. Koob G. F., Simon H., Herman J. P., and LeMoal M. (1984) Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems. Brain Res. 303, 319–329.PubMedGoogle Scholar
  93. LaHoste G. J., Olson G. A., Kastin A. J., and Olson R. D. (1980) Behavioral effects of melanocyte stimulating hormone. Neurosci. Biobehav. Rev. 4, 9–16.PubMedGoogle Scholar
  94. Laties V. G. (1975) The role of discriminative stimuli in modulating drug action. Fed. Proc. 34, 1880–1888.PubMedGoogle Scholar
  95. Lee T. and Seeman P. (1980) Elevation of brain neuroleptic/dopamine receptors in schizophrenia. Am. J. Psychiat. 137, 191–197.PubMedGoogle Scholar
  96. LeMoal M., Koob G. F., Koda L. Y., Bloom F. E., Manning M., Sawyer W. H., and Rivier J. (1981) Vasopressor receptor antagonist prevents behavioral effects of vasopressin. Nature 291, 491–493.Google Scholar
  97. Lindvall O. (1979) Dopamine Pathways in the Rat Brain, in The Neurobiology of Dopamine (Horn A. S., Korf J., and Westerink B. H. C., eds.) Academic, London.Google Scholar
  98. Lindvall O. and Bjorkland A. (1983) Dopamine-and Norepinephrine-Containing Neuron Systems: Their Anatomy in the Rat Brain, in Chemical Neuroanatomy (Emson P. C, ed.) Raven, New York.Google Scholar
  99. Lipton M. A. and Nemeroff C. B. (1978) An Overview of the Biogenic Amine Hypothesis of Schizophrenia, in Phenomenology and Treatment of Schizophrenia (Jann W. E., Karakan I, Pokarny A. D., and Williams R. L., eds.) Spectrum, New York.Google Scholar
  100. Lucion A. B., Rosito G., Sapper D., Palmini A. L., and Izquierdo I. (1982) Intracerebroventricular administration of nanogram amounts of β-endorphin and met-enkephalin causes retrograde amnesia in rats. Behav. Brain Res. 4, 111–115.PubMedGoogle Scholar
  101. Mackay A. V. P (1980) Positive and negative schizophrenic symptoms and the role of dopamine. Br. J. Psychiat. 137, 379–386.Google Scholar
  102. Mackay W. B. and van der Kooy D. (1985) Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning. Pharmacol. Biochem. Behav. 22, 101–105.Google Scholar
  103. Mackintosh N. J. (1974) The Psychology of Animal Learning Academic, London.Google Scholar
  104. Mason S. T. and Iversen S. D. (1979) Theories of the dorsal bundle extinction effect. Brain Res. Rev. 1, 107–137.Google Scholar
  105. Mason S. T., Beninger R. J., Fibiger H. C, and Phillips A. G. (1980) Pimozide-induced suppression of responding: Evidence against a block of food reward. Pharmacol. Biochem. Behav. 12, 917–923.PubMedGoogle Scholar
  106. Matthysse S. (1974) Schizophrenia: Relationships to Dopamine Transmission, Motor Control, and Feature Extraction, in The Neurosciences: Third Study Program (Schmitt F. D. and Worden F. G., eds.) MIT Press, Cambridge, Massachusetts.Google Scholar
  107. Mazurski E. J. and Beninger R. J. (1986) The effects of (+)-amphetamine and apomorphine on responding for a conditioned reinforcer. Psychopharmacology 90, 239–243.PubMedGoogle Scholar
  108. McGeer P. L., Eccles J. C., Jr., and McGeer E. G. (1978) Molecular Neurobiology of the Mammalian Brain Plenum, New York.Google Scholar
  109. McGhie A. (1977) Attention and Perception in Schizophrenia, in Contributions to the Psycho-pathology of Schizophrenia (Maher B. A., ed.) Academic, New York.Google Scholar
  110. Mellgren R. C. and Ost J. W. P. (1969) Transfer from Pavlovian differential conditioning to an operant discrimination. J., Comp. Physiol. Psychol. 67, 390–394.Google Scholar
  111. Memo M., Kleinman J. E., and Hanbauer I. (1983) Coupling of dopamine D1 recognition sites with adenylate cyclase in nucleus accumbens and caudatus of schizophrenics. Science 221, 1304–1307.PubMedGoogle Scholar
  112. Mesulam M-M., Mufson E. J., Wainer B. H, and Levey A. I. (1983) Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch 1-Ch 6). Neuroscience 10, 1185–1201.PubMedGoogle Scholar
  113. Miller R. (1984) Major psychosis and dopamine: Controversial features and some suggestions. Psychol. Med. 14, 779–789.PubMedGoogle Scholar
  114. Moore R. Y. and Bloom F. E. (1979) Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems. Ann. Rev. Neurosci. 2, 113–168.PubMedGoogle Scholar
  115. Morency M. A. and Beninger R. J. (1986) Dopaminergic substrates of cocaine-induced place conditioning. Brain Res. 399, 33–41.PubMedGoogle Scholar
  116. Morgan M. J. (1974) Resistance to satiation. Anim. Behav. 22, 449–466.Google Scholar
  117. Mucha R. F., van der Kooy D., O’Shaughnessy M., and Bucenieks P. (1982) Drug reinforcement studies by the use of place conditioning in rat. Brain Res. 243, 91–105.PubMedGoogle Scholar
  118. Murray C. L. and Fibiger H. C. (1985) Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine. Neuroscience 14, 1025–1032.PubMedGoogle Scholar
  119. Neill D. B., Boggan W. O., and Grossman S. P. (1974) Impairment of avoidance performance by intrastriatal administration of 6-hydroxydopamine. Pharmacol. Bwchem. Behav. 2, 97–103.Google Scholar
  120. Neiemegeers C. J. E., Verbruggen F. J., and Janssen P. A. J. (1969) The influence of various neuroleptic drugs on shock avoidance responding in rats. Psychopharmacology 16, 161–174.Google Scholar
  121. Ogren S. O. (1982) Central Serotonin Neurones and Learning in the Rat, in Biology of Serotonergic Transmission (Osborne N. N., ed.) John Wiley, New York.Google Scholar
  122. Palacios J. M. and Kuhar M. J. (1981) Neurotensin receptors are located on dopamine containing neurons in rat midbrain. Nature 294, 587–589.PubMedGoogle Scholar
  123. Pavlov I. P. (1927) Conditioned Reflexes Dover, New York.Google Scholar
  124. Pearlson G. and Coyle J. T. (1983) The Dopamine Hypothesis and Schizophrenia, in Neuroleptics: Neurochemical, Behavioral, and Clinical Perspectives (Coyle J. T. and Enna S. J., eds.) Raven, New York.Google Scholar
  125. Phillips A. G. and Fibiger H. C. (1979) Decreased resistance to extinction after haloperidol: Implications for the role of dopamine in reinforcement. Pharmacol. Biochem. Behav. 10, 751–760.PubMedGoogle Scholar
  126. Phillips A. G., LePiane F. G., and Fibiger H. C. (1983) Dopaminergic mediation of reward produced by direct injection of enkephalin into the ventral tegmental area of the rat. Life Sci. 33, 2505–2511.PubMedGoogle Scholar
  127. Pickens R. W. and Crowder W. F. (1967) Effects of CS-US interval on conditioning of drug response, with assessment of speed of conditioning. Psychopharmacology 11, 88–94.Google Scholar
  128. Pihl R. O. and Altman J. (1971) An experimental analysis of the placebo effect. J. Clin. Pharmacol. 11, 91–95.Google Scholar
  129. Posluns D. (1962) An analysis of chlorpromazine-induced suppression of the avoidance response. Psychopharmacology 3, 361–373.Google Scholar
  130. Post R. M., Lockfeld A., Squillace K. M., and Contel N. R. (1981) Drug-environment interactions: Context dependency of cocaine-induced behavioral sensitization. Life Sci. 28, 755–760.PubMedGoogle Scholar
  131. Ridley R. M., Baker H. F., and Weight M. L. (1980) Amphetamine disrupts successive but not simultaneous visual discrimination in the monkey. Psychopharmacology 67, 241–244.PubMedGoogle Scholar
  132. Riley A. L., Zellneer D. A., and Duncan H. J. (1980) The role of endorphins in animal learning and behavior. Neurosci. Biobehav. Rev. 4, 69–76.PubMedGoogle Scholar
  133. Robbins T. W. (1975) A potentiation of conditioned reinforcement by psychomotor stimulant drugs, a test of Hill’ hypothesis. Psychopharmacology 45, 103–114.Google Scholar
  134. Robbins T. W. (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature 264, 57–59.PubMedGoogle Scholar
  135. Robbins T. W. (1978) The acquisition of responding with conditioned reinforcement: Effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology 58, 79–87.PubMedGoogle Scholar
  136. Robbins T. W. and Koob G. F. (1978) Pipradrol enhances reinforcing properties of stimuli paired with brain stimulation. Pharmacol. Biochem. Behav. 8, 219–222.PubMedGoogle Scholar
  137. Robbins T. W., Watson B. A., Gaskin M., and Ennis C. (1983) Contrasting interactions of pipradrol, d-amphetamine, cocaine, cocaine analogues, apomorphine and other drugs with conditioned reinforcement. Psychopharmacology 80, 113–119.PubMedGoogle Scholar
  138. Rupniak N. M. J., Jenner P. G., and Marsden C. D. (1983) Long-term Neuroleptic Treatment and the Status of the Dopamine Hypothesis of Schizophrenia, in Theory of Psychopharmacology Vol. 2 (Cooper S. J., ed.) Academic, London.Google Scholar
  139. Salamone J. D. (1986) Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology 88, 18–23.PubMedGoogle Scholar
  140. Salamone J. D., Beart P. M., Alpert J. E., and Iversen S. D. (1984) Impairment in T-maze reinforced alternation performance following nucleus basalis magnocellularis lesions in rats. Behav. Brain Res. 13, 63–70.PubMedGoogle Scholar
  141. Sayed Y. and Garrison J. M. (1983) The dopamine hypothesis of schizophrenia and the antagonistic action of neuroleptic drugs—a review. Psychopharmacol. Bull. 19, 283–288.PubMedGoogle Scholar
  142. Schiff S. R. (1982) Conditioned dopaminergic activity. Biol. Psychtat. 17, 135–154.Google Scholar
  143. Seeman P. (1981) Brain dopamine receptors. Pharmacol. Rev. 32, 229–313.Google Scholar
  144. Seeman P, Ulpian C., Bergeron C., Riederer P., Jelhnger K., Gabriel E., Reynolds G. P., and Jourtellotte W. W. (1984) Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225, 728–731.PubMedGoogle Scholar
  145. Skinner B. F. (1938) The Behavior of Organisms Appleton-Century-Crofts, New York.Google Scholar
  146. Snyder S. H. (1972) Catecholamines in the brain as mediators of amphetamine psychosis. Arch. Gen. Psychiat. 27, 169–179.PubMedGoogle Scholar
  147. Snyder S. H. (1976) The dopamine hypothesis of schizophrenia: Focus on the dopamine receptor. Am. J. Psychiat. 133, 197–202.PubMedGoogle Scholar
  148. Snyder S. H. (1980) Brain peptides as neurotransmitters. Science 209, 976–983.PubMedGoogle Scholar
  149. Snyder S. H. (1981) Dopamine receptors, neuroleptics and schizophrenia. Am. J. Psychiat. 138, 460–464.PubMedGoogle Scholar
  150. Solomon P. R., Kiney C. A., and Scott D. R. (1978) Disruption of latent inhibition following systemic administration of parachlorophenyla-lanine (PCPA). Physiol Behav. 20, 265–271.PubMedGoogle Scholar
  151. Spitzer R. L., Williams J. B. W., and Skodol A E. (1980) DSM III: The major achievements and an overview. Am. J. Psychiat. 137, 151–164.PubMedGoogle Scholar
  152. Spyraki C., Fibiger H. C., and Phillips A. G. (1982a) Attentuation by haloperidol of place preference conditioning using food reinforcement. Psychopharmacology 77, 379–382.PubMedGoogle Scholar
  153. Spyraki C., Fibiger H. C, and Phillips A. G. (1982b) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res. 253, 185–193.PubMedGoogle Scholar
  154. Spyraki C., Fibiger H. C., and Phillips A. G. (1982c) Cocaine-induced place preference conditioning: Lack of effects of neuroleptics and 6-hydroxydopamine lesions. Brain Res 253, 195–203.PubMedGoogle Scholar
  155. Squire L. R. and Davis H. P. (1981) The pharmacology of memory: A neurobiological perspective. Ann. Rev. Pharmacol. Toxicol. 21, 323–356.Google Scholar
  156. Staubli U. and Huston J. P. (1979) Differential effects on learning by ventromedial vs lateral hypothalamic posttrial injection of substance P. Pharmacol. Biochem. Behav. 10, 783–786.PubMedGoogle Scholar
  157. Steinbusch H. W. M. and Nieuwenhuys R. (1983) The Raphé Nuclei of the Rat Brainstem: A Cytoarchitectonic and Immunohistochemical Study, in Chemical Neuroanatomy (Emson P. C., ed.) Raven, New York.Google Scholar
  158. Suboski M D. and Bartashunas C. (1984) Mechanisms for social transmission of pecking preference to neonatal chicks. J. Exp. Psychol. [Animal. Behav.] 10, 182–194.Google Scholar
  159. Szostak C. and Tombaugh T. N. (1981) Use of a fixed consecutive number schedule of reinforcement to investigate the effects of pimozide on behavior controlled by internal and external stimuli. Pharmacol. Biochem. Behav 15, 609–617.PubMedGoogle Scholar
  160. Szostak C., Tombaugh T. N., and Tombaugh J. (1981) Examination of the effects of pimozide on two conditional discrimination problems differing in levels of task complexity. Prog. Neuropsychopharmacol. 5, 615–618.PubMedGoogle Scholar
  161. Taboada M. E., Souto M., Hawkins H., and Monti J. M. (1979) The actions of dopaminergic and noradrenergic antagonists on conditioned avoidance responses in intact and 6-hydroxydopamine-treated rats. Psychopharmacology 62, 83–88.PubMedGoogle Scholar
  162. Taylor J. R. and Robbins T. W. (1984) Enhanced behavioral control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84, 405–412.PubMedGoogle Scholar
  163. Taylor J. R. and Robbins T. W. (1985) 6-Hydroxydopamine (6-OHDA) lesions of the nucleus accumbens, but not caudate nucleus attenuate enhanced responding for conditioned reinforcement produced by infusions of intra-accumbens d-amphetamine. Soc. Neurosci. Abstr. 11, 5.Google Scholar
  164. Thorndike, E. L. (1911) Animal Intelligence; Experimental Studies Macmillan, New York.Google Scholar
  165. Tilson H. A. and Rech R. H. (1973) Conditioned drug effects and absence of tolerance to d-amphetamine induced motor activity. Pharmacol. Biochem. Behav. 1, 149–153.Google Scholar
  166. Tombaugh T. N. (1981) Effects of pimozide on nondiscriminated and discriminated performance in the pigeon. Psychopharmacology 73, 137–141.PubMedGoogle Scholar
  167. Tombaugh T. N., Anisman H., and Tombaugh J. (1980a) Extinction and dopamine receptor blockade after intermittent reinforcement training: Failure to observe functional equivalence. Psycho-pharmacology 70, 19–28.Google Scholar
  168. Tombaugh T. N., Ritch M. A., and Shepherd D. T. (1980b) Effects of pimozide on accuracy of performance and distribution of correct responding on a simultaneous discrimination task in the rat. Pharmacol. Biochem. Behav. 13, 859–862.PubMedGoogle Scholar
  169. Tombaugh T. N., Grandmaison L. J., and Zito K. A. (1982a) Establishment of secondary reinforcement in sign tracking and place preference tests following pimozide treatment. Pharmacol. Biochem. Behav. 17, 665–670.PubMedGoogle Scholar
  170. Tombaugh T. N., Szostak C., Voorneveld P., and Tombaugh J. W. (1982b) Failure to obtain functional equivalence between dopamine receptor blockade and extinction: Evidence supporting a sensory-motor conditioning hypothesis. Pharmacol, Biochem. Behav. 16, 67–72.Google Scholar
  171. Tombaugh T. N., Szostak C., and Mills P. (1983) Failure of pimozide to disrupt the acquisition of light-dark and spatial discrimination problems. Psychopharmacology 79, 161–168.PubMedGoogle Scholar
  172. Tombaugh T. N., Tombaugh J., and Anisman H. (1979) Effects of dopamine receptor blockade on alimentary behavior: Home cage food consumption, magazine training, operant acquisition, and performance. Psychopharmacology 66, 219–225.PubMedGoogle Scholar
  173. Trapold M. A., Lawton G. W., Dick R. A., and Gross D. M. (1968) Transfer of training from differential classical to differential instrumental conditioning. J. Exp. Psychol. 76, 563–573.Google Scholar
  174. Ungerstedt U. (1979) Central Dopamine Mechanisms and Unconditioned Behaviour, in The Neurobiology of Dopamine (Horn A. S., Korf J., and Westerink B. H. C., eds.) Academic, London.Google Scholar
  175. Vaccarino F. J. and Koob G. F. (1984) Microinjections of nanogram amounts of sulfated cholecystokinin octapeptide into the rat nucleus accumbens attenuates brain stimulation reward. Neurosa Lett. 52, 61–66.Google Scholar
  176. van der Kooy D., Mucha R. F., O’Shaughnessy M., and Bucenieks P. (1982) Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res. 243, 107–117.PubMedGoogle Scholar
  177. van der Kooy D., Swerdlow N. R., and Koob G. F. (1983) Paradoxical reinforcing properties of apomorphine: Effects of nucleus accumbens and area postrema lesions. Brain Res. 259, 111–118.PubMedGoogle Scholar
  178. Wang G. H. (1923) Relation between “spontaneous” activity and oestrus cycle in the white rat. Comp Psychol Monog. 2.Google Scholar
  179. White N. M. and Carr G. D. (1985) The conditioned place preference is affected by two independent reinforcement processes. Pharmacol. Biochem. Behav. 23, 37–42.PubMedGoogle Scholar
  180. White N., Major R., and Siegel J. (1978) Effects of morphine on one trial appetitive learning. Life Sci. 23, 1967–1972.PubMedGoogle Scholar
  181. White N., Sklar L., and Amit Z. (1977) The reinforcing action of morphine and its paradoxical side effect. Psychopharmacology 52, 63–66.PubMedGoogle Scholar
  182. Wise R. A. (1982) Neuroleptics and operant behavior: The anhedonia hypothesis. Behav. Brain, Sci. 5, 39–88.Google Scholar
  183. Wise R. A. and Schwartz H. V. (1981) Pimozide attenuates acquisition of lever-pressing for food in rats. Pharmacol. Biochem. Behav. 15, 655–656.PubMedGoogle Scholar
  184. Wise R. A., Spindler J., deWit H., and Gerber G. J. (1978a) Neuroleptic-induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 201, 262–264.PubMedGoogle Scholar
  185. Wise R. A., Spindler J., and Legault L. (1978b) Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Can. J. Psychol. 32, 77–85.PubMedGoogle Scholar
  186. Zis A. P., Fibiger H. C., and Phillips A. G. (1974) Reversal by L-Dopa of impaired learning due to destruction of the dopaminergic nigroneostriatal projection. Science 185, 960–962.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Richard J. Beninger
    • 1
  1. 1.Department of PsychologyQueen’s UniversityKingstonCanada

Personalised recommendations