Skip to main content

Computer Applications to Molecular Biology

DNA Sequences

  • Protocol
New Nucleic Acid Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 4))

  • 3572 Accesses

Abstract

Computers have become a necessary tool in all laboratories involved in DNA sequence work. There has been a rapid increase in the amount of DNA sequenced, and the most recent issue of the European Molecular Biology Laboratory (EMBL) Nucleotide Sequence Data Library (release 10, 1987) contains almost 10 million base pairs in almost 9000 entries compared with the first release from 1982 containing half a million base pairs in 500 entries. The requirement for computers is obvious not only from the total amount of DNA sequenced, but also when taking into account the number of bases needed in order to organize a gene. The size of a standard gene with no intervening sequences is 500–1000 base pairs, whereas interrupted genes may be 10 times longer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Computer Applications in Research on Nucleic Acids Vol. 1, 2, and 3 (1982,1984, and 1986) IRL Press, Oxford and Washington DC, identical with Nucleic Acids Research Vol. 10:1 (1982), 12:1 (1984), and 14:1 (1986).

    Google Scholar 

  • Harr, R. and Gustafsson, P. (1987) Computer Applications to Studying DNA, in Techniques in Molecular Biology Vol. 2 (Walker, J.M. and Gaastra, W., eds.) Croom Helm, Kent, England.

    Google Scholar 

References

  1. Harr, R., Fallman, P., Haggstrom, M., Wahlstrom, L., and Gustafsson, P. (1986) GENEUS, A computer system for DNA and protein sequence analysis containing an information retrieval system for the EMBL data library Nucleic Acids Res. 14, 273–284.

    Article  PubMed  CAS  Google Scholar 

  2. Golden, S. S., Brusslan, J., and Haselkorn R. (1987) Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2, EMBO J. 5, 2789–2798.

    Google Scholar 

  3. Curtis, S. E. and Haselkorn, R. (1984) Isolation, sequence and expression of two members of the 32kd thylakoid membrane protein gene family from the cyanobacterium Anabaena 7120. Plant Mol. Biol. 3, 249–258.

    Article  CAS  Google Scholar 

  4. Erickson, J. M., Rahire, M., and Rochaix, J.-D. (1984) Chlamydomonas reinhardii gene for the 32.000 mol. wt. protein of photosystem II contains four large introns and located entirely within the chloroplast inverted repeat. EMBO J. 3, 2753–2762.

    PubMed  CAS  Google Scholar 

  5. Rochaix, J.-D., Dron, M., Rahire, M., and Malnoe, P. (1984) Sequence homology between the 32K dalton and the D2 chloroplast membrane polypeptides of Chlamydomonas reinhardii. Plant Mol. Biol. 3, 363–370.

    Article  CAS  Google Scholar 

  6. Max, E. E., Maizel, J. V., and Leder, P. (1981) The nucleotide sequence of a 5.5-kilobase DNA segment containing the mouse kappa immunoglobulin J and C region genes. J. Biol. Chem. 256, 5116–5120.

    PubMed  CAS  Google Scholar 

  7. Tinoco, I., Borer, P.N., Dengler, B., Levine, M. D., Uhlenbret, O. C, Crothers, D. M., and Grotta, J. (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 146, 40–41.

    Google Scholar 

  8. Borer, P. N., Dengler, B., and Tinoco, I. (1974) Stability of ribonucleic acid double-stranded helices. J. Mol. Biol. 86, 843–853.

    Article  PubMed  CAS  Google Scholar 

  9. Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl Acids Res. 9, 133–148.

    Article  PubMed  CAS  Google Scholar 

  10. Grosjean, H. and Fiers, W. (1982) Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18, 199–209.

    Article  PubMed  CAS  Google Scholar 

  11. Sharp, P. M., Tuohy, T. M. F., and Mosurski, K. R. (1986) Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 14, 5125–5143.

    Article  PubMed  CAS  Google Scholar 

  12. Grosjean, H. (1980) Codon Usage in Several Organisms, in Transfer RNA: Biological Aspects (Soll, D., Abelson, J. N., and Schimmel, P. R., eds.) Cold Spring Harbor, New York.

    Google Scholar 

  13. Sheperd, J. C. W. (1981) Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proc. Natl. Acad. Sci. USA 78, 1596–1600.

    Article  Google Scholar 

  14. Staden, R. and McLachlan, A. D. (1982) Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Res. 10, 141–156.

    Article  PubMed  CAS  Google Scholar 

  15. Fickett, J. W. (1982) Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 10, 5303–5318.

    Article  PubMed  CAS  Google Scholar 

  16. Harr, R., Haggstrom, M., and Gustafsson, P. (1983) Search algorithm for pattern match analysis of nucleic acid sequences. Nucleic Acids Res. 11, 2943–2957.

    Article  PubMed  CAS  Google Scholar 

  17. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3Å resolution. Nature 318, 618–624.

    Article  Google Scholar 

  18. Maizel, J. V. and Lenk, R. P. (1981) Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc. Natl Acad. Sci. USA 78, 7665–7669.

    Article  PubMed  CAS  Google Scholar 

  19. Harr, R., Hagblom, P., and Gustafsson, P. (1982) Two-dimensional graphic analysis of DNA sequence homologies. Nucleic Acids Res 10, 365–374.

    Article  PubMed  CAS  Google Scholar 

  20. Goad, W. B. and Kanehisa, M. I. (1982) Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and symmetries. Nucleic Acids Res. 10, 247–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Harr, R., Gustafsson, P. (1988). Computer Applications to Molecular Biology. In: Walker, J.M. (eds) New Nucleic Acid Techniques. Methods in Molecular Biology, vol 4. Humana Press. https://doi.org/10.1385/0-89603-127-6:103

Download citation

  • DOI: https://doi.org/10.1385/0-89603-127-6:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-127-2

  • Online ISBN: 978-1-59259-491-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics