Advertisement

Analysis of Prostaglandins, Leukotrienes, and-Related Compounds in Retina and Brain

  • Dale L. Birkle
  • Haydee E. P. Bazan
  • Nicolas G. Bazan
Part of the Neuromethods book series (NM, volume 7)

Abstract

The eicosanoids are oxygenated products of arachidonic acid. Prostaglandins (PCs) are synthesized by cyclooxygenase; hydroxyeicosatetraenoic acids (HETEs) and leukotrienes (LTs) are synthesized by lipoxygenase (for reviews, see Hammarstrom, 1983; Lands, 1979). Prostaglandins are variations of the 20-carbon fatty acid prostanoic acid, and their nomenclature is based on the oxygen-derived substitutions in the five-membered ring and the number of double bonds in the two side chains. The carboxylic acid function is present in the α side chain, and the terminal methyl group is present in the β side chain. Thromboxanes and prostacyclin have a slightly modified ring structure. Lipoxygenase reaction products can occur as various isomers, depending upon where addition of oxygen takes place. The immediate precursors of HETEs are hydroperoxy derivatives (HPETEs). Further metabolism of HPETEs by dehydration to epoxides and addition of glutathione results in the synthesis of leukotrienes. Eicosanoids can also be synthesized from other fatty acids, such as eicosatrienoic acid (20:3, n-6) and eicosapentaenoic acid (20:5, n-6). Prostaglandins from arachidonic acid are the 2-series, e.g., PGE2. The l-series are products of 20:3 (n-6), and the 3-series are products of 20:5 (n-6).

Keywords

Arachidonic Acid Hexane Diethyl Ether Hydroxyeicosatetraenoic Acid Eicosatrienoic Acid Reverse Phase System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe M., Kawazoe Y., and Shigematsu N. (1985) Influence of salts on high performance liquid chromatography of leukotnenes. Anal. Biochem. 144, 417–422.PubMedCrossRefGoogle Scholar
  2. Bazan N. G., Bazan, H. E I’., Birkle D. L., and Rossowska M. (1987) Synthesis of leukotrienes in the frog retina and retinal pigment epithelium. J Neurosci Res, 18, 591–596.PubMedCrossRefGoogle Scholar
  3. Birkle D. L., Bazan H. E. P., and Bazan N. G. (1988) Use of Radiotracer Techniques and High Pressure Liquid Chromatography with Flow Scintillation Detection in the Analysis of Fatty Acids and Eicosanoids, in Progress in HPLC vol. 4 Flow Through Radioactivity Detectors in HPLC (Parvez H., Lucas-Reich S., and Pravez S., eds.) VNU International Science Press, Utrecht, Holland (in press).Google Scholar
  4. Birkle D. L. and Bazan N.G (1984a) Effect of K+ depolarization on the synthesis of prostaglandins, hydroxyeicosatetra(5,8,11,14)enoic acid (HETE) and other eicosanoids in the rat retina: Evidence for esterification of 12-HETE in lipids. Biochim. Biophys. Acta 795, 564–573.PubMedGoogle Scholar
  5. Birkle D. L. and Bazan N. G. (1984b) Lipoxygenase-and cyclooxygenasereaction products and incorporation into glycerolipids of radiolabeled arachidonic acid in the bovine retina. Prostaglandins 27, 203–206.PubMedCrossRefGoogle Scholar
  6. Careaga M. M. and Sprecher H (1984) Synthesis of two hydroxy fatty acids from 7,10,13,16,19-docosahexaenoic acid by human platelets. J Biol. Chem. 259, 14413–14417.PubMedGoogle Scholar
  7. Claeys M., Bazan H. E. P., Birkle D. L, and Bazan N. G. (1986) Diacylglycerols interfere in straight phase HPLC analysis of lipoxygenase products of docosahexaenoic or arachidonic acid. Prostaglandins 32, 813–827.PubMedCrossRefGoogle Scholar
  8. Claeys M., Kivits G. A. A., Christ-Hazelhof E., and Nugteren D. H. (1985) Metabolic profile of linoleic acid in porcine leukocytes through the lipoxygenase pathway. Biochim. Biophys. Acta 837, 35–51.PubMedGoogle Scholar
  9. Eling T., Tainer Ally A., and Warnock R. (1986) Separation of arachidonic acid metabolities by high-pressure liquid chromatography. Meth. Enzymol 86, 511–517.CrossRefGoogle Scholar
  10. Green K., Granstrom E., Samuelsson B., and Axen U. (1973) Methods for quantitative analyses of PGF2α, PGE2, 9α,11α-dihydroxy-15 ketoprost-5-enoic acid, and 9α,11α, 15-trihydroxyprost-5-enorc acid from body fluids using deuterated carriers and GC-MS. Anal. Biochem. 54, 434–453.PubMedCrossRefGoogle Scholar
  11. Hamilton J. G. and Karol R. J. (1982) High performance liquid chromatography (HPLC) of arachidonic acid metabolites. Prog. Lipid Res. 21, 155–170.PubMedCrossRefGoogle Scholar
  12. Hammarstrom S. (1983) Leukotrienes. Ann. Rev. Biochem. 52, 355–377.PubMedCrossRefGoogle Scholar
  13. Hensby C. (1977) Physical Methods in Prostglandins Research, in Prostaglandin Research, (Crabbe, P., ed.) Academic, New York.Google Scholar
  14. Lands W.E.M. (1979) The biosynthesis and metabolism of prostaglandins. Ann Rev. Physiol. 41, 633–652.CrossRefGoogle Scholar
  15. Luderer J. R., Riley D. L., and Demers L. M. (1983) Rapid extraction of arachidonic acid metabolites utilizing octadecyl reversed-phase columns. J. Chromatogr 273, 402–409.PubMedCrossRefGoogle Scholar
  16. Metz S. A., Hall M. E., Timothy W. H., and Murphy R. C. (1982) Rapid extraction of leukotrienes from biologic fluids and quantitation by high-performance liquid chromatography. J. Chromatogr. 233, 193–201.PubMedCrossRefGoogle Scholar
  17. Nicosia S. and Galli G. (1976) Evaluation of prostaglandin biosynthesis in rat cerebral cortex by mass fragmentography. Adv. Mass Spectrom. Biochem. Med. 1, 457–464.Google Scholar
  18. Pediconi M. F., Rodriguez deTurco E. and Bazan N. G. (1982) Diffusion of intracerebrally injected [l-14C] arachidonic acid and [2-3H]glycerol in the mouse brain. Effects of ischemia and electroconvulsive shock. Neurochem. Res. 7, 1435–1456.CrossRefGoogle Scholar
  19. Pediconi M. F., Rodriguez de Turco E. and Bazan N. G. (1983) Effects of post decapitation ischemia on the metabolism of [14C]arachidonic acid and [14C]palmitic acid in the mouse brain. Neurochem. Res. 8, 835–845.PubMedCrossRefGoogle Scholar
  20. Reddy T. S. and Bazan N. G. (1983) Kinetic properties of arachidonoyl coenzyme A synthetase in rat brain microsomes. Arch. Biochem. Biophys 226, 126–133.CrossRefGoogle Scholar
  21. Salmon T. A. and Flower R. J, (1982) Extraction and thin layer chromatography of arachidonic acid metabolites. Meth. Enzymol. 86, 477–493.PubMedCrossRefGoogle Scholar
  22. Saunders R. and Horrocks L. A. (1984) Simultaneous extraction and preparation for high performance liquid chromatography of prostaglandins and phospholipids. Anal. Biochem. 143, 71–75.PubMedCrossRefGoogle Scholar
  23. Schulz R. and Seeger W. (1986) Release of leukotrienes into the perfusate of calcium-ionophore stimulated rabbit lungs. Biochem. Pharmucol 35, 183–193CrossRefGoogle Scholar
  24. Smith B. J., Ross R. M., Ayers R., Wills M. R., and Savoy R. (1983) Rapid separation of prostaglandins by linear high performance thin layer chromatography J. Liquid Chromatogr. 7, 1265–1272.CrossRefGoogle Scholar
  25. Van Horne K. C (1985) Sorbant Extraction Technology Analytichem, International, California, pg. 82–83.Google Scholar
  26. Varhagen J., Walstra P., Veldink G. A., and Vliegenthart J. F. G. (1984) Separation and quantitation of leukotrienes by reversed-phased high-performance liquid chromatography Prostaglandins Leukotrienes Med 13, 15–20.CrossRefGoogle Scholar
  27. Wolfe L. S. (1982) Eicosanoids: Prostaglandins, thromboxanes, leukotrienes and other derivatives of carbon-20 unsaturated fatty acids. J. Neurochem 38, 1–13PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Dale L. Birkle
    • 1
  • Haydee E. P. Bazan
    • 2
  • Nicolas G. Bazan
    • 3
  1. 1.Louisiana State University Medical SchoolLSU Eye CenterNew Orleans
  2. 2.Louisiana State University Medical SchoolLSU Eye CenterNew Orleans
  3. 3.Louisiana State University Medical SchoolLSU Eye CenterNew Orleans

Personalised recommendations