Skip to main content

GABA Antagonists

Their Use and Mechanisms of Action

  • Protocol
Drugs as Tools in Neurotransmitter Research

Part of the book series: Neuromethods ((NM,volume 12))

Abstract

As with any neurotransmitter, there are two basic ways to decrease the synaptic action of γ-aminobutync acid (GABA) in order to establish its functional role at particular synapses in the nervous system. They are to reduce its availability and release through a presynaptic action or to reduce its effects with appropriate postsynaptic antagonists. The former might be achieved by specifically destroying GABA-containing neurons, inhibiting its synthesis, or interfering in some way with its actual release. All of these approaches, however, suffer from the disadvantage of a very slow onset and an effect that, even if reversible, is likely to be prolonged and not easily quantified. There are no specific neurotoxins for GABA neurons similar to 6-hydroxydopamine for catecholamme systems, and although antibodies raised to the GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), can be used to destroy (lyse) synaptosomes containing GABA in vitro (Docherty et al., 1983), the method is not applicable in vivo. Intracerebral injection of tetanus toxin has been shown to reduce GABA-mediated inhibition by reducing release of the transmitter (Collingridge and Davies, 1982), but this toxin has a number of actions, including an effect on glycine release, and it is obviously not specific for GABA. Many inhibitors of GAD have been described (see Woodbury, 1980); unfortunately, many of them not only reduce GABA levels, but also raise the concentration of its precursor glutamate. Their use also suffers from the disadvantage that the rate of decline of GABA depends on the rate of its utilization, which will vary from neuron to neuron, and we do not know to what extent GABA levels must be reduced before its release and function are significantly impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P. R., Constanti A., and Banks F. W. (1981) Voltage clamp analysis of inhibitory synaptic action in crayfish stretch receptor neurons Fed Proc. 40, 2637–2641.

    PubMed  CAS  Google Scholar 

  • Akaike N. and Oomura Y. (1984) GABA-activated chloride channels in internally perfused frog dorsal root ganglion cells Biochem Res. 5 (suppl.), 115–132

    CAS  Google Scholar 

  • Akaike N, Hatton K., Oomura Y., and Carpenter D O. (1985) Bicuculline and picrotoxin block γ-aminobutyric acid-gated Cl conductance by different mechanisms. Expertentta 41, 70–71.

    CAS  Google Scholar 

  • Akaike N., Yakushiji T, Tokutomi N, and Carpenter D O. (1987) Multiple mechanisms of antagonism of γ-aminobutync acid (GABA) responses. Cell. Mol. Neurobiol. 7, 97–103.

    PubMed  CAS  Google Scholar 

  • Albert J, Lingle C. J, Marder E., and O’Neil M B. (1986) A GABA-activated chloride-conductance not blocked by picrotoxin on spiny lobster neuromuscular preparations Br. J. Pharmacol. 87, 771–779.

    PubMed  CAS  Google Scholar 

  • Allan R. D and Dickenson H W (1986) Evidence that antagonism by δ-aminovalenc acid of GABAB receptors in the guinea-pig ileum may be due to an interaction between GABAA and GABAB receptors Eur J. Pharmacol 120, 119–122.

    PubMed  CAS  Google Scholar 

  • Andrade R., Malenka R. C, and Nicoll R. A. (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234, 1261–1265.

    PubMed  CAS  Google Scholar 

  • Andrews P. R. and Johnston G A. R. (1979) Commentary: GABA agonists and antagonists. Biochem. Pharmacol. 28, 2697–2702.

    PubMed  CAS  Google Scholar 

  • Anwar N. and Mason D F. J. (1982) Two actions of γ-aminobutyric acid on the responses of the isolated basilar artery from the rabbit. Br. J. Pharmacol 75, 177–181.

    PubMed  CAS  Google Scholar 

  • Ariens E. J., Beld A J., Miranda J. F. R., and Simonis A. M. (1979) The Pharmacon-Receptor-Effector Concept: A Basis for Understanding the Transmission of Information in Biological Systems, in The Receptors vol. 1 (O’Brien R. D., ed.) Plenum, New York.

    Google Scholar 

  • Ariyoshi M. and Akasu T (1986) Glucocorticoid modulates the sensitivity of the GABAA receptor on primary afferent neurons of bullfrogs. Brain Res. 367, 332–336.

    PubMed  CAS  Google Scholar 

  • Barker J. L. and McBurney R. N. (1979) GABA and glycine may share the same conductance channel on cultured mammalian neurones. Nature 277, 234–236.

    PubMed  CAS  Google Scholar 

  • Barker J. L., McBurney R. N., and Mathers D. A. (1983) Convulsantinduced depression of amino acid responses in cultured mouse spinal neurones studied under voltage clamp Br. J. Pharmacol. 80, 619–629

    PubMed  CAS  Google Scholar 

  • Barnard E. A., Darlison M. G., and Seeburg P. (1987) Molecular biology of the GABAA receptor, the receptor/channel superfamily. Trends Neuro Sci. 10, 502–509.

    CAS  Google Scholar 

  • Bellet E. M and Casida J. E. (1973) Bicyclic phosphorus esters: High toxicity without cholinesterase inhibition. Science 118, 1135–1136.

    Google Scholar 

  • Beutler J. A., Karbon E. W., Brubaker A. N., Malik R., Curtis D. R., and Enna S. J. (1985) Securinine alkaloids: A new class of GABA receptor antagonist. Brain Res. 330, 135–140.

    PubMed  CAS  Google Scholar 

  • Biziere K., Heaulme M., Chambon J. C., Molimard J. C, Bourguignon J. J., and Wermuth C. C. (1985) Aminopyridazines: Two structural analogs of SR 95103 are potent GABA-A antagonists. Pharmacologist 27, 520.

    Google Scholar 

  • Blaxter T. J., Carlen P. L, Davies M. F., and Kujtan P. W. (1986) γ-Aminobutync acid hyperpolanzes rat hippocampal pyramidal cells through a calcium-dependent potassium conductance. J. Physiol. 373, 181–194.

    PubMed  CAS  Google Scholar 

  • Bloomquist J. R. and Soderlund D. M. (1985) Neurotoxic insecticides inhibit GABA-dependent chloride uptake by mouse brain vessicles. Biochem. Biophys. Res. Commun. 133, 37–43.

    PubMed  CAS  Google Scholar 

  • Boistel J. and Fatt P (1958) Membrane permeability change during inhibitory transmitter action in crustacean muscle. J. Physiol. 144, 176–191.

    PubMed  CAS  Google Scholar 

  • Bormann J., Hamill O. P., and Sakmann B (1987) Mechanism of ion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385, 243–286.

    PubMed  CAS  Google Scholar 

  • Bowery N. G. and Brown D. A. (1974) Depolarizing actions of γ-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br. J. Pharmacol. 50, 205–218.

    PubMed  CAS  Google Scholar 

  • Bowery N. G. and Hudson A. L. (1979) γ-Aminobutyric acid reduces the evoked release of 3H-noradrenahne from sympathetic nerve terminals. Br. J. Pharmacol. 66, 108P.

    PubMed  CAS  Google Scholar 

  • Bowery N G., Brown D. A., and Collins J. F. (1975) Tetramethylenedisul-photetramine: An inhibitor of γ-aminobutync acid-induced depolarization of the isolated superior cervical ganglion of the rat. Br. J. Pharmacol 53, 422–424

    PubMed  CAS  Google Scholar 

  • Bowery N. G., Collins J. F, Cryer G, Inch T D., and McLaughlin N J (1979) The GABA Receptor: Stereospecificity and Structure-Activity Studies, in GABA—Biochemistry and CNS Functions (Mandel P., DeFeudis F. V., and Mook J, eds.) Plenum, New York

    Google Scholar 

  • Bowery N. G., Collins J F., and Hill R. G. (1976a) Bicyclic phosphorous esters that are potent convulsants and GABA antagonist. Nature 261, 601–603.

    PubMed  CAS  Google Scholar 

  • Bowery N. G., Collins J. F., Hill R. G., and Pearson S (1976b) GABA antagonism as a possible basis for the convulsant action of a series of bicyclic phosphorous esters. Br. J. Pharmacol. 57, 435–436.

    Google Scholar 

  • Bowery N. G., Collins J. F., Hill R. G., and Pearson S (1977) t-Butyl bicyclophosphate: A convulsant and GABA antagonist more potent than bicuculline Br J. Pharmacol. 60, 275–276

    Google Scholar 

  • Bowery N. G., Doble A., Hill D. R, Hudson A. L., Shaw J. S., Turnbull M. J., and Warrington R. (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J. Pharmacol. 71, 53–70.

    PubMed  CAS  Google Scholar 

  • Bowery N. G., Hill D R., and Hudson A L. (1983) Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br. J. Pharmacol. 78, 191–206.

    PubMed  CAS  Google Scholar 

  • Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., and Turnbull M (1980) (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action by a novel GABA receptor. Nature 283, 92–94.

    PubMed  CAS  Google Scholar 

  • Bowery N. G, Price G. W., Hudson A. L., Hill D. R., Wilkin G. P., and Turnbull M. J. (1984) GABA receptor multiplicity. Visualization of different receptor types in the mammalian CNS. Neuropharmacology 23, 219–231

    PubMed  CAS  Google Scholar 

  • Braestrup C. and Nielsen M. (1985) Interaction of pitrazepin with the GABA/benzodiazepine receptor complex and with glycine receptors. Eur J. Pharmacol 118, 115–121

    PubMed  CAS  Google Scholar 

  • Browner M, Feranky J. W., and Enna S (1981) Biochemical identification of pharmacologically and functionally distinct GABA receptors in rat brain. J. Neurosci. 1, 514–518.

    PubMed  CAS  Google Scholar 

  • Casida J. E., Eto M., Moscioni A. D., Engel J. L., Milbrath D. S., and Verkade J. G. (1976) Structure-toxicity relationships of 2,6,7-trioxabicyclo [2 2 2] octanes and related compounds. Toxicol Appl. Pharmacol 36, 261–279.

    PubMed  CAS  Google Scholar 

  • Casida J. E., Palmer C. J., and Cole L M. (1985) Bicycloorthocarboxylate convulsants: Potent GABAA receptor antagonists. Mol. Pharmacol. 28, 246–253.

    PubMed  CAS  Google Scholar 

  • Chambon J. P., Feltz P., Heaulme M., Pestle S., Schlichter R., Biziere K., and Wermuth C. G (1985) An arylaminopyridazine derivative of γ-aminobutyric acid (GABA) is a selective and competitive antagonist at the GABAA receptor site. Proc. Natl. Acad. Sci USA 82, 1832–1836.

    PubMed  CAS  Google Scholar 

  • Cherubini E. and North R. A. (1984) Actions of γ-aminobutyric acid on neurones of guinea-pig myenteric plexus. Br. J. Pharmacol 82, 93–100.

    PubMed  CAS  Google Scholar 

  • Chow P and Mathers D (1986) Convulsant doses of penicillin shorten the lifetime of GABA-induced channels in cultured central neurones. Br. J. Pharmacol. 88, 541–547.

    PubMed  CAS  Google Scholar 

  • Clarke G. and Hill R. G. (1972) Effects of a focal penicillin lesion on responses of rabbit cortical neurones to putative neurotransmitters. Br. J. Pharmacol. 44, 435–441.

    PubMed  CAS  Google Scholar 

  • Collingridge G. L and Davies J. (1982) Reversible effects of tetanus toxin on striatal-evoked responses and [3H]γ-aminobutyric acid release in the rat substantia nigra Br J. Pharmacol 76, 403–411.

    PubMed  CAS  Google Scholar 

  • Collins J. F. and Hill R. G. (1974) (+) and (−)Bicucullme methochloride as optical isomers of a GABA antagonist. Nature 249, 845–847.

    PubMed  CAS  Google Scholar 

  • Collins J F., Hill R. G, and Roberts F. (1975) A study of tetramethylenedi-sulphotetramine (TETS) and related compounds as antagonists of presynaptic inhibition and microiontophoretically applied γ-aminobutyric acid (GABA) and glycine in the rat cuneate nucleus. Br. J. Pharmacol. 54, 239–240.

    Google Scholar 

  • Constanti A. (1978) The “mixed” effect of picrotoxin on the GABA dose/ conductance relation recorded from lobster muscle. Neuropharmacology 17, 159–167.

    Google Scholar 

  • Cottrell G. A. and Green K. A (1986) Action of baclofen on voltage-dependent currents in mouse dorsal root ganglion neurones. J. Physiol. 372, 49P.

    Google Scholar 

  • Cull-Candy S. G and Miledi R (1981) Junctional and extrajunctional membrane channels activated by GABA in locust muscle fibres. Proc Roy. Soc. Lond B211, 527–535

    Google Scholar 

  • Cull-Candy S. G., Mathie, A., and Newland C. F. (1988) Influence of picrotoxin on ion channels activated by γ-aminobutyric acid in dissociated sympathetic neurones of the rat J. Physiol. In press

    Google Scholar 

  • Curtis D R and Johnston G A. R (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol. 69, 97–188.

    PubMed  CAS  Google Scholar 

  • Curtis D. R. and Malik R (1985) Glycine antagonism by RU 5135 Eur J Pharmacol 110, 383–384.

    PubMed  CAS  Google Scholar 

  • Curtis D. R, Davies J, Game C J. A., Johnston GAR, and McCulloch R M (1973) Central actions of shikimin and tutin. Brain Res 63, 419–423

    PubMed  CAS  Google Scholar 

  • Curtis D R, Duggan A. W., Felix D, and Johnston G. A. R (1970) GABA bicuculline and central inhibition Nature 226, 1222–1224.

    PubMed  CAS  Google Scholar 

  • Curtis D R., Game C] A, Johnston G. A. R., and McCulloch R M (1974) Central effects of β-(p-chlorophenyl)γ-aminobutync acid. Brain Res 70, 493–499

    PubMed  CAS  Google Scholar 

  • Curtis D R, Game C J A, Johnston G. A R, McCulloch R M, and MacLachlan R. M (1972) Convulsive action of penicillin. Brain Res 43, 242–245

    PubMed  CAS  Google Scholar 

  • Curtis D. R and Gynther B D (1986) Pitrazepin a central glycine and GABA antagonist Eur J. Pharmacol 131, 311–313

    PubMed  CAS  Google Scholar 

  • Davidoff R A. (1972a) Penicillin and presynaptic inhibition in the amphibian spinal cord. Brain Res. 36, 218–222.

    PubMed  CAS  Google Scholar 

  • Davidoff R. A (1972b) Penicillin and inhibition in the cat spinal cord Brain Res 45, 638–642.

    PubMed  CAS  Google Scholar 

  • Davies J (1981) Selective depression of synaptic excitation in cat spinal neurones by baclofen. An lonotophoretic study. Br. J. Pharmacol. 72, 373–384

    PubMed  CAS  Google Scholar 

  • Davies J. and Watkins J. C (1974) The action of β-phenyl-GABA derivatives on neurones of the cat cerebral cortex Brain Res. 70, 501–505

    PubMed  CAS  Google Scholar 

  • De Feudis F. V. (1977) GABA-Receptors in the vertebrate nervous system. Prog Neurobiol 9, 123–145

    Google Scholar 

  • Deisz R A. and Lux H. D. (1985) γ-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons Neurosci. Lett 56, 205–210.

    PubMed  CAS  Google Scholar 

  • Desarmenien M, Desaulles E, Feltz P., and Hamann M. (1987) Electrophysiological study of SR 42641, a novel aminopyridazine derivative of GABA antagonist properties and receptor selectivity of GABAA versus GABAB responses. Br. J. Pharmacol. 90, 287–298

    PubMed  CAS  Google Scholar 

  • Desarmenien M, Feltz P, Occhipinti G., Santangelo F., and Schhchter R. (1984) Coexistence of GABAA and GABAB receptors of Aβ and C primary afferents. Br. J Pharmacol. 81, 327–333.

    PubMed  CAS  Google Scholar 

  • Dichter M. A. (1980) Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in culture Brain Res 190, 111–121.

    PubMed  CAS  Google Scholar 

  • Dickenson H. W, Allan R. D, Ong J, and Johnston G A. R, (1988) GABAB receptor antagonist and GABAA receptor agonist properties of a δ-aminovaleric acid derivative, Z-5-aminopent-2-enoic acid Neurosa. Lett. 86, 351–355.

    CAS  Google Scholar 

  • Dingledine R, and Gjerstad L. (1980) Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J. Physiol. 305, 297–313.

    PubMed  CAS  Google Scholar 

  • Dingledine R., Iversen L. L., and Breuker E. (1978) Naloxone as a GABA antagonist· Evidence from lontophoretic, receptor binding and convulsant studies. Eur. J. Pharmacol. 47, 19–27.

    PubMed  CAS  Google Scholar 

  • Docherty M, Bradford H F., Anderton B, and Wu J-Y. (1983) Specific lysis of GABAergic synaptosomes by an antiserum to glutamate decarboxylase FEBS Lett. 152, 57–61.

    PubMed  CAS  Google Scholar 

  • Dolphin A. C. and Scott R H (1987) Calcium channel currents and their inhibition by (−)baclofen in rat sensory neurones: modulation by guanine nucleotides J. Physiol 386, 1–17.

    PubMed  CAS  Google Scholar 

  • Dray A. (1975a) Tetramethylenedisulphotetramine and amino acid inhibition in the rat brain Neuropharmacology 14, 703–705

    PubMed  CAS  Google Scholar 

  • Dray A. (1975b) Comparison of bicuculline methochloride with bicuculline and picrotoxin as antagonists of amino acid and monoamine depression on neurones in the rat brain stem. Neuropharmacology 14, 887–891

    PubMed  CAS  Google Scholar 

  • Dudel J. and Kuffler S. W. (1961) Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. 155, 543–562

    PubMed  CAS  Google Scholar 

  • Durjn H., Schwartzkroin P A., and Prince D A(1973) Action of penicillin on inhibitory processes in the cats cortex Brain Res 53, 470–476

    Google Scholar 

  • Dunlap K. (1981) Two types of γ-aminobutyric acid receptor on embryonic sensory neurones. Br. J. Pharmacol 74, 579–585.

    PubMed  CAS  Google Scholar 

  • Dunlap K. and Fischbach G. D (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones J. Physiol 317, 519–535.

    PubMed  CAS  Google Scholar 

  • Earl J. and Large W A. (1974) Electrophysiological investigation of GABA-mediated inhibition at the hermit crab neuromuscular junction. J. Physiol 236, 113–127.

    PubMed  CAS  Google Scholar 

  • Eldefrawi A. T. and Eldefrawi M. E (1987) Receptors for γ-aminobutyric acid and voltage-dependent chloride channels as targets for drugs and toxicants. FASEB J. 1, 262–271.

    PubMed  CAS  Google Scholar 

  • Elliot K. A. C. and Florey E. (1956) Factor I-Inhibitory factor from brain. Assay. Conditions in brain. Stimulating and antagonizing substances. J. Neurochem. 1, 181–191.

    Google Scholar 

  • Enna S. J and Snyder S. H. (1977) Influences of ions, enzyme and detergents on γ-aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol Pharmacol 13, 442–453.

    PubMed  CAS  Google Scholar 

  • Enna S J., Collins J. F, and Snyder S H. (1977) Stereospecificity and structure-activity requirements of GABA receptor binding in rat brain. Brain Res 124, 185–190.

    PubMed  CAS  Google Scholar 

  • Esplin B, Theoret Y., Seward E., and Capek R. (1985) Epileptogenic action of penicillin derivatives. Structure-activity relationship. Neuropharmacology 24, 571–575

    PubMed  CAS  Google Scholar 

  • File S. E. and Pellow S. (1985) The anxiogenic action of Ro 5-4864 in the social interaction test: Effects of chlordiazepoxide, Ro 15-1788 and CGS 8216. Naunyn Schmiedebergs Arch. Pharmacol. 328, 225–228

    PubMed  CAS  Google Scholar 

  • Fox S, Krnjevic J, Morris M. E., Puil E, and Werman R. (1978) Action of baclofen on mammalian synaptic transmission. Neuroscience 3, 495–515

    PubMed  CAS  Google Scholar 

  • Freeman A. R. (1973) Electrophysiological analysis of the actions of strychnine, bicuculline and picrotoxin on the axonal membrane. J. Neurobiol. 4, 567–582.

    PubMed  CAS  Google Scholar 

  • Fujimoto M. and Okabayashi T (1980) Effect of picrotoxin on benzodiazepine receptors and GABA receptors with reference to the effect of Cl ion. Life Sci 28. 895–901.

    Google Scholar 

  • Gahwiler B. H. and Brown D. A. (1985) GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. USA 82, 1558–1562.

    PubMed  CAS  Google Scholar 

  • Gahwiler B H, Maurer R., and Wuthnch H. J. (1984) Pitrazepin, a novel GABAA antagonist. Neurosci Lett. 45, 311–316

    PubMed  CAS  Google Scholar 

  • Galindo A. (1969) GABA-picrotoxin interaction in the mammalian central nervous system Brain Res. 14, 763–767

    PubMed  CAS  Google Scholar 

  • Gallagher J. P., Nakamura J, and Shinnick-Gallagher P. (1983) The effects of temperature, pH and Cl-pump inhibitors on GABA responses recorded from cat dorsal root ganglia. Brain Res. 267, 249–259.

    PubMed  CAS  Google Scholar 

  • Gallagher J. P, Stevens D. R., and Shinnick-Gallagher P. (1984) Actionsof GABA and baclofen on neurons of the dorsolateral septal nucleus (DLSN) in vitro. Neuropharmacology 23, 825–826

    CAS  Google Scholar 

  • Gallo V., Wise B. C, Vaccarino F., and Guidotti A. (1985) γ-Aminobutyric acid-and benzodiazepine-induced modulation of [35S]-t-butylbicy-clophosphorothionate binding to cerebellar granule cells, J. Neurosci 5, 2432–2438.

    PubMed  CAS  Google Scholar 

  • Gammon D. and Casida J. E. (1983) Pyrethroids of the most potent class antagonize GAB A action at the crayfish neuromuscular junction. Neurosci. Lett. 40, 163–168.

    PubMed  CAS  Google Scholar 

  • Gant D B., Cole R. J, Valdes J. J., Eldefrawi M. E., and Eldefrawi A. T (1987) Action of tremorgenic mycotoxins on GABAA receptor. Life Sci. 41, 2207–2214.

    PubMed  CAS  Google Scholar 

  • Geller H. M., Hoffer B J., and Taylor D. A. (1980) Electrophysiological actions of benzodiazepines. Fed Proc. 39, 3016–3023.

    PubMed  CAS  Google Scholar 

  • Giotti A., Luzzi S., Spagnesi S., and Zilletti L. (1983a) GABAA and GAB AB receptor-mediated effects in guinea pig ileum. Br. J. Pharmacol 78, 469–478.

    PubMed  CAS  Google Scholar 

  • Giotti A., Luzzi F., Spagnesi S., and Zilletti L (1983b) Homotaurine. A GABAB antagonist in guinea-pig ileum. Br. J Pharmacol. 79, 855–862.

    PubMed  CAS  Google Scholar 

  • Giotti A., Luzzi S., Maggi C. A., Spagnesi S, and Zilletti L. (1985) Modulatory activity of GABAB receptors on chohnergic tone in guinea-pig distal colon. Br J. Pharmacol. 84, 883–895.

    PubMed  CAS  Google Scholar 

  • Goldinger A and Muller W E. (1980) Stereospecific interaction of bicuculline with specific [3H]-strychnine binding to rat spinal cord synaptosomal membranes. Neurosci. Lett. 16, 91–95

    PubMed  CAS  Google Scholar 

  • Grundfest H., Reuben J. P., and Rickles W. H. (1959) The electrophysiology and pharmacology of lobster neuromuscular synapses. J. Gen. Physiol. 42, 1301–1323.

    PubMed  CAS  Google Scholar 

  • Gruol D L., Barker J. L., and Smith T. G. (1980) Naloxone antagonism of GABA-evoked membrane polarizations in cultured mouse spinal cord neurons. Brain Res 198, 323–332.

    PubMed  CAS  Google Scholar 

  • Gutnick M J. and Prince D A. (1971) Penicillinase and the convulsant action of penicillin. Neurobiology 21, 759–764.

    CAS  Google Scholar 

  • Gutnick M J., VanDiujn H., and Citri N (1976) Relative convulsant potencies of structural analogues of penicillin. Brain Res. 114, 139–143.

    PubMed  CAS  Google Scholar 

  • Gynther B. D and Curtis D. R (1986) Pyridazinyl-GABA derivatives as GABA and glycine antagonists in the spinal cord of the cat Neurosci. Lett. 68, 211–215

    PubMed  CAS  Google Scholar 

  • Haefely W., Kyburz E., Gerecke M., and Mohler H. (1985) Recent advances in the molecular pharmacology of benzodiazepine receptors and in the structure-activity relationships of their agonists and antagonists. Adv Drug Res 14, 166–322.

    Google Scholar 

  • Hammill O. P, Bormann J., and Sakmann B. (1983) Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature 305, 805–808.

    Google Scholar 

  • Harrison N. L. and Simmonds M. A. (1983) The picrotoxin-like action of a convulsant benzodiazepine, Ro 5-3663. Eur J. Pharmacol. 87, 155–158.

    PubMed  CAS  Google Scholar 

  • Heaulme M, Chambon J P., Leyris R., Molimard J-C, Wermuth C. G., and Biziere K (1986a) Biochemical characterization of the interaction of three pyridazmyl-GABA derivatives with the GABA-A receptor site. Brain Res. 384, 224–231.

    PubMed  CAS  Google Scholar 

  • Heaulme M, Chambon J P., Leyris R., Wermuth C. G, and Biziere K. (1986b) Specific binding of a phenyl-pyridazinium derivative endowed with GABAA receptor antagonist activity to rat brain Neuropharmacology 25, 1279–1283

    PubMed  CAS  Google Scholar 

  • Heyer E J., Nowak L. M., and Macdonald R. L. (1982) Membrane depolarization and prolongation of calcium-dependent action potentials of mouse neurons in cell culture by two convulsants: Bicuculhne and penicillin. Brain Res 232, 41–56.

    PubMed  CAS  Google Scholar 

  • Hill D. R. and Bowery N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain Nature 290, 149–152.

    PubMed  CAS  Google Scholar 

  • Hill R. G., Simmonds M. A., and Straughan D. W. (1973) A comparative study of some convulsant substances as γ-aminobutync acid antagonists in the feline cerebral cortex Br. J Pharmacol. 49, 37–51

    PubMed  CAS  Google Scholar 

  • Hill R G., Simmonds M. A., and Straughan D. W. (1976) Antagonism of γ-aminobutyric acid and glycine by convulsants in the cuneate nucleus of cat Br J. Pharmacol 56, 9–21.

    PubMed  CAS  Google Scholar 

  • Hochner B., Spira M. E, and Werman R (1976) Penicillin decreases chloride conductance in crustacean muscle. A model for the epileptic neuron. Brain Res. 107, 85–103.

    PubMed  CAS  Google Scholar 

  • Holz G. G, Rane S G., and Dunlap K. (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672

    PubMed  CAS  Google Scholar 

  • Homma S and Rovainen C. M. (1978) Conductance increases produced by glycine and γ-aminobutyric acid in lamprey interneurones. J. Physiol. 279, 231–252.

    PubMed  CAS  Google Scholar 

  • Howe J. R., Sutor B., and Zieglgansberger W (1987) Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolanzing action. J. Physiol 384, 539–569.

    PubMed  CAS  Google Scholar 

  • Hunt P. and Clements-Jewery S (1981) A steroid derivative, R 5135, antagonizes the GABA/benzodiazepine receptor interaction. Neuropharmacology 20, 357–361.

    PubMed  CAS  Google Scholar 

  • Inoue M, Matsuo T., and Ogata N. (1985a) Baclofen activates voltage-dependent and 4-aminopyridme sensitive K+ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro Br. J. Pharmacol 84, 833–842

    PubMed  CAS  Google Scholar 

  • Inoue N. M, Matsuo T., and Ogata N. (1985b) Characterization of preand postsynaptic actions of (-)-baclofen in the guinea pig hippocampus in vitro. Br J. Pharmacol 84, 843–852

    PubMed  CAS  Google Scholar 

  • Inoue M., Matsuo T., and Ogata N. (1985c) Possible involvement of K+-conductance in the action of γ-aminobutyric acid in the guineapig hippocampus. Br. J. Pharmacol. 86, 515–524.

    PubMed  CAS  Google Scholar 

  • Jarboe C. H, Porter L A., and Buckler R. T. (1968) Structural aspects of picrotoxinin action. J. Med. Chem. 11, 729–731.

    PubMed  CAS  Google Scholar 

  • Johnston G. A. R (1976) Physiologic Pharmacology of GABA and Its Antagonists in the Vertebrate Nervous System, in GABA in Nervous System Function (Roberts E., Chase T. N, and Tower D. B, eds) Raven, New York.

    Google Scholar 

  • Johnston G A. R., Beart P M., Curtis D. R., Game C.J. A., McCulloch R M., and Maclachlan R M. (1972) Bicuculine methochloride as a GABA antagonist. Nature New Biol. 240, 219–220.

    PubMed  CAS  Google Scholar 

  • Johnston G. A. R., Hailstone M. M., and Freeman C. G. (1980) Baclofen: Stereo-selective inhibition of excitant amino acid release. J. Pharm. Pharmacol 32, 230–231.

    PubMed  CAS  Google Scholar 

  • Kaneko A. and Tachibana M. (1986) Effects of γ-aminobutyric acid on isolated cone photoreceptors of the turtle retina. J. Physiol. 373, 443–461.

    PubMed  CAS  Google Scholar 

  • Kaplita P V., Waters D. H, and Triggle D J. (1982) γ-Ammobutync acid action in guinea-pig ileal myenteric plexus. Eur J. Pharmacol 79, 43–51.

    PubMed  CAS  Google Scholar 

  • Karobath M., Drexler G, and Supavilai P (1981) Modulation by picrotoxin and IPTBO of 3H-flunitrazepam binding to the GABA/ benzodiazepine receptor complex of rat cerebellum. Life Sei 28, 307–313.

    CAS  Google Scholar 

  • Kelly J S. and Beart P. M (1975) Amino Acid Receptors in CNS II. GABA in Supraspinal Regions, in Handbook of Psychopharmacology vol. 4 Amino Acid Neurotransmitters (Iversen L. L., Iversen S. D., and Snyder S. H, eds) Plenum, New York.

    Google Scholar 

  • Kemp J. A., Marshall G. R, Wong E. H. F, and Woodruff G N. (1985) Pharmacological studies on pitrazepin, a GABAA receptor antagonist. Br. J. Pharmacol 85, 237P.

    Google Scholar 

  • Kemp J A., Marshall G. R., and Woodruff G N. (1986) Quantitative evaluation of the potencies of GABA-receptor agonists and antagonists using the rat hippocampal slice preparation. Br. J. Pharmacol 87, 677–684.

    PubMed  CAS  Google Scholar 

  • Kerr D. I B. and Ong J (1984) Evidence that ethylenediamine acts in the isolated ileum on the guinea-pig by releasing endogenous GABA. Br. J. Pharmacol 83, 169–177.

    PubMed  CAS  Google Scholar 

  • Kerr D. I B., Dennis B. J, Breuker E. L. M., Prager R. H., Ward A. D., and Duong T. (1976) Antagonism of GABA-mediated inhibition in the central nervous system Brain. Res. 110, 413–416.

    PubMed  CAS  Google Scholar 

  • Kerr D. I. B., Ong J, Prager R H, Gynther B. D., and Curtis D. R (1987) Phaclofen. a peripheral and central baclofen antagonist Brain Res 405, 150–154

    PubMed  CAS  Google Scholar 

  • Klunk W. E., Kalman B L, Ferrendelli J A, and Covey D. F. (1983) Computer-assisted modeling of the picrotoxinm and γ-butyrolactone receptor site. Mol Pharmacol 23, 511–518.

    PubMed  CAS  Google Scholar 

  • Krantis A. and Kerr D. I B. (1981) GABA induced excitatory responses in the guinea-pig small intestine are antagonized by bicuculline, picrotoxin and chloride ion blockers Naunyn Schmiedebergs Arch. Pharmacol 317, 257–261.

    PubMed  CAS  Google Scholar 

  • Krnjevic K. (1974) Chemical nature of synaptic transmission in vertebrates. Physiol. Rev 54, 418–540.

    CAS  Google Scholar 

  • Krogsgaard-Larsen P., Hjeds H., Curtis D. R., Leah J. D., and Peet M. J. (1982) Glycine antagonists structurally related to muscimol THIP, or isoguvacine. J. Neurochem. 39, 1319–1324

    PubMed  CAS  Google Scholar 

  • Kudo Y., Niwa H., Tanaka A, and Yamada K. (1984) Actions of picrotoxmin and related compounds on the frog spinal cord The role of a hydroxyl-group at the 6 position in antagonizing the actions of amino acids and presynaptic inhibition. Br J. Pharmacol. 81, 373–380.

    PubMed  CAS  Google Scholar 

  • Kudo Y., Oka J-I, and Yamada K. (1981) Anisatin a potent GABA antagonist, isolated from Illtcium amsatum Neurosci Lett 25, 83–88.

    PubMed  CAS  Google Scholar 

  • Large W. A. (1975) Effect of tetramethylenedisulphotetramine on the membrane conductance increase produced by γ-ammo-butyric acid at the crab neuromuscular junction. Br J. Pharmacol. 53, 598–599.

    PubMed  CAS  Google Scholar 

  • Lawrence L. J. and Casida J E. (1983) Stereospecific action of pyrethroid insecticides on the γ-aminobutyric acid receptor-ionophore complex. Science 221, 1399–1401.

    PubMed  CAS  Google Scholar 

  • Lawrence L. J. and Casida J. E. (1984) Interactions of lindane, toxaphene and cyclodienes with brain-specific t-butylbicycloorthophosphoro-thionate receptor Life Sci. 35, 171–178

    PubMed  CAS  Google Scholar 

  • Lawrence L. L., Palmer C. J., Gee K. W., Wang x, Yamamura H. I, and Casida J E, (1985) t-[3H] Butylbicycloorthobenzoate: New radioligand probe for the γ-ammobutync acid-regulated chloride lonophore. J. Neurochem 45, 798–804.

    PubMed  CAS  Google Scholar 

  • Lebeda F. J., Hablitz J. J., and Johnston D. (1982) Antagonism of GABA-mediated responses by d-tubocuranne in hippocampal neurons. J. Neurophysiol. 48, 622–632.

    PubMed  CAS  Google Scholar 

  • Leeb-Lundberg F., Napias C, and Olsen R. W. (1981) Dihydropicrotoxinin binding sites in mammalian brain: Interaction with convulsant and depressant benzodiazepines Brain Res. 216, 339–408.

    Google Scholar 

  • Lees G., Beadle D J., Neuman R, and Benson J A (1987) Responses to GABA by isolated insect neuronal somata: pharmacology and modulation by a benzodiazepine and a barbiturate. Brain Res. 401, 267–278.

    PubMed  CAS  Google Scholar 

  • Luzzi S, Maggi C A., Spagnesi S., Santicioli P., and Zilletti L (1985) 5-Aminovaleric acid interactions with GABAA and GABAB receptors in guinea-pig ileum. J. Auton. Pharmacol 5, 65–69.

    PubMed  CAS  Google Scholar 

  • Macdonald R. L and Barker J. L. (1977) Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Nature 267, 720–721

    PubMed  CAS  Google Scholar 

  • Macdonald R. L and Barker J. L. (1978) Specific antagonism of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: A common mode of convulsant action. Neurology 28, 325–330.

    PubMed  CAS  Google Scholar 

  • Maggi C. A, Santicioli P., and Meli A. (1984) GABAB receptor mediated inhibition of field stimulation induced contractions of detrusor muscle strips from newborn rats. J. Auton. Pharmacol. 4, 45–51

    PubMed  CAS  Google Scholar 

  • Maggi C. A., Santicioli P., and Meli A. (1985) GABAA and GABAB receptors in detrusor strips from guinea-pig bladder dome. J. Auton Pharmacol. 5, 55–64.

    PubMed  CAS  Google Scholar 

  • Maksay G. and Simonyi M (1985) Benzodiazepine anticonvulsants accelerate and β-carboline convulsants decelerate the kinetics of [35S]-TBPS binding at the chloride ionophore. Eur J. Pharmacol 117, 275–278

    PubMed  CAS  Google Scholar 

  • Maksay G. and Ticku M. K. (1984a) Characterization of γ-aminobutync acid-benzodiazepine receptor complexes by protection against inactivation by group-specific reagents. J. Neurochem. 42, 1715–1727

    PubMed  CAS  Google Scholar 

  • Maksay G. and Ticku M. K. (1984b) Diazotization and thiocyanate differentiate agonists from antagonists for the high-and low-affinity receptors of γ-aminobutync acid. J. Neurochem. 43, 261–268.

    PubMed  CAS  Google Scholar 

  • Maksay G. and Ticku M. K. (1985) Dissociation of [35S]t-Butylbicyclophos-phorothionate binding differentiates convulsants and depressant drugs that modulate GABAergic transmission. J. Neurochem. 44, 480–486

    PubMed  CAS  Google Scholar 

  • Mann E. and Enna S. J (1980) Phylogenetic distribution of bicucullinesensitive γ-aminobutync acid (GABA) receptor binding. Brain Res 184, 367–373.

    PubMed  CAS  Google Scholar 

  • Massotti M. and Lucantoni D. (1986) The peripheral benzodiazepine receptor ligand Ro 5-4864 induces supraspinal convulsions in rabbits. Reversal by the central benzodiazepine antagonist Ro 15–1788. Psychopharmacology 88, 336–340.

    PubMed  CAS  Google Scholar 

  • Mathers D. A. (1985) Penicillin shortens the mean open time of GABA induced membrane channels in cultured spinal neurons Soc. Neurosci Abstr. 11, 7.

    Google Scholar 

  • Matsumura F and Tanaka K. (1984) Molecular Basis of Neuroexcitatory Actions of Cyclodiene-Type Insecticides, in Cellular and Molecular Neurotoxicology (Narahashi T, ed.) Raven, New York.

    Google Scholar 

  • Matsuomo K. and Fukuda H. (1983) Anisatin modulation of GABA-and pentobarbital-induced enhancement of diazepam binding in rat brain. Neurosci Lett 32, 175–179

    Google Scholar 

  • McBurney R. N (1984) Membrane Actions of GABA in Cultured Central Neurones, in Actions and Interactions of GABA and Benzodiazepines (Bowery N. G., ed.) Raven, New York

    Google Scholar 

  • Michaud J. C, Mienville J. M, Chambon J. P., and Biziere K. (1986) Interactions between three pyndazinyl-GABA derivatives and central GABA and glycine receptors in the rat, an in vivo microiontophoretic study. Neuropharmacology 25, 1197–1203

    PubMed  CAS  Google Scholar 

  • Mienville J-M and Vicini S (1987) A pyndazinyl derivative of gammaaminobutyric acid (GABA), SR 95531, is a potent antagonist of Cl channel opening regulated by GABA receptors. Neuropharmacology 26, 779–783.

    PubMed  CAS  Google Scholar 

  • Mohler H and Okada T. (1977) GABA receptor binding with 3H-bicuculline-methiodide in rat CNS. Nature 267, 65–67

    PubMed  CAS  Google Scholar 

  • Mohler H and Okada T. (1978) Properties of γ-aminobutync acid receptor binding with (+)[3H]bicucullme methiodide in rat cerebellum. Mol Pharmacol. 14, 256–265.

    PubMed  CAS  Google Scholar 

  • Muhyaddin M., Roberts P. J., and Woodruff G. N (1982) Presynaptic γ-aminobutync receptors in the rat anococcygeus muscle and their antagonism by 5-aminovaleric acid. Br. J Pharmacol 77, 163–168

    PubMed  CAS  Google Scholar 

  • Muller W. E, Schalfer M., and Wollert U. (1978) Benzodiazepinereceptor binding: The interaction of some nonbenzodiazepine drugs with specific [3H]diazepam binding to rat brain synaptosomal membranes. Naunyn Schmiedebergs Arch. Pharmacol. 305, 23–28.

    PubMed  CAS  Google Scholar 

  • Nakahiro M., Saito K, Yamada I., and Yoshida H. (1985) Antagonistic effect of δ-aminovaleric acid on bicuculline-insensitive γ-aminobutync acidB (GABAB) sites in the rats brain. Neurosci Lett 57, 263–266.

    PubMed  CAS  Google Scholar 

  • Neher E. and Steinbach J. H. (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol 277, 153–176

    Google Scholar 

  • Newberry N. R and Nicoll R A (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452.

    PubMed  CAS  Google Scholar 

  • Newberry N. R. and Nicoll R. A. (1985) Comparison of the action of baclofen with γ-aminobutync acid on rat hippocampal pyramidal cells in vitro. J. Physwl 360, 161–185

    CAS  Google Scholar 

  • Nicoll R. A. (1975) The action of acetylcholine antagonists on amino acid response in the frog spinal cord in vitro. Br J. Pharmacol. 55, 449–458.

    PubMed  CAS  Google Scholar 

  • Nicoll R. A. (1978) The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide J. Physiol. 283, 121–132.

    PubMed  CAS  Google Scholar 

  • Nicoll R. A. and Padjen A (1976) Pentylenetetrazol: An antagonist of GABA at primary afferents of the isolated frog spinal cord. Neuropharmacology. 15, 69–71.

    PubMed  CAS  Google Scholar 

  • Nicoll R. A and Wojtowicz J M (1980) The effects of pentobarbital and related compounds on frog motoneurons. Brain Res. 191, 225–237.

    PubMed  CAS  Google Scholar 

  • Nistri A. and Constanti A. (1979) Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates. Prog Neurobiol 13, 117–235

    PubMed  CAS  Google Scholar 

  • Nistri A., Constanti A., and Quilliam J. P. (1974) Central inhibition, GABA and tutin. Lancet i, 996–997.

    Google Scholar 

  • Nowak L. M., Young A. B., and Macdonald R L. (1982) GABA and bicuculline actions on mouse spinal cord and cortical neurons in cell culture. Brain Res 224, 155–164

    Google Scholar 

  • O’Brien R A. and Spirt N (1980) The inhibition of GABA stimulated benzodiazepine binding by a convulsant benzodiazepine. Life Sci. 26, 1441–1448.

    PubMed  Google Scholar 

  • Ogata N, Vogel S. M., and Narahashi T. (1987) Lindane but not deltamethnn blocks a component of GABA-activated chloride channels. Soc Neurosci. Abstr 13, 65

    Google Scholar 

  • Ogden D. C, Siegelbaum S. A., and Colquhoun D. (1981) Block of acetylcholine-activated ion channels by an uncharged local anaesthetic. Nature 289, 596–598.

    PubMed  CAS  Google Scholar 

  • Olpe H. R., Demieville H., Baltzer V., Bencze W L., Koella W P., Wolf P., and Haas H L (1978) The biological activity of d- and l-baclofen (horesal). Eur. J Pharmacol 52, 133–136.

    PubMed  CAS  Google Scholar 

  • Olsen R. W (1981) The GABA postsynaptic membrane receptorionophore complex. Mol Cell Biochem. 39, 261–279.

    PubMed  CAS  Google Scholar 

  • Olsen R. W. and Snowman A M. (1983) [3H]Bicuculline methochloride binding to low-affinity γ-aminobutyric acid receptor sites. J. Neurochem 41, 1653–1663.

    PubMed  CAS  Google Scholar 

  • Olsen R. W., Ban M, and Miller T. (1976) Studies on the neuropharmacological activity of bicuculline and related compounds. Brain Res 102, 283–299

    PubMed  CAS  Google Scholar 

  • Olsen R W., Ban M., Miller T., and Johnston G. A. R. (1975) Chemical instability of the GABA antagonist bicuculline under physiological conditions Brain Res 98, 383–387.

    PubMed  CAS  Google Scholar 

  • Olsen R. W., Leeb-Lundberg F., and Nopias C. (1980) Picrotoxin and convulsant binding sites in mammalian brain Brain Res. Bull. 5 (suppl. 2), 217–227.

    CAS  Google Scholar 

  • Olsen R. W., Ticku M. K., and Miller T. (1978) Dihydropicrotoxinin binding to crayfish muscle sites possibly related to γ-aminobutyric acid receptor-ionophores Mol. Pharmacol. 14, 381–390.

    PubMed  CAS  Google Scholar 

  • Olsen R. W, Ticku M. J., Greenlee D., and Van Ness P (1979) GABA Receptor and Ionophore Binding Sites. Interaction with Various Drugs, in GABA-Neurotransmitters. Pharmacochemical Biochemical and Pharmacological Aspects (Krogsgaard-Larsen P., Scheel-Kruger J., and Kofod H, eds.) Academic, New York

    Google Scholar 

  • Olsen R. W., Wong E H. F, Stauber G. B., and King R G (1984) Biochemical pharmacology of the γ-aminobutync acid receptor/ ionophore protein Fed. Proc 43, 2773–2778.

    PubMed  CAS  Google Scholar 

  • Ong J. and Kerr D I. B. (1983) GABAA and GABAB-receptor-mediated modification of intestinal mohlity Eur. J. Pharmacol 86, 9–17.

    Google Scholar 

  • Ong J., Kerr D. I. B., and Johnston G A. R (1987) Differing actions of β-phenyl-GABA and baclofen in the guinea pig isolated ileum. Neurosa. Lett 77, 109–112

    CAS  Google Scholar 

  • Ono H., Fukuda H., and Kudo Y. (1979) Mechanism of depressant action of baclofen on the spinal reflex in the rat. Neuropharmacology 18, 647–653.

    PubMed  CAS  Google Scholar 

  • Pellmar T. C. and Wilson W. A. (1977a) Synaptic mechanism of pentylenetetrazole. Selectivity for chloride conductance. Science 197, 912–914.

    PubMed  CAS  Google Scholar 

  • Pellmar T. C. and Wilson W. A. (1977b) Penicillin effects on lontophoretic responses in Aplysia californica. Brain Res. 136, 89–101.

    CAS  Google Scholar 

  • Pellow S. and File S E (1984) Behavioural actions of Ro 5-4864-A peripheral type benzodiazepme? Life Sci. 35, 229–240.

    PubMed  CAS  Google Scholar 

  • Pickles H. G. and Simmonds M. A. (1980) Antagonism by penicillin of γ-aminobutyric acid depolarizations at presynaptic sites in rat olfactory cortex and cuneate nucleus in vitro Neuropharmacology 19, 35–38.

    PubMed  CAS  Google Scholar 

  • Pieri L, Polc P., Bonetti E. P., Burkard W., Cumin R, and Haefely W (1983) Some pharmacological effects of Ro 5-4864, a specific ligand of the peripheral type benzodiazepine binding sites. Naunyn Schmiedebergs Arch. Pharmacol. 322, R95.

    Google Scholar 

  • Pinnock R. D. (1984) Hyperpolanzing action of baclofen on neurons in the rat substantia nigra slice. Brain Res. 322, 337–340.

    PubMed  CAS  Google Scholar 

  • Polc P. and Schaffner R. (1983) Electrophysiological effects of the peripheral-type benzodiazepine receptor ligand Ro 5-4864 in cat spinal cord and rat hippocampus. Neurosci Lett 14 (suppl), S288

    Google Scholar 

  • Pong S. F. and Graham L. T. (1972) N-methylbicuculline, a convulsant more potent than bicuculhne Brain Res 42, 486–490

    PubMed  CAS  Google Scholar 

  • Porter L. A. (1967) Picrotoxinin and related substances Chem. Rev. 67, 441–464.

    PubMed  CAS  Google Scholar 

  • Potashner S. J (1979) Baclofen: Effects on amino acid release and metabolism in slices of guinea pig cerebral cortex. J. Neurochem. 32, 103–109.

    PubMed  CAS  Google Scholar 

  • Quast U. and Brenner O. (1983) Modulation of [3H]muscimol binding in rat cerebellar and cerebral cortical membranes by picrotoxm, pentobarbitone and etomidate J. Neurochem 41, 418–425

    PubMed  CAS  Google Scholar 

  • Ramanjaneyulu R. and Ticku M. K. (1984a) Interactions of pentamethyleneletrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine-GABA receptor-ionophore complex Eur. J Pharmacol 98, 337–345

    PubMed  CAS  Google Scholar 

  • Ramanjaneyulu R. and Ticku M. K. (1984b) Binding characteristics and interactions of depressant drugs with f [35S]t-butylbicyclophosphorothionate, a ligand that binds to the picrotoxinin site. J. Neurochem. 42, 221–229.

    PubMed  CAS  Google Scholar 

  • Rehavi M. P., Skolnick P., and Paul S. M. (1982) Effects of tetrazole derivatives on [3H]diazepam binding in vitro: Correlation with convulsant potency. Eur J. Pharmacol. 23, 326–336.

    Google Scholar 

  • Robbins J. and Van der Kloot W. G. (1958) The effect of picrotoxin on peripheral inhibition in crayfish J. Physiol 143, 541–552.

    PubMed  CAS  Google Scholar 

  • Robertson B and Taylor W R (1986) Effects of GABAB receptor activation on calcium and potassium current in cat dorsal root ganglion (DRG) neurones in vitro Neurosa Lett. 23 (suppl.), S74.

    Google Scholar 

  • Rogawski M. A. and Barker J. L. (1983) Effects of 4-aminopyndine on calcium action potentials and calcium currents under voltage clamp in spinal neurons. Brain Res. 280, 180–185.

    PubMed  CAS  Google Scholar 

  • Schlosser W. and Franco S. (1979) Reduction of γ-aminobutyric acid (GABA)-mediated transmission by a convulsant benzodiazepine. J. Pharmacol. Exp Ther 211, 290–295.

    PubMed  CAS  Google Scholar 

  • Scholfield C N. (1982) Antagonism of γ-aminobutync acid and muscimol by picrotoxin, bicuculline, strychnine, bemegride, leptazol, d-tubocurarine and theophylline in the isolated olfactory cortex. Naunyn Schmtedebergs Arch. Pharmacol. 318, 274–280.

    CAS  Google Scholar 

  • Schwartz R D., Jackson J A, Weigert D., Skolnick P, and Paul S. M. (1985a) Characterization of barbiturate-stimulate chloride efflux from rat brain synaptoneurosomes. J. Neurosa 5, 2963–2970.

    CAS  Google Scholar 

  • Schwartz R D., Seale T. W., Skolnick P, and Paul S. M. (1985b) Picrotoxin reversal of barbiturate-stimulated chloride efflux from synaptoneurosomes parallels differences in in vivo convulsant sensitivity between two inbred strains of mice. Soc. Neurosci. Abstr 11, 275.

    Google Scholar 

  • Seale T. W, Bolger G. T., and Skolnick P. (1985) Inherent differences in convulsant sensitivity to Ro 5-4864, picrotoxin and pentylenetetrazole among inbred stains of mice. Soc Neurosci Abstr. 11, 275.

    Google Scholar 

  • Segal M. and Barker J L. (1984) Rat hippocampal neurons in culture. Voltage clamp analysis of inhibitory synaptic connections. J.. Neurophysiol 52, 469–487.

    PubMed  CAS  Google Scholar 

  • Seifert J. and Casida J E. (1985a) Solubilization and detergent effects on interactions of some drugs and insecticides with the t-butylbicyclophosphorothionate binding site within the γ-aminobutync acid receptor-ionophore complex. J. Neurochem 44, 110–116.

    PubMed  CAS  Google Scholar 

  • Seifert J. and Casida J. E. (1985b) Regulation of [35S]-t-Butylbicyclo-phosphorothionate binding sites in rat brain by GABA, pyrethroid and barbiturate Eur J. Pharmacol. 115, 191–198

    PubMed  CAS  Google Scholar 

  • Shank R. P., Pong S. F., Freeman A. R., and Graham L. T. (1974) Bicuculline and picrotoxin as antagonists of γ-aminobutyrate and neuromuscular inhibition in lobster. Brain Res. 72, 71–78.

    PubMed  CAS  Google Scholar 

  • Simmonds M. A. (1978) Presynaptic actions of γ-aminobutync acid and some antagonists in a slice preparation of cuneate nucleus Br J. Pharmacol 63, 495–502.

    PubMed  CAS  Google Scholar 

  • Simmonds M A (1980) Evidence that bicuculline and picrotoxin act at separate sites to antagonize γ-ammobutync acid in rat cuneate nucleus. Neuropharmacology 19, 39–45

    PubMed  CAS  Google Scholar 

  • Simmonds M. A. (1982) Classification of some GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur. J Pharmacol 80, 347–358.

    PubMed  CAS  Google Scholar 

  • Simmonds M. A. (1983) Multiple GABA receptors and associated regulatory sites. Trends NeuroSci 6, 279–281.

    CAS  Google Scholar 

  • Simmonds M. A. (1984) Interactions of the benzodiazepine Ro 5-4864 with the GABAA receptor complex. Br J Pharmacol 82, 198P

    Google Scholar 

  • Simonds W. F., Booth A M., Thor K. B., Ostrowski N. L., Nagel J R., and de Groat W C. (1983) Parasympathetic ganglia Naloxone antagonizes inhibition by leucine-enkephalin and GABA. Brain Res 271, 365–370.

    PubMed  CAS  Google Scholar 

  • Skerritt J H., Johnston G A R., ChenChow S., Macdonald R. L., Prager R. H., and Ward A. D (1985) Differential modulation of γ-aminobutyric acid receptors by caprolactam derivatives with central nervous system depressant or convulsant activity. Brain Res. 331, 225–233.

    PubMed  CAS  Google Scholar 

  • Skerritt J. H., Werz M. A., McLean M. J., and Macdonald R. L. (1984) Diazepam and its anomalous p-chloro-denvative Ro 5-4864´ Comparative effects on mouse neurons in cell culture. Brain Res. 310, 99–105.

    PubMed  CAS  Google Scholar 

  • Smart T. G. and Constanti A. (1981) A re-examination of the GABA-inhibitory action of bicuculline on lobster muscle. Eur. J. Pharmacol. 70, 25–33.

    PubMed  CAS  Google Scholar 

  • Smart T. G. and Constanti A. (1986) Studies on the mechanism of action of picrotoxinin and other convulsants at the crustacean muscle GABA receptor Proc. Roy Soc. Lond B277, 191–216.

    Google Scholar 

  • Smythies J R (1974) Relationships between the chemical structure and biological activity of convulsants Ann. Rev. Pharmacol. 14, 9–22.

    CAS  Google Scholar 

  • Speth R. C, Wastek G. J., and Yamamura H. I. (1979) Benzodiazepine receptors: Temperature dependence of [3H]flunitrazepam binding. Life Sai. 24, 351–358.

    CAS  Google Scholar 

  • Squires R. F. (1984) Benzodiazepine Receptors, in Handbook of Neurochemistry 2nd Ed., vol 6 Receptors in the Nervous System (Lajtha A., ed.) Plenum, New York

    Google Scholar 

  • Squires R F., Casida J E., Richardson M., and Saederup E. (1983) [35S]-t-Butylbicycloorthophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid A and ion recognition sites. Mol Pharmacol. 23, 326–336.

    PubMed  CAS  Google Scholar 

  • Squires R F., Saederup E., Crawley J. N., Skolnick P., and Paul S. M. (1984) Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sai. 35, 1439–1444.

    CAS  Google Scholar 

  • Stevens D. R., Gallagher J. P., and Shinnick-Gallagher P (1985a) Studies on depression of γ-aminobutyric acid potentials by phondzin in cat dorsal root ganglion cells in vitro. Neurosct Lett, 60, 115–119

    CAS  Google Scholar 

  • Stevens D. R., Gallagher J. P., and Shinnick-Gallagher P. (1985b) Further studies on the action of baclof en on neurons of the dorsolateral septal nucleus of the rat, in vitro. Brain Res. 358, 360–363.

    PubMed  CAS  Google Scholar 

  • Supavilai P., Mannonen A., Collins J. F., and Karobath M. (1982) Aniondependent modulation of [3H]muscimol binding and of GABA-stimulated [3H]flunitrazepam binding by picrotoxin and related CNS convulsants. Eur. J. Pharmacol 81, 687–691

    PubMed  CAS  Google Scholar 

  • Svenneby G. and Roberts E. (1973) Bicuculline and N-methylbicuculline-competitive inhibitors of brain acetylcholinesterase. J. Neurochem. 21, 1025–1026.

    PubMed  CAS  Google Scholar 

  • Takeuchi A. and Onodera K. (1972) Effect of bicuculline on the GABA receptor of the crayfish neuromuscular junction. Nature New Biol 236, 55–56.

    PubMed  CAS  Google Scholar 

  • Takeuchi A. and Takeuchi N. (1966) On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of γ-aminobutyric acid. J. Physiol 183, 433–449.

    PubMed  CAS  Google Scholar 

  • Takeuchi A. and Takeuchi N. (1969) A study of the action of picrotoxin on the inhibitory neuromuscular function of the crayfish. J.. Physiol. 205, 377–392.

    PubMed  CAS  Google Scholar 

  • Ticku M. K. and Maksay G. (1983) Convulsant/depressant site of action at the allosteric benzodiazepine-GABA receptor-ionophore complex. Life Sai. 33, 2363–2375.

    CAS  Google Scholar 

  • Ticku M. K. and Olsen R. W. (1979) Cage convulsants inhibit picrotoxinin binding. Neuropharmacology 18, 315–318.

    PubMed  CAS  Google Scholar 

  • Ticku M. K. and Olsen R. W. (1984) Picrotoxinin Binding Sites in Brain, in Brain Receptor Methodologies part B Ammo Acids Pepttdes Psychoactive Drugs (Marangs P J., Campbell I. C, and Cohen R. M. eds.) Academic, London.

    Google Scholar 

  • Ticku M. K. and Ramanjaneyulu R. (1984) Ro 5-4864 inhibits the binding of 35S-t-butylbicyclophosphorothionate to rat brain membranes. Life Sci. 34, 631–638.

    PubMed  CAS  Google Scholar 

  • Ticku M. K., Ban M, and Olsen R W. (1978) Binding of [3H]α-dihydropicrotoxinin, a γ-aminobutyric acid synaptic antagonist to rat brain membranes Mol. Pharmacol 14, 391–402.

    PubMed  CAS  Google Scholar 

  • Trifiletti R. R., Snowman A. M., and Snyder S. H. (1985) Barbiturate recognition site on the GABA/benzodiazepine receptor complex is distinct from the picrotoxmm/TBPS recognition site. Eur. J. Pharmacol 106, 441–447

    Google Scholar 

  • Usherwood P N. R. (1978) Amino acids as neurotransmitters. Adv. Comp Physiol Biochem 7, 227–309

    PubMed  CAS  Google Scholar 

  • Usherwood P. N. R and Grundfest H. (1965) Peripheral inhibition in skeletal muscle of insects J. Neurophysiol. 28, 497–518.

    PubMed  CAS  Google Scholar 

  • Van der Kloot W. G. and Robbins J (1959) The effects of γ-aminobutyric acid and picrotoxin on the junctional potential and the contraction of crayfish muscle Expenentia 15, 35–36.

    Google Scholar 

  • Van Renterghem C, Bible G., Moss S., Smart T G, Constanti A., Brown D. A., and Barnard E. A. (1987) GABA receptors induced in xenopus oocytes by chick brain mRNA. evaluation of TBPS as a usedependent channel blocker. Mol Brain Res. 2, 21–31.

    Google Scholar 

  • Weissman B. A, Cott J, Hommer D., Paul S., and Skolnick P. (1984) Electrophysiological and pharmacological actions of the convulsant benzodiazepine Ro 5-4864. Eur J. Pharmacol. 97, 257–263

    PubMed  CAS  Google Scholar 

  • Weissman B. A., Cott J., Jackson J. A., Bolger G. T., Weber K. H., Horst W. D, Paul S. M., and Skolnick P (1985) “Peripheral-type” binding sites for benzodiazepines in brain. Relationship to the convulsant actions of Ro 5-4864. J. Neurochem 44, 1494–1499

    PubMed  CAS  Google Scholar 

  • Weissman B. A., Cott J., Paul S. M, and Skolnick P (1983) Ro 5-4864: A potent benzodiazepine convulsant. Eur J. Pharmacol 90, 149–150.

    PubMed  CAS  Google Scholar 

  • Welch A. D and Henderson V. E. (1934) A comparative study of hydrastine, bicuculline and adlumine J. Pharmacol. Exp. Ther. 51, 482–491.

    CAS  Google Scholar 

  • Wermuth C. G. and Biziere K. (1986) Pyndazinyl-GABA derivatives: A new class of synthetic GABAA antagonists. Trends Neurosci 7, 421–424

    CAS  Google Scholar 

  • Wermuth C. G., Chambon J.-P., Heavlone M., Melikian A., Schlewer G., Leyns R., and Biziere K. (1987) The sensitivity of γ-amino-butyric acid antagonists to thiocyanate is related to the absence of a functional amionic group in their structure Eur. J. Pharmacol 144, 375–378.

    PubMed  CAS  Google Scholar 

  • Wilson W. and Escueta A V. (1974) Common synaptic effects of pentylenetetrazol and penicillin Brain Res. 72, 168–171

    PubMed  CAS  Google Scholar 

  • Wojtowicz J, M and Nicoll R. A. (1982) Selective action of piretanide on primary afferent GABA responses in the frog spinal cord. Brain Res. 236, 173–181

    PubMed  CAS  Google Scholar 

  • Woodbury D. M. (1980) Convulsant drugs. Mechanisms of action. Adv. Neurol. 27, 249–303.

    PubMed  CAS  Google Scholar 

  • Yakushiji T., Tokutomi N., Akaike N., and Carpenter D. O. (1987) Antagonists of GABA responses, studied using internally perfused frog dorsal root ganglion neurons Neuroscience 22, 1123–1133

    PubMed  CAS  Google Scholar 

  • Yarowsky P. J. and Carpenter, D. O. (1978) Receptors for gammaaminobutyric acid (GABA) on Aplysia neurons. Brain Res. 144, 75–94.

    PubMed  CAS  Google Scholar 

  • Yasui S., Ishizuka S., and Akaike N. (1985) GABA activates different types of chloride conducting receptor-ionophore complexes in a dose dependent manner Brain Res. 344, 176–180

    PubMed  CAS  Google Scholar 

  • Zukin S R., Young A B., and Snyder S. H (1974) γ-Aminobutyric acid binding to receptor sites in rat central nervous system. Proc. Natl Acad. Sci. USA 71, 4802–4807.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this protocol

Cite this protocol

Farrant, M., Webster, R.A. (1989). GABA Antagonists. In: Boulton, A.A., Baker, G.B., Juorio, A.V. (eds) Drugs as Tools in Neurotransmitter Research. Neuromethods, vol 12. Humana Press. https://doi.org/10.1385/0-89603-122-5:161

Download citation

  • DOI: https://doi.org/10.1385/0-89603-122-5:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-122-7

  • Online ISBN: 978-1-59259-617-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics