Skip to main content

Part of the book series: Neuromethods ((NM,volume 12))

Abstract

Acetylcholine (ACh) is known to be a neurotransmitter in the nervous systems of vertebrates and invertebrates. The fact that numerous plants, animals, and bacteria have evolved toxins that selectively interfere with cholinergic transmission is an indication of the relative importance of ACh as a neurotransmitter substance. In order for a toxin to be biologically effective, it must produce a sustained action at low concentrations. The high potency and selectivity of these toxins have allowed them to play a crucial role in understanding ACh’s physiological effects and in identifying the properties of the enzymes and receptors subserving cholinergic neurotransmission. For example, snake venom α-neurotoxins have been valuable tools in identifying and purifying nicotinic acetylcholine receptors. In fact, the availability of the α-neurotoxins is a major reason the vertebrate muscle nicotinic receptor is currently the best characterized of all neurotransmitter receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T., Alema S., and Miledi R. (1977) Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur J Biochem. 80, 1–12

    PubMed  CAS  Google Scholar 

  • Albuquerque E x, Barnard E A., Chiu T H, Lapa A. J, Dolly J O, Jansson S.-E, Daly J., and Witkop B. (1973) Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: Evidence from specific toxin reactions. Proc Natl. Acad Sci. USA 70, 949–953.

    PubMed  CAS  Google Scholar 

  • Ambache N. (1951) A further survey of the action of Clostndium botuhnum toxin upon different types of autonomic nerve fibre. J. Physiol. (Lond.) 113, 1–17.

    CAS  Google Scholar 

  • Atchison W. D., Narahashi T, and Vogel S. M. (1984) Endplate blocking actions of lophotoxin. Br J Pharmacol. 82, 667–672.

    PubMed  CAS  Google Scholar 

  • Bigalke H. and Habermann E (1980) Blockade by tetanus and botulinum A toxin of postganglionic cholinergic nerve endings in the myenteric plexus Naunyn Schmiedebergs Arch. Pharmacol. 312, 255–263.

    PubMed  CAS  Google Scholar 

  • Birdsall N. J. M. and Hulme E. C. (1983) Muscannic receptor subclasses. Trends Pharmacol Sci 6, 459–463.

    Google Scholar 

  • Birks R. and Macintosh F. C (1961) Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem Phys. 39, 787–827.

    CAS  Google Scholar 

  • Blanchard S. G., Quast U., Reed K., Lee T., Schimerlik M. I., Vandlen R., Claudio T., Strader C. D., Moore H-P. H., and Raftery M. A. (1979) Interaction of [125I]-α-bungarotoxin with acetylcholine receptor from Torpedo californica Biochemistry 18, 1875–1883.

    CAS  Google Scholar 

  • Brown D A (1979) Neurotoxins and the Ganglionic (C6) Type of Nicotinic Receptor, in Advances in Cytopharmacology vol. 3 Neurotoxins: Tools in Neurobiology (Ceccarelli B. and Clementi F., eds.) Raven, New York.

    Google Scholar 

  • Brown D. A., Garthwaite J., Hayashi E., and Yamada S. (1976) Action of surugatoxin on nicotinic receptors in the superior cervical ganglion of the rat. Br J Pharmacol. 58, 157–159.

    PubMed  CAS  Google Scholar 

  • Budai D., Ricny J., Kasa P., and Tucek S. (1986) 4-(l-Naphthylvinyl) pyndine decreases brain acetylcholine in vivo, but does not alter the level of acetyl-CoA J Neurochem. 46, 990–992.

    PubMed  CAS  Google Scholar 

  • Burden S. J., Hartzell H. C, and Yoshikami D (1975) Acetylcholine receptors at neuromuscular synapses: Phylogenetic differences detected by snake α-neurotoxins. Proc. Natl. Acad. Sci. USA 72, 3245–3249.

    PubMed  CAS  Google Scholar 

  • Carson V. G., Jenden D. J., and Cho A. K. (1972) The in vivo effects of some in vitro choline acetyltransferase inhibitors. Proc. West. Pharmacol. Soc 15, 127–131.

    CAS  Google Scholar 

  • Catterall W. A., Hartshorne R. P., and Beneski D. A. (1982) Molecular properties of neurotoxin receptor sites associated with solium channels from mammalian brain. Toxicon 20, 27–40

    PubMed  CAS  Google Scholar 

  • Ceccarelli B. and Hurlbut W P. (1975) The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction. J. Physiol. (Lond.) 247, 163–188.

    CAS  Google Scholar 

  • Chadwick L. E. (1963) Actions on Insects and Other Invertebrates, in Cholinesterases and Anticholinesterase Agents vol. 15 Handbuch der Expenmentellen Pharmakologie (Koelle G. B., ed.) Springer-Verlag, Berlin.

    Google Scholar 

  • Chang C C. and Huang M. C. (1974) Comparison of the presynaptic actions of botuhnum toxin and β-bungarotoxin on neuromuscular transmission. Naunyn Schmiedebergs Arch. Pharmacol. 282, 129–142.

    PubMed  CAS  Google Scholar 

  • Chang C. C, Chen T. F., and Lee C. Y (1973) Studies on the presynaptic effect of β-bungarotoxin on neuromuscular transmission J. Pharmacol. Exp. Ther 184, 339–345

    PubMed  CAS  Google Scholar 

  • Changeux J. P., Kasai M, and Lee C Y (1970) Use of a snake venom toxin to characterize the cholinergic receptor protein Proc. Natl Acad Sci. USA 67, 1241–1247.

    PubMed  CAS  Google Scholar 

  • Chiappinelli V. A. (1982) Blockade o ganglionic transmission during synaptogenesis decreases α-bungarotoxin binding in the chick ciliary ganglion and iris Dev. Brain Res 5, 118–121.

    CAS  Google Scholar 

  • Chiappinelh V. A. (1983) Kappa-bungarotoxin · A probe for the neuronal nicotmic receptor in the avian ciliary ganglion Brain Res 277, 9–22

    Google Scholar 

  • Chiappinelli V. A. (1986) Actions of snake venom toxins on neuronal nicotmic receptors and other neuronal receptors. Pharmacol Ther. 31, 1–32.

    CAS  Google Scholar 

  • Chiappinelli V. A. and Dryer S. E. (1984) Nicotmic transmission in sympathetic ganglia. Blockade by the snake venom neurotoxin kappabungarotoxin. Neurosci Lett. 50, 239–244.

    PubMed  CAS  Google Scholar 

  • Chiappinelli V. A. and Giacobini E. (1978) Time course of appearance of α-bungarotoxin binding sites during development of chick ciliary ganglion and iris. Neurochem Res. 3, 465–478.

    PubMed  CAS  Google Scholar 

  • Chiappinelli V. A. and Lee J. C. (1985) Kappa-bungarotoxin Self-association of a neuronal nicotinic receptor probe J Biol. Chem. 260, 6182–6186.

    PubMed  CAS  Google Scholar 

  • Chiappinelli V. A., Cohen J. B., and Zigmond R E. (1981) The effects of α-and β-neurotoxins from the venoms of various snakes on transmission in autonomic ganglia Brain Res. 211, 107–126.

    PubMed  CAS  Google Scholar 

  • Chiappinelli V A., Wolf K., and Ciarleglio A. (1985) Kappa-bungarotoxin Binding of a neuronal nicotmic receptor probe to chick optic lobe and skeletal muscle. Soc. Neurosci Abs. 11, 92.

    Google Scholar 

  • Chiappinelli V. A., Wolf K., DeBin J, and Holt I. L. (1986) Kappa-flavitoxin: Purification of a neuronal nicotinic receptor probe that is structurally related to kappa-bungarotoxin. Fed. Proc 45, 923.

    Google Scholar 

  • Clark A. W., Hurlbut W. P., and Mauro A. (1972) Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom. J Cell. Biol. 52, 1–14

    PubMed  CAS  Google Scholar 

  • Clarke P. B. S., Schwartz R D., Paul S. M., Pert C. B., and Pert A. (1985) Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]α-bungarotoxin. J. Neurosci. 5, 1307–1315.

    PubMed  CAS  Google Scholar 

  • Colquhoun D. (1979) The Link Between Drug Binding and Response: Theories and Observations, in The Receptors: A Comprehensive Treatise vol. I (O’Brien R. D., ed.) Plenum, New York.

    Google Scholar 

  • Conti-Tronconi B M, Dunn S. M. J., Barnard E. A., Dolly J O, Lai F. A., Ray N, and Raftery M. A. (1985) Brain and muscle nicotinic acetyl-choline receptors are different but homologous proteins. Proc. Natl Acad. Sci. USA 82, 5208–5212.

    PubMed  CAS  Google Scholar 

  • Cremo C. and Shimerhk M. I (1983) Histrionicotoxin and alkylguanidine interactions with the solubilized and membrane-bound muscarinic acetylcholine receptor from porcine atria. Arch. Biochem. Biophys. 224, 506–514.

    PubMed  CAS  Google Scholar 

  • Crowcroft P. J, Holman M. E., and Szurszewski J. H. (1971) Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig J Phystol (Lond.) 219, 443–461.

    CAS  Google Scholar 

  • Crowcroft P. J. and Szurszewski J. H. (1971) A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J. Physiol. (Lond.) 219, 421–441

    CAS  Google Scholar 

  • Cull-Candy S G, Lundh H., and Thesleff S. (1976) Effects of botulium toxin on neuromuscular transmission in the rat. J. Physiol. (Lond.) 260, 177–203.

    CAS  Google Scholar 

  • Culver P. and Jacobs R S. (1981) Lophotoxin: A neuromuscular acting toxin from the sea whip (Lophogorgia rigida). Toxicon 19, 825–8

    PubMed  CAS  Google Scholar 

  • Culver P., Fenical W, and Taylor P. (1984) Lophotoxin irreversibly inactivates the nicotinic acetylcholine receptor by preferential association at one of the two primary agonist sites. J Biol. Chem. 259, 3763–3770

    PubMed  CAS  Google Scholar 

  • David J. A. and Sattelle D. B (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta amencana). J. Exp. Biol 108, 119–1

    CAS  Google Scholar 

  • Dolly J. O., Black J., Williams R S., and Melling J. (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307, 457–460.

    PubMed  CAS  Google Scholar 

  • Dombrowski A. M., Jerkins A. A., and Kauffman F. C. (1983) Muscannic receptor binding and oxidative enzyme activities in the adult rat superior cervical ganglion: Effects of 6-hydroxydopamine and nerve growth factor. J. Neurosci 3, 1963–1970.

    PubMed  CAS  Google Scholar 

  • Dryer S E and Chiappinelli V. A. (1983) Kappa-bungarotoxin: An in-tracellular study demonstrating blockade of neuronal nicotinic receptors by a snake neurotoxin. Brain Res. 289, 317–321.

    PubMed  CAS  Google Scholar 

  • Dryer S. E. and Chiappinelli V. A (1985a) Substance P depolarizes nerve terminals in an autonomic ganglion. Brain Res 336, 190–194.

    PubMed  CAS  Google Scholar 

  • Dryer S. E and Chiappinelli V A. (1985b) An intracellular study of synaptic transmission and dendritic morphology in sympathetic neurons of the chick embryo Dev. Brain Res 22, 99–111.

    CAS  Google Scholar 

  • Dryer S E and Chiappinelli V A (1985c) Properties of choroid and ciliary neurons in the avian ciliary ganglion and evidence for substance P as a neurotransmitter. J Neurosci 5, 2654–2661.

    PubMed  CAS  Google Scholar 

  • Ehlert F. J., Roeske W. R., and Yamamura H. I. (1981) Muscarinic receptor: Regulation by guanine nucleotides, ions, and N-ethylmaleimide. Fed. Proc 40, 153–159.

    PubMed  CAS  Google Scholar 

  • Eldefrawi A T., Eldefrawi M E, Albuquerque E. x., Oliveira A C, Mansour N., Adler M., Daly J. W., Brown G. B, Burgermeister W., and Witkop B. (1977) Perhydrohistrionicotoxin A potential ligand for the ion conductance modulator of the acetylcholine receptor. Proc Natl. Acad. Sci USA 74, 2172–2176.

    PubMed  CAS  Google Scholar 

  • Fairbanks G., Steck T L, and Wallach D F. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane Biochemistry 10, 2606–2617

    PubMed  CAS  Google Scholar 

  • Fenical W., Okuda R. K., Bandurraga M. W, Culver P, and Jacobs R. S. (1981) Lophotoxin: A novel neuromuscular toxin from Pacific sea whips of the genus Lophogorgia. Science 212, 1512–1514.

    CAS  Google Scholar 

  • Fertuck H. C and Salpeter M M (1976) Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-α-bungarotoxin binding at mouse neuromuscular junctions J Cell Biol 69, 144–158

    PubMed  CAS  Google Scholar 

  • Finkelstein A., Rubin L. L., and Tzeng M.-C. (1976) Black widow spider venom: Effect of purified toxin on lipid bilayer membranes Science 193, 1009–1011.

    PubMed  CAS  Google Scholar 

  • Freeman J. A., Schmidt J. T., and Oswald R E. (1980) Effect of α-bungarotoxin on retinotectal synaptic transmission in the goldfish and the toad. Neuroscience 5, 929–942

    PubMed  CAS  Google Scholar 

  • Frontali N., Ceccarelli B, Gorio A., Mauro A., Siekevitz P., Tzeng M.-C, and Hurlbut W P. (1976) Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J. Cell Biol 68, 462–479.

    PubMed  CAS  Google Scholar 

  • Frontali N., Granata F., Traina M E., and Bellino M. (1973) Catecholamine depleting effect of black widow spider venom on fibres innervating different guinea-pig tissues. Experentia 29, 1525–1527

    CAS  Google Scholar 

  • Gage P. W. and McBurney R. N. (1975) Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum of acetylcholine at the toad neuromuscular junction J. Physiol. (Lond.) 244, 385–407

    CAS  Google Scholar 

  • Gepner J. I., Hall L M., and Sattelle D. B. (1978) Insect acetylcholine receptors as a site of insecticide action. Nature 276, 188–190.

    PubMed  CAS  Google Scholar 

  • Gil D. W. and Wolfe B. B. (1985) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J. Pharmacol. Exp. Ther. 232, 608–616.

    PubMed  CAS  Google Scholar 

  • Grant G. A and Chiappinelli V. A. (1985) Kappa-bungarotoxin: Complete amino acid sequence of a neuronal nicotinic receptor probe. Biochemistry 24, 1532–1537.

    PubMed  CAS  Google Scholar 

  • Grant G. A., Frazier M. W., and Chiappinelli V. A. (1988) The amino acid sequence of kappa-flavitoxin: establishment of a new family of snake venom neurotoxins. Biochemistry 27, 3794–3798.

    PubMed  CAS  Google Scholar 

  • Gray W. R., Luque A., Olivera B. M., Barrett J., and Cruz L. J. (1981) Peptide toxins from Conus geographus venom. J. Biol. Chem 256, 4734–4740.

    PubMed  CAS  Google Scholar 

  • Gundersen C B. (1980) The effects of botulmum toxin on the synthesis, storage and release of acetylchohne. Prog. Neurobiol. 14, 99–119.

    PubMed  CAS  Google Scholar 

  • Gundersen C. B., Katz B., and Miledi R. (1982) The antagonism between botulmum toxin and calcium in motor nerve terminals. Proc. Roy. Soc. Lond. B216, 369–376.

    Google Scholar 

  • Hammer R. and Giachetti A. (1982) Muscarmic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 31, 2991–2998.

    PubMed  CAS  Google Scholar 

  • Hammer R., Berne C. P., Birdsall N. J. M., Burgen A. S. V., and Hulme E. C. (1980) Pirenzepine distinguishes between different subclasses of muscarmic receptors. Nature 283, 90–92.

    PubMed  CAS  Google Scholar 

  • Hanley M R. and Emson P. C. (1979) Neuronal degeneration induced by stereotaxic injection of β-bungarotoxin into rat brain. Neurosci. Lett 11, 143–148.

    PubMed  CAS  Google Scholar 

  • Hanley M. R., Eterovic V. A, Hawkes S. P, Hebert A. J., and Bennett E. L. (1977) Neurotoxins of Bungarus multicinctus venom. Purification and partial characterization Biochemistry 16, 5840–5849

    PubMed  CAS  Google Scholar 

  • Harris, A. J. and Miledi R. (1971) The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 217, 497–515.

    CAS  Google Scholar 

  • Haubrich D. R. and Wang P. F. L. (1976) Inhibition of acetylchohne synthesis by juglone and 4-(l-naphthylvinyl) pyridine. Biochem. Pharmacol. 25, 669–672

    PubMed  CAS  Google Scholar 

  • Hayashi E. and Yamada S. (1975) Pharmacological studies on surugatoxin, the toxic principle from Japanese ivory mollusc (Babylonia japonica). Br J. Pharmacol. 53, 207–2

    PubMed  CAS  Google Scholar 

  • Hayashi E., Isogai M., Kagawa Y., Takayanagi N, and Yamada S. (1984) Neosurugatoxin, a specific antagonist of nicotinic acetylcholine receptors. J. Neurochem. 42, 1491–1494.

    PubMed  CAS  Google Scholar 

  • Hirokawa N. (1978) Characterization of various nervous tissues of the chick embryos through responses to chronic application and immunocytochemistry of β-bungarotoxin J. Comp Neurol. 180, 449–466.

    PubMed  CAS  Google Scholar 

  • Hirokawa N. and Heuser J. E (1981) Structural evidence that botulinum toxin blocks neuromuscular transmission by impairing the calcium influx that normally accompanies nerve depolarization J Cell Biol 88, 160–171.

    PubMed  CAS  Google Scholar 

  • Hoover D. B, Muth E A, and Jacobowitz D A. (1978) A mapping of the distribution of acetylcholine, choline acetyltransferase and acetyl-cholinesterase in discrete areas of rat brain. Brain Res 153, 295–306.

    PubMed  CAS  Google Scholar 

  • Horn J. P. and Dodd J. (1981) Monosynaptic muscannic activation of K+ conductance underlies the slow inhibitory postsynaptic potential in sympathetic ganglia Nature 292, 625–627.

    PubMed  CAS  Google Scholar 

  • Howard B. D. and Truog R (1977) Relationship between the neurotoxicity and phospholipase A activity of β-bungarotoxin Biochemistry 16, 122–125.

    PubMed  CAS  Google Scholar 

  • Jones S W and Sumikawa K (1981) Quinuclidinyl benzilate binding in house fly heads and rat brain. J Neurochem. 36, 454–459.

    PubMed  CAS  Google Scholar 

  • Karczmar A. G (1967) Pharmacologic, Toxicologic, and Therapeutic Properties of Anticholinesterase Agents, in Physiological Pharmacology vol. 3 The Nervous System part C Autonomic Nervous System Drugs (Root W. S. and Hofmann F. G., eds) Academic, New York.

    Google Scholar 

  • Karlsson E. (1979) Chemistry of Protein Toxins in Snake Venoms, in Snake Venoms, Handbook of Experimental Pharmacology vol. 52 (Lee C Y., ed.) Springer-Verlag, Berlin.

    Google Scholar 

  • Kato G. and Changeux J.-P (1976) Studies on the effect of histrionicotoxin on the monocellular electroplax from Electrophorus electncus and on the binding of 3H-acetylcholine to membrane fragments from Torpedo marmorata. Mol Pharmacol 12, 92–100.

    PubMed  CAS  Google Scholar 

  • Kato A. C, Pinto J. E B., Glavinovic M, and Collier B. (1977) Action of a β-bungarotoxin on autonomic ganglia and adrenergic neurotransmission. Can. J Physiol Pharmacol 55, 574–584.

    PubMed  CAS  Google Scholar 

  • Katz B. and Miledi R (1978) A re-examination of curare action at the motor endplate. Proc Roy. Soc Lond. B203, 119–133

    Google Scholar 

  • Kawa K. and Roper S. (1984) On the two subdivisions and intrinsic synaptic connexions in the submandibular ganglion of the rat. J Physiol. (Lond) 346, 301–320

    CAS  Google Scholar 

  • Kehoe J. S. (1972a) Three acetylcholine receptors in Aplysia neurones. J. Physiol (Lond.) 225, 115–146

    CAS  Google Scholar 

  • Kehoe J. S. (1972b) The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia J. Physiol. (Lond.) 225, 147–172.

    CAS  Google Scholar 

  • Kehoe J., Sealock R., and Bon C. (1976) Effects of α-toxins from Bungarus multicinctus and Bungarus caeruleus on cholinergic responses in Aplysia neurons. Brain Res. 107, 527–540.

    PubMed  CAS  Google Scholar 

  • Kemp G., Bentley L., McNamee M. G., and Morley B. J. (1985) Purification and characterization of the α-bungarotoxin binding protein from rat brain. Brain Res 347, 274–283.

    PubMed  CAS  Google Scholar 

  • Kessler J. A. (1985) Parasympathetic, sympathetic, and sensory interactions in the iris: Nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo J Neurosci 5, 2719–2725.

    PubMed  CAS  Google Scholar 

  • Kobayashi R. M., Palkovits M., Hruska R E., Rothschild R., and Yamamura H. I (1978) Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res 154, 13–23.

    PubMed  CAS  Google Scholar 

  • Kochva E., Nakar O, and Ovadia M. (1983) Venom toxins: Plausible evolution from digestive enzymes. Am Zool. 23, 427–430.

    CAS  Google Scholar 

  • Koketsu K. and Yamada M. (1982) Presynaptic muscarinic receptors inhibiting active acetylcholine release in the bullfrog sympathetic ganglion. Br J Pharmacol. 77, 75–82.

    PubMed  CAS  Google Scholar 

  • Kondo K., Narita K., and Lee C-Y. (1978) Amino acid sequences of the two polypeptide chains in β1-bungarotoxin from the venom of Bungarus multianctus J. Biochem. 83, 101–115.

    PubMed  CAS  Google Scholar 

  • Kondo K., Toda H., Narita K., and Lee C.-Y. (1982a) Amino acid sequence of β2-bungarotoxin from Bungarus multicinctus venom The amino acid substitutions in the B chains. J. Biochem. 91, 1519–1530.

    PubMed  CAS  Google Scholar 

  • Kondo K., Toda H, Narita K., and Lee C.-Y. (1982b) Amino acid sequences of three β-bungarotoxins (β3-, β4-, and β5-bungarotoxms) from Bungarus multianctus venom Ammo acid substitutions in the A chains. J. Biochem. 91, 1531–1548.

    PubMed  CAS  Google Scholar 

  • Kosuge T., Zenda H., and Ochiai A. (1972) Isolation and structure de-termination of a new marine toxin, surugatoxin, from the Japanese ivory shell, Babylonia japonica. Tetrahedron Lett. 25, 2545–2548

    Google Scholar 

  • Krodel E. K., Beckman R. A., and Cohen J. B. (1979) Identification of a local anesthetic binding site in nicotinic postsynaptic membranes isolated from Torpedo marmorata electric tissue. Mol. Pharmacol. 15, 294–312.

    PubMed  CAS  Google Scholar 

  • Kuffler S. W and Sejnowski T. J. (1983) Peptidergic and muscarinic excitation at amphibian sympathetic synapses J Physiol (Lond.) 341, 257–278.

    CAS  Google Scholar 

  • Kupfer C. (1958) Selective block of synaptic transmission in ciliary gangli-on by type A botulinus toxin in rabbits. Proc. Soc Exp. Biol (New York) 99, 474–476.

    CAS  Google Scholar 

  • Langdon R. B. and Jacobs R. S. (1985) Irreversible autonomic actions by lophotoxin suggest utility as a probe for both C6 and C10 nicotinic receptors. Brain Res. 359, 233–238.

    PubMed  CAS  Google Scholar 

  • Leonard J. P. and Salpeter M M. (1979) Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J. Cell. Biol 82, 811–819.

    PubMed  CAS  Google Scholar 

  • Loring R H. and Zigmond R. E (1985) Amino acid sequence of a neurotoxin that blocks neuronal nicotinic receptors and the localization of its binding sites in chick ciliary ganglion Soc Neurosci Abs 11, 92

    Google Scholar 

  • Loring R. H., Chiappinelli V. A., Zigmond R. E, and Cohen J. B (1984) Characterization of a snake venom neurotoxin which blocks nicotinic transmission in the avian ciliary ganglion Neuroscience 11, 989–999.

    PubMed  CAS  Google Scholar 

  • Loring R. H, Dahm L. M and Zigmond R. E (1985) Localization of alpha-bungarotoxin binding sites in the ciliary ganglion of the embryonic chick. An autoradiographic study at the light and electron microscopic level. Neuroscience 14, 645–660.

    PubMed  CAS  Google Scholar 

  • Lundh H, Cull-Candy S G., Leander S, and Thesleff S. (1976) Restoration of transmitter release in botulinum-poisoned skeletal muscle. Brain Res 110, 194–198.

    PubMed  CAS  Google Scholar 

  • MacKenzie I, Burnstock G., and Dolly J. O. (1982) The effects of purified botulinum neurotoxin type A on chohnergic, adrenergic and nonadrenergic, atropine-resistant autonomic neuromuscular transmission. Neuroscience 7, 997–1006.

    PubMed  CAS  Google Scholar 

  • Mantione C. R., Fisher A., and Hanin I. (1981) The AF64A-treated mouse-Possible model for central chohnergic hypofunction. Science 213, 579–580.

    PubMed  CAS  Google Scholar 

  • Marks M. J. and Collins A. C. (1982) Characterization of nicotinic binding in mouse brain and comparison with the binding of α-bungarotoxin and quinuclidinyl benzilate. Mol. Pharmacol. 22, 554–564.

    PubMed  CAS  Google Scholar 

  • Marshall L. M. (1981) Synaptic localization of α-bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons. Proc Natl Acad. Sci. USA 78, 1948–1952

    PubMed  CAS  Google Scholar 

  • Martin A. R. and Pilar G (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol (Lond.) 168, 443–463.

    CAS  Google Scholar 

  • McEachern A. E., Margiotta J F., and Berg D K. (1985) Gammaaminobutyric acid receptors on chick ciliary ganglion neurons in vivo and in cell culture J. Neurosa. 5, 2690–2695

    CAS  Google Scholar 

  • McManus O. B. and Musick J R. (1985) Postsynaptic block of frog neuromuscular transmission by conotoxin GI. J Neurosa. 5, 110–116.

    CAS  Google Scholar 

  • Mebs D. (1985) List of Biologically Active Components from Snake Venoms pp. 1–141, Zentrum der Rechtsmedizin, University of Frankfurt, Frankfurt.

    Google Scholar 

  • Mebs D., Narita K., Iwanaga S, Samejima Y., and Lee C. Y. (1971) Amino acid sequence of α-bungarotoxm from the venom of Bungarus multi-cinctus. Biochem Biophys Res. Commun. 44, 711–716.

    PubMed  CAS  Google Scholar 

  • Mebs D., Narita K., Iwanaga S., Samejima Y., and Lee C.-Y. (1972) Purification, properties and amino acid sequence of α-bungarotoxin from the venom of Bungarus multicinctus. Hoppe-Seyler’s Z. Physiol. Chem. 353, 243–262.

    PubMed  CAS  Google Scholar 

  • Meldolesi J., Madeddu L., Torda M., Gatti G., and Niutta E. (1983) The effect of α-latrotoxin on the neurosecretory PC12 cell line: Studies on toxin binding and stimulation of transmitter release. Neuroscience 10, 997–1009.

    PubMed  CAS  Google Scholar 

  • Mellanby J. and Green J. (1981) How does tetanus toxin act? Neuroscience 6, 281–300.

    PubMed  CAS  Google Scholar 

  • Miledi R. and Szczepamak A. C (1975) Effect of Dendroaspis neurotoxins on synaptic transmission in the spinal cord of the frog. Proc. Roy. Soc. Land. B190, 267–274.

    Google Scholar 

  • Morley B. J. and Kemp G. E. (1981) Characterization of a putative nicotinic acetylcholine receptor in mammalian brain. Brain Res. Rev. 3, 81–104.

    CAS  Google Scholar 

  • Morris C. E., Wong B S., Jackson M. B., and Lecar H. (1983) Single-channel currents activated by curare in cultured embryonic rat muscle. J. Neurosci. 3, 2525–2531.

    PubMed  CAS  Google Scholar 

  • Neubig R. R. and Cohen J. B. (1979) Equilibrium binding of 3H-tubocurarine and 3H-acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand interactions. Biochemistry 18, 5464–5475.

    PubMed  CAS  Google Scholar 

  • Neubig R. R. and Cohen J. B. (1980) Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times. Biochemistry 19, 2770–2779.

    PubMed  CAS  Google Scholar 

  • Oberg S. G. and Kelly R. B. (1976) The mechanism of β-bungarotoxin action I. Modification of transmitter release at the neuromuscular junction. J. Neurobiol 7, 129–141.

    PubMed  CAS  Google Scholar 

  • Olivera B. M., Gray W. R., Zeikus R., Mclntosh J M., Varga J., Rivier J., de Santos V., and Cruz L. J. (1985) Peptide neurotoxins from fishhunting cone snails. Science 230, 1338–1343.

    PubMed  CAS  Google Scholar 

  • Ono J K. and Salvaterra P. M. (1981) Snake α-toxin effects on cholinergic and noncholinergic responses of Aplysia cahfornica. J. Neurosci. 1, 259–270.

    PubMed  CAS  Google Scholar 

  • Ornberg R. L., Smyth Jr., T., and Benton A. W. (1976) Isolation of a neurotoxin with a presynaptic action from the venom of the black widow spider (Latrodectus mactans, Fabr.) Toxicon 14, 329–333.

    PubMed  CAS  Google Scholar 

  • Othman I. B., Spokes J. W., and Dolly J. O. (1982) Preparation of neurotoxic 3H-β-bungarotoxin: Demonstration of saturable binding to brain synapses and its inhibition by toxin I. Eur. J. Biochem. 128, 267–276.

    PubMed  CAS  Google Scholar 

  • Paggi P and Rossi A (1971) Effect of Latrodectus mactans tredeomguttatus venom on sympathetic ganglion isolated in vitro Toxicon 9, 265–269.

    PubMed  CAS  Google Scholar 

  • Patrick J. and Stallcup W B (1977a) α-Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line. J Biol. Chem. 252, 8629–8633.

    PubMed  CAS  Google Scholar 

  • Patrick J and Stallcup W. B. (1977b) Immunological distinction between acetylcholine receptor and the α-bungarotoxin-binding component on sympathetic neurons. Proc Natl Acad Sci USA 74, 4689–4692

    PubMed  CAS  Google Scholar 

  • Perri V., Sacchi O., and Casella C (1970) Electrical properties and synaptic connections of the sympathetic neurons in the rat and guinea-pig superior cervical ganglion. Pflugers Arch. 314, 40–54.

    PubMed  CAS  Google Scholar 

  • Popot J-L. and Changeux J.-P. (1984) Nicotinic receptor of acetylcholine: structure of an ohgomeric integral membrane protein Phystol. Rev 64, 1162–1239.

    CAS  Google Scholar 

  • Pumplin D W. and McClure W O. (1977) The release of acetylcholine elicited by extracts of black widow spider glands: Studies using rat superior cervical ganglia and inhibitors of electrically stimulated release. J. Pharmacol Exp. Ther. 201, 312–319

    PubMed  CAS  Google Scholar 

  • Quik M. and Lamarca M. V. (1982) Blockade of transmission in rat sympathetic ganglia by a toxin which co-purifies with α-bungarotoxin. Brain Res 238, 385–399

    PubMed  CAS  Google Scholar 

  • Raftery M. A., Conti-Tronconi B. M, Dunn S. M. J., Crawford R. D., and Middlemas D (1984) The nicotinic acetylcholine receptor: Its structure, multiple binding sites and cation transport properties. Fund Appl Toxicol 4, S34–S51.

    CAS  Google Scholar 

  • Ravdin P M. and Berg D K (1979) Inhibition of neuronal acetylcholine sensitivity by α-toxins from Bungarus multicinctus venom. Proc Natl. Acad. Sci. USA 76, 2072–2076.

    PubMed  CAS  Google Scholar 

  • Rehm H., Schafer T., and Betz H. (1982) β-Bungarotoxin-induced cell-death of neurons in chick retina Brain Res 250, 309–319.

    PubMed  CAS  Google Scholar 

  • Rosecrans J. A. (1979) Nicotine as a Discriminative Stimulus to Behavior: Its Characterization and Relevance to Smoking Behavior, in Cigarette Smoking as a Dependence Process (Krasnegor N. A., ed.) National Institute on Drug Abuse, Department of Health, Education and Welfare Publication No. (ADM) 79-800, US Govt. Printing Office, Washington, DC

    Google Scholar 

  • Ross M E, Park D. H., Teitelman G., Pickel V. M., Reis D. J., and Joh T. H. (1983) Immunohistochemical localization of choline acetyltransferase using a monoclonal antibody. A radioautographic method. Neuroscience 10, 907–922.

    PubMed  CAS  Google Scholar 

  • Rowell P. P. and Chiou C. Y (1976) Pharmacological studies of N,-N- dimethylaminoethyl chloroacetate and N, N-dimethylaminoethyl acrylate as inhibitors of choline acetyltransferase in isolated skeletal and smooth muscle preparations. Pharmacology 14, 339–350.

    PubMed  CAS  Google Scholar 

  • Saiani L, Kageyama H, Conti-Tronconi B. M, and Guidotti A. (1984) Purification and characterization of a bungarotoxin polypeptide which blocks nicotinic receptor function in primary culture of adrenal chromaffin cells. Mol Pharmacol. 25, 327–334.

    PubMed  CAS  Google Scholar 

  • Sattelle D. B., Harrow I. D., Hue B., Pelhate M., Gepner J. I., and Hall L. M. (1983) Alpha-bungarotoxin blocks excitatory synaptic transmission between cereal sensory neurones and giant interneurone 2 of the cockroach, Periplaneta americana. J Exp. Biol 107, 473–489.

    CAS  Google Scholar 

  • Schmidt J., Hunt S, and Polz-Tejera G. (1980) Nicotinic Receptors of the Central and Autonomic Nervous System, in Neurotransmitters, Receptors and Drug Action (Essman W B., ed.) Spectrum, Jamaica, New York.

    Google Scholar 

  • Schwartz R. D., McGee Jr., R., and Kellar K J. (1982) Nicotinecholinergic receptors labeled by [3H]-acetylcholine in rat brain. Mol. Pharmacol 22, 56–62.

    PubMed  CAS  Google Scholar 

  • Shaker N., Eldefrawi A. T., Aguayo L. G., Warnick J. E., Albuquerque E. x., and Eldefrawi M. E. (1982) Interactions of d-tubocurarme with the nicotinic acetylcholine receptor/channel molecule. J Pharmacol Exp. Ther 220, 172–177.

    PubMed  CAS  Google Scholar 

  • Simpson L. L. (1973) The interaction between divalent cations and botuli-num toxin type A in the paralysis of the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacol. 12, 165–176

    CAS  Google Scholar 

  • Simpson L. L. (1974) Studies on the binding of botulinum toxin type A to the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacol 13, 683–691.

    CAS  Google Scholar 

  • Simpson L. L. (1977) The effects of acute and chronic botulinum toxin treatment on receptor number, receptor distribution and tissue sensitivity in rat diaphragm. J. Pharmacol Exp. Ther. 200, 343–351.

    PubMed  CAS  Google Scholar 

  • Simpson L L. (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J. Pharmacol. Exp. Ther 212, 16–21

    PubMed  CAS  Google Scholar 

  • Smith J. C, Cavallito C J., and Foldes F. F. (1967) Choline acetyltransferase inhibitors · A group of styryl-pyridine analogs Biochem Pharmacol. 16, 2438–2441.

    PubMed  CAS  Google Scholar 

  • Snyder S. H., Chang K. J., Kuhar M J., and Yamamura H. I (1975) Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed. Proc. 34, 1915–1921.

    PubMed  CAS  Google Scholar 

  • Sorenson E. M, Culver P., and Chiappinelli V. A. (1987) Lophotoxin: Selective blockade of nicotinic transmission in autonomic ganglia by a coral neurotoxin. Neuroscience 20, 875–884.

    PubMed  CAS  Google Scholar 

  • Spitzer N. (1972) Miniature endplate potentials at mammalian neuro-muscular junctions poisoned by botulinum toxin. Nature New Biol 237, 26–27.

    PubMed  CAS  Google Scholar 

  • Strong P. N., Goerke J., Oberg S. G., and Kelly R. B. (1976) β-Bungarotoxm, a presynaptic toxin with enzymatic activity. Proc. Natl Acad. Sci USA 73, 178–182.

    PubMed  CAS  Google Scholar 

  • Stroud R. M. (1983) Acetylcholine receptor structure Neurosci Comm 1, 124–133

    Google Scholar 

  • Strydom D. J. (1979) The Evolution of Toxins Found in Snake Venoms, in Snake Venoms, Handbook of Experimental Pharmacology vol. 52 (Lee C. Y., ed.) Springer-Verlag, Berlin.

    Google Scholar 

  • Taylor P. (1985a) Cholinergic Agonists, in The Pharmacological Basis of Therapeutics (Gillman A. G., Goodman L S., Rall T. W., and Murad F, eds.) Macmillan, New York.

    Google Scholar 

  • Taylor P. (1985b) Anticholinesterase Agents, in The Pharmacological Basis of Therapeutics (Gilman A G., Goodman L. S., Rall T. W., and Murad F., eds.) Macmillan, New York

    Google Scholar 

  • Taylor P. (1985c) Ganglionic Stimulating and Blocking Agents, in The Pharmacological Basts of Therapeutics (Gillman A. G., Goodman L. S., Rall T. W., and Murad F., eds.) Macmillan, New York

    Google Scholar 

  • Taylor P. (1985d) Neuromuscular Blocking Agents, in The Pharmacological Basis of Therapeutics (Gillman A. G., Goodman L. S., Rall T. W., and Murad F., eds.) Macmillan, New York.

    Google Scholar 

  • Toldi J., Joo F., Adam G., Feher O., and Wolff J R. (1983) Inhibition of synaptic transmission in the rat superior cervical ganglion by in-tracarotid infusion of bungarotoxin. Brain Res. 262, 323–327.

    PubMed  CAS  Google Scholar 

  • Tse C. K., Dolly J. O., Hambleton P., Wray D, and Melling J. (1982) Preparation and characterization of homogenous neurotoxin type A from Clostridium botuhnum Eur J. Biochem. 122, 493–500.

    PubMed  CAS  Google Scholar 

  • Tse C. K, Wray D, Melling J., and Dolly J. O (1986) Actions of β-bungarotoxin on spontaneous release of transmitter at muscle end-plates treated with botulinum toxin Toxicon 24, 123–130

    PubMed  CAS  Google Scholar 

  • Tzeng M.-C. and Siekevitz P. (1978) The effect of the purified major protein factor (α-latrotoxin) of black widow spider venom on the release of acetylcholine and norepinephnne from mouse cerebral cortex slices. Brain Res. 139, 190–196.

    PubMed  CAS  Google Scholar 

  • Vickroy T W., Watson M, Yamamura H I., and Roeske W. R. (1984). Agonist binding to multiple muscarinic receptors. Fed. Proc. 43, 2785–2790

    PubMed  CAS  Google Scholar 

  • Warnick J E., Albuquerque E x., and Diniz C. R. (1976) Electrophysio-logical observations on the action of the purified scorpion venom, tityustoxin, on nerve and skeletal muscle of the rat. J. Pharmacol. Exp. Ther. 198, 155–167.

    PubMed  CAS  Google Scholar 

  • Weber K. and Osborn M. (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel elec-trophoresis. J Biol Chem 244, 4406–4412.

    PubMed  CAS  Google Scholar 

  • Werner N. (1985) Atropine, Scopolamine, and Related Antimuscarinic drugs, in The Pharmacological Basis of Therapeutics (Gilman A. G., Goodman L. S., Rall T. W., and Murad F, eds.) Macmillan, New York.

    Google Scholar 

  • Wolf K M., Ciarleglio A., and Chiappinelli V A. (1988) Kappabungarotoxin: binding of a neuronal nicotinic receptor antagonist to chick optic lobe and skeletal muscle Brain Res 439, 249–258.

    PubMed  CAS  Google Scholar 

  • Zaimis E. (1976) Neuromuscular Junction, Springer-Verlag, Berlin.

    Google Scholar 

  • Ziskind L. and Dennis M. J (1978) Depolarizing effect of curare on embryonic rate muscles Nature 276, 622–623

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this protocol

Cite this protocol

Chiappinelli, V.A. (1989). Toxins Affecting Cholinergic Neurons. In: Boulton, A.A., Baker, G.B., Juorio, A.V. (eds) Drugs as Tools in Neurotransmitter Research. Neuromethods, vol 12. Humana Press. https://doi.org/10.1385/0-89603-122-5:103

Download citation

  • DOI: https://doi.org/10.1385/0-89603-122-5:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-122-7

  • Online ISBN: 978-1-59259-617-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics