Toxins Affecting Cholinergic Neurons

  • Vincent A. Chiappinelli
Part of the Neuromethods book series (NM, volume 12)


Acetylcholine (ACh) is known to be a neurotransmitter in the nervous systems of vertebrates and invertebrates. The fact that numerous plants, animals, and bacteria have evolved toxins that selectively interfere with cholinergic transmission is an indication of the relative importance of ACh as a neurotransmitter substance. In order for a toxin to be biologically effective, it must produce a sustained action at low concentrations. The high potency and selectivity of these toxins have allowed them to play a crucial role in understanding ACh’s physiological effects and in identifying the properties of the enzymes and receptors subserving cholinergic neurotransmission. For example, snake venom α-neurotoxins have been valuable tools in identifying and purifying nicotinic acetylcholine receptors. In fact, the availability of the α-neurotoxins is a major reason the vertebrate muscle nicotinic receptor is currently the best characterized of all neurotransmitter receptors.


Botulinum Toxin Muscarinic Receptor Nicotinic Receptor Cholinergic Neuron Snake Venom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe T., Alema S., and Miledi R. (1977) Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur J Biochem. 80, 1–12PubMedGoogle Scholar
  2. Albuquerque E x, Barnard E A., Chiu T H, Lapa A. J, Dolly J O, Jansson S.-E, Daly J., and Witkop B. (1973) Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: Evidence from specific toxin reactions. Proc Natl. Acad Sci. USA 70, 949–953.PubMedGoogle Scholar
  3. Ambache N. (1951) A further survey of the action of Clostndium botuhnum toxin upon different types of autonomic nerve fibre. J. Physiol. (Lond.) 113, 1–17.Google Scholar
  4. Atchison W. D., Narahashi T, and Vogel S. M. (1984) Endplate blocking actions of lophotoxin. Br J Pharmacol. 82, 667–672.PubMedGoogle Scholar
  5. Bigalke H. and Habermann E (1980) Blockade by tetanus and botulinum A toxin of postganglionic cholinergic nerve endings in the myenteric plexus Naunyn Schmiedebergs Arch. Pharmacol. 312, 255–263.PubMedGoogle Scholar
  6. Birdsall N. J. M. and Hulme E. C. (1983) Muscannic receptor subclasses. Trends Pharmacol Sci 6, 459–463.Google Scholar
  7. Birks R. and Macintosh F. C (1961) Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem Phys. 39, 787–827.Google Scholar
  8. Blanchard S. G., Quast U., Reed K., Lee T., Schimerlik M. I., Vandlen R., Claudio T., Strader C. D., Moore H-P. H., and Raftery M. A. (1979) Interaction of [125I]-α-bungarotoxin with acetylcholine receptor from Torpedo californica Biochemistry 18, 1875–1883.Google Scholar
  9. Brown D A (1979) Neurotoxins and the Ganglionic (C6) Type of Nicotinic Receptor, in Advances in Cytopharmacology vol. 3 Neurotoxins: Tools in Neurobiology (Ceccarelli B. and Clementi F., eds.) Raven, New York.Google Scholar
  10. Brown D. A., Garthwaite J., Hayashi E., and Yamada S. (1976) Action of surugatoxin on nicotinic receptors in the superior cervical ganglion of the rat. Br J Pharmacol. 58, 157–159.PubMedGoogle Scholar
  11. Budai D., Ricny J., Kasa P., and Tucek S. (1986) 4-(l-Naphthylvinyl) pyndine decreases brain acetylcholine in vivo, but does not alter the level of acetyl-CoA J Neurochem. 46, 990–992.PubMedGoogle Scholar
  12. Burden S. J., Hartzell H. C, and Yoshikami D (1975) Acetylcholine receptors at neuromuscular synapses: Phylogenetic differences detected by snake α-neurotoxins. Proc. Natl. Acad. Sci. USA 72, 3245–3249.PubMedGoogle Scholar
  13. Carson V. G., Jenden D. J., and Cho A. K. (1972) The in vivo effects of some in vitro choline acetyltransferase inhibitors. Proc. West. Pharmacol. Soc 15, 127–131.Google Scholar
  14. Catterall W. A., Hartshorne R. P., and Beneski D. A. (1982) Molecular properties of neurotoxin receptor sites associated with solium channels from mammalian brain. Toxicon 20, 27–40PubMedGoogle Scholar
  15. Ceccarelli B. and Hurlbut W P. (1975) The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction. J. Physiol. (Lond.) 247, 163–188.Google Scholar
  16. Chadwick L. E. (1963) Actions on Insects and Other Invertebrates, in Cholinesterases and Anticholinesterase Agents vol. 15 Handbuch der Expenmentellen Pharmakologie (Koelle G. B., ed.) Springer-Verlag, Berlin.Google Scholar
  17. Chang C C. and Huang M. C. (1974) Comparison of the presynaptic actions of botuhnum toxin and β-bungarotoxin on neuromuscular transmission. Naunyn Schmiedebergs Arch. Pharmacol. 282, 129–142.PubMedGoogle Scholar
  18. Chang C. C, Chen T. F., and Lee C. Y (1973) Studies on the presynaptic effect of β-bungarotoxin on neuromuscular transmission J. Pharmacol. Exp. Ther 184, 339–345PubMedGoogle Scholar
  19. Changeux J. P., Kasai M, and Lee C Y (1970) Use of a snake venom toxin to characterize the cholinergic receptor protein Proc. Natl Acad Sci. USA 67, 1241–1247.PubMedGoogle Scholar
  20. Chiappinelli V. A. (1982) Blockade o ganglionic transmission during synaptogenesis decreases α-bungarotoxin binding in the chick ciliary ganglion and iris Dev. Brain Res 5, 118–121.Google Scholar
  21. Chiappinelh V. A. (1983) Kappa-bungarotoxin · A probe for the neuronal nicotmic receptor in the avian ciliary ganglion Brain Res 277, 9–22Google Scholar
  22. Chiappinelli V. A. (1986) Actions of snake venom toxins on neuronal nicotmic receptors and other neuronal receptors. Pharmacol Ther. 31, 1–32.Google Scholar
  23. Chiappinelli V. A. and Dryer S. E. (1984) Nicotmic transmission in sympathetic ganglia. Blockade by the snake venom neurotoxin kappabungarotoxin. Neurosci Lett. 50, 239–244.PubMedGoogle Scholar
  24. Chiappinelli V. A. and Giacobini E. (1978) Time course of appearance of α-bungarotoxin binding sites during development of chick ciliary ganglion and iris. Neurochem Res. 3, 465–478.PubMedGoogle Scholar
  25. Chiappinelli V. A. and Lee J. C. (1985) Kappa-bungarotoxin Self-association of a neuronal nicotinic receptor probe J Biol. Chem. 260, 6182–6186.PubMedGoogle Scholar
  26. Chiappinelli V. A., Cohen J. B., and Zigmond R E. (1981) The effects of α-and β-neurotoxins from the venoms of various snakes on transmission in autonomic ganglia Brain Res. 211, 107–126.PubMedGoogle Scholar
  27. Chiappinelli V A., Wolf K., and Ciarleglio A. (1985) Kappa-bungarotoxin Binding of a neuronal nicotmic receptor probe to chick optic lobe and skeletal muscle. Soc. Neurosci Abs. 11, 92.Google Scholar
  28. Chiappinelli V. A., Wolf K., DeBin J, and Holt I. L. (1986) Kappa-flavitoxin: Purification of a neuronal nicotinic receptor probe that is structurally related to kappa-bungarotoxin. Fed. Proc 45, 923.Google Scholar
  29. Clark A. W., Hurlbut W. P., and Mauro A. (1972) Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom. J Cell. Biol. 52, 1–14PubMedGoogle Scholar
  30. Clarke P. B. S., Schwartz R D., Paul S. M., Pert C. B., and Pert A. (1985) Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]α-bungarotoxin. J. Neurosci. 5, 1307–1315.PubMedGoogle Scholar
  31. Colquhoun D. (1979) The Link Between Drug Binding and Response: Theories and Observations, in The Receptors: A Comprehensive Treatise vol. I (O’Brien R. D., ed.) Plenum, New York.Google Scholar
  32. Conti-Tronconi B M, Dunn S. M. J., Barnard E. A., Dolly J O, Lai F. A., Ray N, and Raftery M. A. (1985) Brain and muscle nicotinic acetyl-choline receptors are different but homologous proteins. Proc. Natl Acad. Sci. USA 82, 5208–5212.PubMedGoogle Scholar
  33. Cremo C. and Shimerhk M. I (1983) Histrionicotoxin and alkylguanidine interactions with the solubilized and membrane-bound muscarinic acetylcholine receptor from porcine atria. Arch. Biochem. Biophys. 224, 506–514.PubMedGoogle Scholar
  34. Crowcroft P. J, Holman M. E., and Szurszewski J. H. (1971) Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig J Phystol (Lond.) 219, 443–461.Google Scholar
  35. Crowcroft P. J. and Szurszewski J. H. (1971) A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J. Physiol. (Lond.) 219, 421–441Google Scholar
  36. Cull-Candy S G, Lundh H., and Thesleff S. (1976) Effects of botulium toxin on neuromuscular transmission in the rat. J. Physiol. (Lond.) 260, 177–203.Google Scholar
  37. Culver P. and Jacobs R S. (1981) Lophotoxin: A neuromuscular acting toxin from the sea whip (Lophogorgia rigida). Toxicon 19, 825–8PubMedGoogle Scholar
  38. Culver P., Fenical W, and Taylor P. (1984) Lophotoxin irreversibly inactivates the nicotinic acetylcholine receptor by preferential association at one of the two primary agonist sites. J Biol. Chem. 259, 3763–3770PubMedGoogle Scholar
  39. David J. A. and Sattelle D. B (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta amencana). J. Exp. Biol 108, 119–1Google Scholar
  40. Dolly J. O., Black J., Williams R S., and Melling J. (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307, 457–460.PubMedGoogle Scholar
  41. Dombrowski A. M., Jerkins A. A., and Kauffman F. C. (1983) Muscannic receptor binding and oxidative enzyme activities in the adult rat superior cervical ganglion: Effects of 6-hydroxydopamine and nerve growth factor. J. Neurosci 3, 1963–1970.PubMedGoogle Scholar
  42. Dryer S E and Chiappinelli V. A. (1983) Kappa-bungarotoxin: An in-tracellular study demonstrating blockade of neuronal nicotinic receptors by a snake neurotoxin. Brain Res. 289, 317–321.PubMedGoogle Scholar
  43. Dryer S. E. and Chiappinelli V. A (1985a) Substance P depolarizes nerve terminals in an autonomic ganglion. Brain Res 336, 190–194.PubMedGoogle Scholar
  44. Dryer S. E and Chiappinelli V A. (1985b) An intracellular study of synaptic transmission and dendritic morphology in sympathetic neurons of the chick embryo Dev. Brain Res 22, 99–111.Google Scholar
  45. Dryer S E and Chiappinelli V A (1985c) Properties of choroid and ciliary neurons in the avian ciliary ganglion and evidence for substance P as a neurotransmitter. J Neurosci 5, 2654–2661.PubMedGoogle Scholar
  46. Ehlert F. J., Roeske W. R., and Yamamura H. I. (1981) Muscarinic receptor: Regulation by guanine nucleotides, ions, and N-ethylmaleimide. Fed. Proc 40, 153–159.PubMedGoogle Scholar
  47. Eldefrawi A T., Eldefrawi M E, Albuquerque E. x., Oliveira A C, Mansour N., Adler M., Daly J. W., Brown G. B, Burgermeister W., and Witkop B. (1977) Perhydrohistrionicotoxin A potential ligand for the ion conductance modulator of the acetylcholine receptor. Proc Natl. Acad. Sci USA 74, 2172–2176.PubMedGoogle Scholar
  48. Fairbanks G., Steck T L, and Wallach D F. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane Biochemistry 10, 2606–2617PubMedGoogle Scholar
  49. Fenical W., Okuda R. K., Bandurraga M. W, Culver P, and Jacobs R. S. (1981) Lophotoxin: A novel neuromuscular toxin from Pacific sea whips of the genus Lophogorgia. Science 212, 1512–1514.Google Scholar
  50. Fertuck H. C and Salpeter M M (1976) Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-α-bungarotoxin binding at mouse neuromuscular junctions J Cell Biol 69, 144–158PubMedGoogle Scholar
  51. Finkelstein A., Rubin L. L., and Tzeng M.-C. (1976) Black widow spider venom: Effect of purified toxin on lipid bilayer membranes Science 193, 1009–1011.PubMedGoogle Scholar
  52. Freeman J. A., Schmidt J. T., and Oswald R E. (1980) Effect of α-bungarotoxin on retinotectal synaptic transmission in the goldfish and the toad. Neuroscience 5, 929–942PubMedGoogle Scholar
  53. Frontali N., Ceccarelli B, Gorio A., Mauro A., Siekevitz P., Tzeng M.-C, and Hurlbut W P. (1976) Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J. Cell Biol 68, 462–479.PubMedGoogle Scholar
  54. Frontali N., Granata F., Traina M E., and Bellino M. (1973) Catecholamine depleting effect of black widow spider venom on fibres innervating different guinea-pig tissues. Experentia 29, 1525–1527Google Scholar
  55. Gage P. W. and McBurney R. N. (1975) Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum of acetylcholine at the toad neuromuscular junction J. Physiol. (Lond.) 244, 385–407Google Scholar
  56. Gepner J. I., Hall L M., and Sattelle D. B. (1978) Insect acetylcholine receptors as a site of insecticide action. Nature 276, 188–190.PubMedGoogle Scholar
  57. Gil D. W. and Wolfe B. B. (1985) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J. Pharmacol. Exp. Ther. 232, 608–616.PubMedGoogle Scholar
  58. Grant G. A and Chiappinelli V. A. (1985) Kappa-bungarotoxin: Complete amino acid sequence of a neuronal nicotinic receptor probe. Biochemistry 24, 1532–1537.PubMedGoogle Scholar
  59. Grant G. A., Frazier M. W., and Chiappinelli V. A. (1988) The amino acid sequence of kappa-flavitoxin: establishment of a new family of snake venom neurotoxins. Biochemistry 27, 3794–3798.PubMedGoogle Scholar
  60. Gray W. R., Luque A., Olivera B. M., Barrett J., and Cruz L. J. (1981) Peptide toxins from Conus geographus venom. J. Biol. Chem 256, 4734–4740.PubMedGoogle Scholar
  61. Gundersen C B. (1980) The effects of botulmum toxin on the synthesis, storage and release of acetylchohne. Prog. Neurobiol. 14, 99–119.PubMedGoogle Scholar
  62. Gundersen C. B., Katz B., and Miledi R. (1982) The antagonism between botulmum toxin and calcium in motor nerve terminals. Proc. Roy. Soc. Lond. B216, 369–376.Google Scholar
  63. Hammer R. and Giachetti A. (1982) Muscarmic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 31, 2991–2998.PubMedGoogle Scholar
  64. Hammer R., Berne C. P., Birdsall N. J. M., Burgen A. S. V., and Hulme E. C. (1980) Pirenzepine distinguishes between different subclasses of muscarmic receptors. Nature 283, 90–92.PubMedGoogle Scholar
  65. Hanley M R. and Emson P. C. (1979) Neuronal degeneration induced by stereotaxic injection of β-bungarotoxin into rat brain. Neurosci. Lett 11, 143–148.PubMedGoogle Scholar
  66. Hanley M. R., Eterovic V. A, Hawkes S. P, Hebert A. J., and Bennett E. L. (1977) Neurotoxins of Bungarus multicinctus venom. Purification and partial characterization Biochemistry 16, 5840–5849PubMedGoogle Scholar
  67. Harris, A. J. and Miledi R. (1971) The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 217, 497–515.Google Scholar
  68. Haubrich D. R. and Wang P. F. L. (1976) Inhibition of acetylchohne synthesis by juglone and 4-(l-naphthylvinyl) pyridine. Biochem. Pharmacol. 25, 669–672PubMedGoogle Scholar
  69. Hayashi E. and Yamada S. (1975) Pharmacological studies on surugatoxin, the toxic principle from Japanese ivory mollusc (Babylonia japonica). Br J. Pharmacol. 53, 207–2PubMedGoogle Scholar
  70. Hayashi E., Isogai M., Kagawa Y., Takayanagi N, and Yamada S. (1984) Neosurugatoxin, a specific antagonist of nicotinic acetylcholine receptors. J. Neurochem. 42, 1491–1494.PubMedGoogle Scholar
  71. Hirokawa N. (1978) Characterization of various nervous tissues of the chick embryos through responses to chronic application and immunocytochemistry of β-bungarotoxin J. Comp Neurol. 180, 449–466.PubMedGoogle Scholar
  72. Hirokawa N. and Heuser J. E (1981) Structural evidence that botulinum toxin blocks neuromuscular transmission by impairing the calcium influx that normally accompanies nerve depolarization J Cell Biol 88, 160–171.PubMedGoogle Scholar
  73. Hoover D. B, Muth E A, and Jacobowitz D A. (1978) A mapping of the distribution of acetylcholine, choline acetyltransferase and acetyl-cholinesterase in discrete areas of rat brain. Brain Res 153, 295–306.PubMedGoogle Scholar
  74. Horn J. P. and Dodd J. (1981) Monosynaptic muscannic activation of K+ conductance underlies the slow inhibitory postsynaptic potential in sympathetic ganglia Nature 292, 625–627.PubMedGoogle Scholar
  75. Howard B. D. and Truog R (1977) Relationship between the neurotoxicity and phospholipase A activity of β-bungarotoxin Biochemistry 16, 122–125.PubMedGoogle Scholar
  76. Jones S W and Sumikawa K (1981) Quinuclidinyl benzilate binding in house fly heads and rat brain. J Neurochem. 36, 454–459.PubMedGoogle Scholar
  77. Karczmar A. G (1967) Pharmacologic, Toxicologic, and Therapeutic Properties of Anticholinesterase Agents, in Physiological Pharmacology vol. 3 The Nervous System part C Autonomic Nervous System Drugs (Root W. S. and Hofmann F. G., eds) Academic, New York.Google Scholar
  78. Karlsson E. (1979) Chemistry of Protein Toxins in Snake Venoms, in Snake Venoms, Handbook of Experimental Pharmacology vol. 52 (Lee C Y., ed.) Springer-Verlag, Berlin.Google Scholar
  79. Kato G. and Changeux J.-P (1976) Studies on the effect of histrionicotoxin on the monocellular electroplax from Electrophorus electncus and on the binding of 3H-acetylcholine to membrane fragments from Torpedo marmorata. Mol Pharmacol 12, 92–100.PubMedGoogle Scholar
  80. Kato A. C, Pinto J. E B., Glavinovic M, and Collier B. (1977) Action of a β-bungarotoxin on autonomic ganglia and adrenergic neurotransmission. Can. J Physiol Pharmacol 55, 574–584.PubMedGoogle Scholar
  81. Katz B. and Miledi R (1978) A re-examination of curare action at the motor endplate. Proc Roy. Soc Lond. B203, 119–133Google Scholar
  82. Kawa K. and Roper S. (1984) On the two subdivisions and intrinsic synaptic connexions in the submandibular ganglion of the rat. J Physiol. (Lond) 346, 301–320Google Scholar
  83. Kehoe J. S. (1972a) Three acetylcholine receptors in Aplysia neurones. J. Physiol (Lond.) 225, 115–146Google Scholar
  84. Kehoe J. S. (1972b) The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia J. Physiol. (Lond.) 225, 147–172.Google Scholar
  85. Kehoe J., Sealock R., and Bon C. (1976) Effects of α-toxins from Bungarus multicinctus and Bungarus caeruleus on cholinergic responses in Aplysia neurons. Brain Res. 107, 527–540.PubMedGoogle Scholar
  86. Kemp G., Bentley L., McNamee M. G., and Morley B. J. (1985) Purification and characterization of the α-bungarotoxin binding protein from rat brain. Brain Res 347, 274–283.PubMedGoogle Scholar
  87. Kessler J. A. (1985) Parasympathetic, sympathetic, and sensory interactions in the iris: Nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo J Neurosci 5, 2719–2725.PubMedGoogle Scholar
  88. Kobayashi R. M., Palkovits M., Hruska R E., Rothschild R., and Yamamura H. I (1978) Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res 154, 13–23.PubMedGoogle Scholar
  89. Kochva E., Nakar O, and Ovadia M. (1983) Venom toxins: Plausible evolution from digestive enzymes. Am Zool. 23, 427–430.Google Scholar
  90. Koketsu K. and Yamada M. (1982) Presynaptic muscarinic receptors inhibiting active acetylcholine release in the bullfrog sympathetic ganglion. Br J Pharmacol. 77, 75–82.PubMedGoogle Scholar
  91. Kondo K., Narita K., and Lee C-Y. (1978) Amino acid sequences of the two polypeptide chains in β1-bungarotoxin from the venom of Bungarus multianctus J. Biochem. 83, 101–115.PubMedGoogle Scholar
  92. Kondo K., Toda H., Narita K., and Lee C.-Y. (1982a) Amino acid sequence of β2-bungarotoxin from Bungarus multicinctus venom The amino acid substitutions in the B chains. J. Biochem. 91, 1519–1530.PubMedGoogle Scholar
  93. Kondo K., Toda H, Narita K., and Lee C.-Y. (1982b) Amino acid sequences of three β-bungarotoxins (β3-, β4-, and β5-bungarotoxms) from Bungarus multianctus venom Ammo acid substitutions in the A chains. J. Biochem. 91, 1531–1548.PubMedGoogle Scholar
  94. Kosuge T., Zenda H., and Ochiai A. (1972) Isolation and structure de-termination of a new marine toxin, surugatoxin, from the Japanese ivory shell, Babylonia japonica. Tetrahedron Lett. 25, 2545–2548Google Scholar
  95. Krodel E. K., Beckman R. A., and Cohen J. B. (1979) Identification of a local anesthetic binding site in nicotinic postsynaptic membranes isolated from Torpedo marmorata electric tissue. Mol. Pharmacol. 15, 294–312.PubMedGoogle Scholar
  96. Kuffler S. W and Sejnowski T. J. (1983) Peptidergic and muscarinic excitation at amphibian sympathetic synapses J Physiol (Lond.) 341, 257–278.Google Scholar
  97. Kupfer C. (1958) Selective block of synaptic transmission in ciliary gangli-on by type A botulinus toxin in rabbits. Proc. Soc Exp. Biol (New York) 99, 474–476.Google Scholar
  98. Langdon R. B. and Jacobs R. S. (1985) Irreversible autonomic actions by lophotoxin suggest utility as a probe for both C6 and C10 nicotinic receptors. Brain Res. 359, 233–238.PubMedGoogle Scholar
  99. Leonard J. P. and Salpeter M M. (1979) Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J. Cell. Biol 82, 811–819.PubMedGoogle Scholar
  100. Loring R H. and Zigmond R. E (1985) Amino acid sequence of a neurotoxin that blocks neuronal nicotinic receptors and the localization of its binding sites in chick ciliary ganglion Soc Neurosci Abs 11, 92Google Scholar
  101. Loring R. H., Chiappinelli V. A., Zigmond R. E, and Cohen J. B (1984) Characterization of a snake venom neurotoxin which blocks nicotinic transmission in the avian ciliary ganglion Neuroscience 11, 989–999.PubMedGoogle Scholar
  102. Loring R. H, Dahm L. M and Zigmond R. E (1985) Localization of alpha-bungarotoxin binding sites in the ciliary ganglion of the embryonic chick. An autoradiographic study at the light and electron microscopic level. Neuroscience 14, 645–660.PubMedGoogle Scholar
  103. Lundh H, Cull-Candy S G., Leander S, and Thesleff S. (1976) Restoration of transmitter release in botulinum-poisoned skeletal muscle. Brain Res 110, 194–198.PubMedGoogle Scholar
  104. MacKenzie I, Burnstock G., and Dolly J. O. (1982) The effects of purified botulinum neurotoxin type A on chohnergic, adrenergic and nonadrenergic, atropine-resistant autonomic neuromuscular transmission. Neuroscience 7, 997–1006.PubMedGoogle Scholar
  105. Mantione C. R., Fisher A., and Hanin I. (1981) The AF64A-treated mouse-Possible model for central chohnergic hypofunction. Science 213, 579–580.PubMedGoogle Scholar
  106. Marks M. J. and Collins A. C. (1982) Characterization of nicotinic binding in mouse brain and comparison with the binding of α-bungarotoxin and quinuclidinyl benzilate. Mol. Pharmacol. 22, 554–564.PubMedGoogle Scholar
  107. Marshall L. M. (1981) Synaptic localization of α-bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons. Proc Natl Acad. Sci. USA 78, 1948–1952PubMedGoogle Scholar
  108. Martin A. R. and Pilar G (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol (Lond.) 168, 443–463.Google Scholar
  109. McEachern A. E., Margiotta J F., and Berg D K. (1985) Gammaaminobutyric acid receptors on chick ciliary ganglion neurons in vivo and in cell culture J. Neurosa. 5, 2690–2695Google Scholar
  110. McManus O. B. and Musick J R. (1985) Postsynaptic block of frog neuromuscular transmission by conotoxin GI. J Neurosa. 5, 110–116.Google Scholar
  111. Mebs D. (1985) List of Biologically Active Components from Snake Venoms pp. 1–141, Zentrum der Rechtsmedizin, University of Frankfurt, Frankfurt.Google Scholar
  112. Mebs D., Narita K., Iwanaga S, Samejima Y., and Lee C. Y. (1971) Amino acid sequence of α-bungarotoxm from the venom of Bungarus multi-cinctus. Biochem Biophys Res. Commun. 44, 711–716.PubMedGoogle Scholar
  113. Mebs D., Narita K., Iwanaga S., Samejima Y., and Lee C.-Y. (1972) Purification, properties and amino acid sequence of α-bungarotoxin from the venom of Bungarus multicinctus. Hoppe-Seyler’s Z. Physiol. Chem. 353, 243–262.PubMedGoogle Scholar
  114. Meldolesi J., Madeddu L., Torda M., Gatti G., and Niutta E. (1983) The effect of α-latrotoxin on the neurosecretory PC12 cell line: Studies on toxin binding and stimulation of transmitter release. Neuroscience 10, 997–1009.PubMedGoogle Scholar
  115. Mellanby J. and Green J. (1981) How does tetanus toxin act? Neuroscience 6, 281–300.PubMedGoogle Scholar
  116. Miledi R. and Szczepamak A. C (1975) Effect of Dendroaspis neurotoxins on synaptic transmission in the spinal cord of the frog. Proc. Roy. Soc. Land. B190, 267–274.Google Scholar
  117. Morley B. J. and Kemp G. E. (1981) Characterization of a putative nicotinic acetylcholine receptor in mammalian brain. Brain Res. Rev. 3, 81–104.Google Scholar
  118. Morris C. E., Wong B S., Jackson M. B., and Lecar H. (1983) Single-channel currents activated by curare in cultured embryonic rat muscle. J. Neurosci. 3, 2525–2531.PubMedGoogle Scholar
  119. Neubig R. R. and Cohen J. B. (1979) Equilibrium binding of 3H-tubocurarine and 3H-acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand interactions. Biochemistry 18, 5464–5475.PubMedGoogle Scholar
  120. Neubig R. R. and Cohen J. B. (1980) Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times. Biochemistry 19, 2770–2779.PubMedGoogle Scholar
  121. Oberg S. G. and Kelly R. B. (1976) The mechanism of β-bungarotoxin action I. Modification of transmitter release at the neuromuscular junction. J. Neurobiol 7, 129–141.PubMedGoogle Scholar
  122. Olivera B. M., Gray W. R., Zeikus R., Mclntosh J M., Varga J., Rivier J., de Santos V., and Cruz L. J. (1985) Peptide neurotoxins from fishhunting cone snails. Science 230, 1338–1343.PubMedGoogle Scholar
  123. Ono J K. and Salvaterra P. M. (1981) Snake α-toxin effects on cholinergic and noncholinergic responses of Aplysia cahfornica. J. Neurosci. 1, 259–270.PubMedGoogle Scholar
  124. Ornberg R. L., Smyth Jr., T., and Benton A. W. (1976) Isolation of a neurotoxin with a presynaptic action from the venom of the black widow spider (Latrodectus mactans, Fabr.) Toxicon 14, 329–333.PubMedGoogle Scholar
  125. Othman I. B., Spokes J. W., and Dolly J. O. (1982) Preparation of neurotoxic 3H-β-bungarotoxin: Demonstration of saturable binding to brain synapses and its inhibition by toxin I. Eur. J. Biochem. 128, 267–276.PubMedGoogle Scholar
  126. Paggi P and Rossi A (1971) Effect of Latrodectus mactans tredeomguttatus venom on sympathetic ganglion isolated in vitro Toxicon 9, 265–269.PubMedGoogle Scholar
  127. Patrick J. and Stallcup W B (1977a) α-Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line. J Biol. Chem. 252, 8629–8633.PubMedGoogle Scholar
  128. Patrick J and Stallcup W. B. (1977b) Immunological distinction between acetylcholine receptor and the α-bungarotoxin-binding component on sympathetic neurons. Proc Natl Acad Sci USA 74, 4689–4692PubMedGoogle Scholar
  129. Perri V., Sacchi O., and Casella C (1970) Electrical properties and synaptic connections of the sympathetic neurons in the rat and guinea-pig superior cervical ganglion. Pflugers Arch. 314, 40–54.PubMedGoogle Scholar
  130. Popot J-L. and Changeux J.-P. (1984) Nicotinic receptor of acetylcholine: structure of an ohgomeric integral membrane protein Phystol. Rev 64, 1162–1239.Google Scholar
  131. Pumplin D W. and McClure W O. (1977) The release of acetylcholine elicited by extracts of black widow spider glands: Studies using rat superior cervical ganglia and inhibitors of electrically stimulated release. J. Pharmacol Exp. Ther. 201, 312–319PubMedGoogle Scholar
  132. Quik M. and Lamarca M. V. (1982) Blockade of transmission in rat sympathetic ganglia by a toxin which co-purifies with α-bungarotoxin. Brain Res 238, 385–399PubMedGoogle Scholar
  133. Raftery M. A., Conti-Tronconi B. M, Dunn S. M. J., Crawford R. D., and Middlemas D (1984) The nicotinic acetylcholine receptor: Its structure, multiple binding sites and cation transport properties. Fund Appl Toxicol 4, S34–S51.Google Scholar
  134. Ravdin P M. and Berg D K (1979) Inhibition of neuronal acetylcholine sensitivity by α-toxins from Bungarus multicinctus venom. Proc Natl. Acad. Sci. USA 76, 2072–2076.PubMedGoogle Scholar
  135. Rehm H., Schafer T., and Betz H. (1982) β-Bungarotoxin-induced cell-death of neurons in chick retina Brain Res 250, 309–319.PubMedGoogle Scholar
  136. Rosecrans J. A. (1979) Nicotine as a Discriminative Stimulus to Behavior: Its Characterization and Relevance to Smoking Behavior, in Cigarette Smoking as a Dependence Process (Krasnegor N. A., ed.) National Institute on Drug Abuse, Department of Health, Education and Welfare Publication No. (ADM) 79-800, US Govt. Printing Office, Washington, DCGoogle Scholar
  137. Ross M E, Park D. H., Teitelman G., Pickel V. M., Reis D. J., and Joh T. H. (1983) Immunohistochemical localization of choline acetyltransferase using a monoclonal antibody. A radioautographic method. Neuroscience 10, 907–922.PubMedGoogle Scholar
  138. Rowell P. P. and Chiou C. Y (1976) Pharmacological studies of N,-N- dimethylaminoethyl chloroacetate and N, N-dimethylaminoethyl acrylate as inhibitors of choline acetyltransferase in isolated skeletal and smooth muscle preparations. Pharmacology 14, 339–350.PubMedGoogle Scholar
  139. Saiani L, Kageyama H, Conti-Tronconi B. M, and Guidotti A. (1984) Purification and characterization of a bungarotoxin polypeptide which blocks nicotinic receptor function in primary culture of adrenal chromaffin cells. Mol Pharmacol. 25, 327–334.PubMedGoogle Scholar
  140. Sattelle D. B., Harrow I. D., Hue B., Pelhate M., Gepner J. I., and Hall L. M. (1983) Alpha-bungarotoxin blocks excitatory synaptic transmission between cereal sensory neurones and giant interneurone 2 of the cockroach, Periplaneta americana. J Exp. Biol 107, 473–489.Google Scholar
  141. Schmidt J., Hunt S, and Polz-Tejera G. (1980) Nicotinic Receptors of the Central and Autonomic Nervous System, in Neurotransmitters, Receptors and Drug Action (Essman W B., ed.) Spectrum, Jamaica, New York.Google Scholar
  142. Schwartz R. D., McGee Jr., R., and Kellar K J. (1982) Nicotinecholinergic receptors labeled by [3H]-acetylcholine in rat brain. Mol. Pharmacol 22, 56–62.PubMedGoogle Scholar
  143. Shaker N., Eldefrawi A. T., Aguayo L. G., Warnick J. E., Albuquerque E. x., and Eldefrawi M. E. (1982) Interactions of d-tubocurarme with the nicotinic acetylcholine receptor/channel molecule. J Pharmacol Exp. Ther 220, 172–177.PubMedGoogle Scholar
  144. Simpson L. L. (1973) The interaction between divalent cations and botuli-num toxin type A in the paralysis of the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacol. 12, 165–176Google Scholar
  145. Simpson L. L. (1974) Studies on the binding of botulinum toxin type A to the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacol 13, 683–691.Google Scholar
  146. Simpson L. L. (1977) The effects of acute and chronic botulinum toxin treatment on receptor number, receptor distribution and tissue sensitivity in rat diaphragm. J. Pharmacol Exp. Ther. 200, 343–351.PubMedGoogle Scholar
  147. Simpson L L. (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J. Pharmacol. Exp. Ther 212, 16–21PubMedGoogle Scholar
  148. Smith J. C, Cavallito C J., and Foldes F. F. (1967) Choline acetyltransferase inhibitors · A group of styryl-pyridine analogs Biochem Pharmacol. 16, 2438–2441.PubMedGoogle Scholar
  149. Snyder S. H., Chang K. J., Kuhar M J., and Yamamura H. I (1975) Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed. Proc. 34, 1915–1921.PubMedGoogle Scholar
  150. Sorenson E. M, Culver P., and Chiappinelli V. A. (1987) Lophotoxin: Selective blockade of nicotinic transmission in autonomic ganglia by a coral neurotoxin. Neuroscience 20, 875–884.PubMedGoogle Scholar
  151. Spitzer N. (1972) Miniature endplate potentials at mammalian neuro-muscular junctions poisoned by botulinum toxin. Nature New Biol 237, 26–27.PubMedGoogle Scholar
  152. Strong P. N., Goerke J., Oberg S. G., and Kelly R. B. (1976) β-Bungarotoxm, a presynaptic toxin with enzymatic activity. Proc. Natl Acad. Sci USA 73, 178–182.PubMedGoogle Scholar
  153. Stroud R. M. (1983) Acetylcholine receptor structure Neurosci Comm 1, 124–133Google Scholar
  154. Strydom D. J. (1979) The Evolution of Toxins Found in Snake Venoms, in Snake Venoms, Handbook of Experimental Pharmacology vol. 52 (Lee C. Y., ed.) Springer-Verlag, Berlin.Google Scholar
  155. Taylor P. (1985a) Cholinergic Agonists, in The Pharmacological Basis of Therapeutics (Gillman A. G., Goodman L S., Rall T. W., and Murad F, eds.) Macmillan, New York.Google Scholar
  156. Taylor P. (1985b) Anticholinesterase Agents, in The Pharmacological Basis of Therapeutics (Gilman A G., Goodman L. S., Rall T. W., and Murad F., eds.) Macmillan, New YorkGoogle Scholar
  157. Taylor P. (1985c) Ganglionic Stimulating and Blocking Agents, in The Pharmacological Basts of Therapeutics (Gillman A. G., Goodman L. S., Rall T. W., and Murad F., eds.) Macmillan, New YorkGoogle Scholar
  158. Taylor P. (1985d) Neuromuscular Blocking Agents, in The Pharmacological Basis of Therapeutics (Gillman A. G., Goodman L. S., Rall T. W., and Murad F., eds.) Macmillan, New York.Google Scholar
  159. Toldi J., Joo F., Adam G., Feher O., and Wolff J R. (1983) Inhibition of synaptic transmission in the rat superior cervical ganglion by in-tracarotid infusion of bungarotoxin. Brain Res. 262, 323–327.PubMedGoogle Scholar
  160. Tse C. K., Dolly J. O., Hambleton P., Wray D, and Melling J. (1982) Preparation and characterization of homogenous neurotoxin type A from Clostridium botuhnum Eur J. Biochem. 122, 493–500.PubMedGoogle Scholar
  161. Tse C. K, Wray D, Melling J., and Dolly J. O (1986) Actions of β-bungarotoxin on spontaneous release of transmitter at muscle end-plates treated with botulinum toxin Toxicon 24, 123–130PubMedGoogle Scholar
  162. Tzeng M.-C. and Siekevitz P. (1978) The effect of the purified major protein factor (α-latrotoxin) of black widow spider venom on the release of acetylcholine and norepinephnne from mouse cerebral cortex slices. Brain Res. 139, 190–196.PubMedGoogle Scholar
  163. Vickroy T W., Watson M, Yamamura H I., and Roeske W. R. (1984). Agonist binding to multiple muscarinic receptors. Fed. Proc. 43, 2785–2790PubMedGoogle Scholar
  164. Warnick J E., Albuquerque E x., and Diniz C. R. (1976) Electrophysio-logical observations on the action of the purified scorpion venom, tityustoxin, on nerve and skeletal muscle of the rat. J. Pharmacol. Exp. Ther. 198, 155–167.PubMedGoogle Scholar
  165. Weber K. and Osborn M. (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel elec-trophoresis. J Biol Chem 244, 4406–4412.PubMedGoogle Scholar
  166. Werner N. (1985) Atropine, Scopolamine, and Related Antimuscarinic drugs, in The Pharmacological Basis of Therapeutics (Gilman A. G., Goodman L. S., Rall T. W., and Murad F, eds.) Macmillan, New York.Google Scholar
  167. Wolf K M., Ciarleglio A., and Chiappinelli V A. (1988) Kappabungarotoxin: binding of a neuronal nicotinic receptor antagonist to chick optic lobe and skeletal muscle Brain Res 439, 249–258.PubMedGoogle Scholar
  168. Zaimis E. (1976) Neuromuscular Junction, Springer-Verlag, Berlin.Google Scholar
  169. Ziskind L. and Dennis M. J (1978) Depolarizing effect of curare on embryonic rate muscles Nature 276, 622–623PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Vincent A. Chiappinelli
    • 1
  1. 1.Department of PharmacologySt. Louis Unzverszty School of MedicnzeSt. LouisMissourz

Personalised recommendations