Measurement of Regional Cerebral Hemodynamics and Metabolism by Positron Emission Tomography

  • Peter Herscovitch
Part of the Neuromethods book series (NM, volume 8)


The past 40 years have seen progressive advances in the techniques available for measuring the blood flow and metabolism of the human brain These advances have culminated in the development of positron emission tomography (PET), an imaging technique that permits the noninvasive, in vivo study of regional brain physiology and biochemistry.


Positron Emission Tomography Cerebral Blood Flow Positron Emission Tomography Image Positron Emission Tomograph Positron Emission Tomography Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adair T., Karp P., Stein A, Balesy R., and Reivich M (1981) Computer assisted analysis of tomographic images of the brain.J. Comput Assist Tomogr.5, 929–932.PubMedCrossRefGoogle Scholar
  2. Alpert N. M., Eriksson L, Chang J. Y, Bergstrom M, Litton J. E., Correia J A, Bohm C., Ackerman R. H., and Taveras J. M. (1984) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography.J Cereb. Blood Flow Metab.4, 28–34.PubMedCrossRefGoogle Scholar
  3. Baron J C. (1985) Positron tomography in cerebral ischemia.Neuroradiology 27, 509–516.PubMedCrossRefGoogle Scholar
  4. Baron J C., Steinling M., Tanaka T., Cavalheiro E, Soussaline F, and Collard P. (1981) Quantitative measurement of CBF, oxygen extraction fraction (OEF) and CMRO2 with the15O continuous inhalation technique and positron emission tomography (PET) Experimental evidence and normal values in man.J. Cereb. Blood Flow Metab.1(suppl 1), S5–S6.Google Scholar
  5. Beaney R P (1984) Positron emission tomography in the study of human tumorsSer Nucl. Med 14, 324–341CrossRefGoogle Scholar
  6. Bergstrom M., Boethms J., Eriksson L., Greitz T, Ribbe T., and Widen L. (1981) Head fixation device for reproducible position alignment in transmission CT and positron emission tomographyJ Comput Asszst Tomop 5, 136–141.CrossRefGoogle Scholar
  7. Blomqvist G., Bergstrom K., Bergstrom M., Ehrin E., Eriksson L, Garmelms B., Lindberg B, Lilja A, Litton J.-E., Lundmark L., Lundqvist H., Malinborg P, Mostrom U., Nilsson L., Stone-Elander S, and Widen L (1985) Models for11C-Glucose, inThe Metabolism of the Human Brain Studzed with Positron Emission Tomography (Greitz T, Ingvar D H., and Widen L., eds.) Raven, New York.Google Scholar
  8. Brooks R.A. (1982) Alternative formula for glucose utilization using labeled deoxyglucose.J Nucl Med. 23, 538–539PubMedGoogle Scholar
  9. Brooks R. A and DiChiro G. (1976) Principles of computer assisted tomography (CAT) in radiographic and radroisotopic imaging.Phys Med Biol 21, 689–732PubMedCrossRefGoogle Scholar
  10. Brooks R. A., Sank V J., Friauf W S, Leighton S. B., Cascio H. E, and DiChiro G (1981) Design considerations for position emission tomography.IEEE Trans Biomed. Eng BME 28, 158–177.CrossRefGoogle Scholar
  11. Budinger T F, Derenzo S. E, Greenberg W. L., Gullberg G. T., and Huesman R. H. (1978) Quantitative potentials of dynamic emission computed tomography.J Nucl Med. 19, 309–315.PubMedGoogle Scholar
  12. Carson R. E., Huang S.-C., and Green M. V. (1986) Weighted integration method for local cerebral blood flow measurements with positron emission tomographyJ. Cereb. Blood Flow Metab.6, 245–258.PubMedCrossRefGoogle Scholar
  13. Chang J. Y., Duara R, Barker W, Apicella A, and Finn R (1987) Two behavioral states studied in a single PET/FDG procedure theory, method, and preliminary results.J Nucl. Med. 28, 852–860.PubMedGoogle Scholar
  14. Choki J, Greenberg J., and Reivich M. (1983) Regional cerebral glucose metabolism during and after bilateral cerebral ischemia in the gerbil.Stroke 14, 568–574PubMedCrossRefGoogle Scholar
  15. Comar D., Berridge M, Maziere B, and Crouzel C (1982) Radiophar-maceuticals Labelled with Position-Emitting Radioisotopes, inComputed Emission Tomography (El1 P A and Holman B. L., eds) Oxford University Press, New York.Google Scholar
  16. Cunningham V. and Cremer J E. (1985) Current assumptions behind the use of PET scanning for measuring glucose utilization in brainTrends Neurosci.8, 96–99CrossRefGoogle Scholar
  17. Duara R, Margolin R A, Robertson-Tchabo E. A., London E. D, Schwartz M., Renfrew J W., Koziarz B J., Sundaram M., Grady C, Moore A M, Ingvar D H., Sokoloff L., Weingartner H, Kessler R. M, Manning R G, Channing M. A, Cutler N. R., and Rapoport S. I., (1983) Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 yearsBrain 106, 761–775.PubMedCrossRefGoogle Scholar
  18. Duara R., Grady C., Haxby J, Ingvar D, Sokoloff L, Margolin R. A., Manning R. G, Cutler N R, and Rapoport S I (1984) Human brain glucose utilization and cognitive function in relation to ageAnn. Neurol 16, 702–713CrossRefGoogle Scholar
  19. Eichling L. O., Raichle M. E., Grubb R. J, Jr, and Ter-Pogossian M M (1974) Evidence of the limitations of water as a freely diffusible tracer in the brain of the rhesus monkey.Circ Res 35, 358–64.PubMedCrossRefGoogle Scholar
  20. Eichling L. O., Raichle M. E., Grubb R. J., Jr, Larson K. B., and Ter-Pogossian M. M (1975) In vivo determination of cerebral blood volume with radioactive oxygen-15 in the monkey.Circ Res 37, 707–714.PubMedCrossRefGoogle Scholar
  21. Elchling J. O., Higgins C S., and Ter-Pogossian M. M. (1977) Determination of radionuclide concentration with positron CT scanningJ. Nucl Med. 18, 845–847Google Scholar
  22. Fox P. T and Raichle M E (1984) Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomographyJ. Neurophysrol 51, 1109–1120.Google Scholar
  23. Fox P T, Mintun M A, Raichle M. E, and Herscovitch P (1984) A noninvasive approach to quantitative functional brain mapping with H2 15O and positron emission tomographyJ Cereb Blood Flow Metab.4, 329–333PubMedCrossRefGoogle Scholar
  24. Fox P. T., Perimutter J S., and Raichle M E. (1985) A stereotactic method of anatomical localization for positron emission tomographyJ Comput. Assist Tomogr 9, 141–153PubMedCrossRefGoogle Scholar
  25. Frackowiak R S J, Lenzi G-L, Jones T, and Heather J, D (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using15O and positron emission tomography Theory, procedure and normal valuesJ Comput Assist Tomogr 4, 727–736PubMedCrossRefGoogle Scholar
  26. Frackowiak R S J, Pozzilli C., Legg N. J, DuBoulay G H, Marshall J, Lenzi G L, and Jones T (1981) Regional cerebral oxygen supply and utilization in dementia A clinical and physiological study with oxygen-15 and positron tomography.Brain 104, 753–778PubMedCrossRefGoogle Scholar
  27. Gibbs J M, Wise R J S, Leenders K L., and Jones T (1984) Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusionLancet 1, 310–314PubMedCrossRefGoogle Scholar
  28. Gibbs J. M, Wise R J S, Mansfield A O, Ross Russell R W., Thomas D J, and Jones T (1985) Cerebral circulatory reserve before and after surgery for occlusive carotid artery diseaseJ Cereb Blood Flow Metab 5(suppl l), S19–S20Google Scholar
  29. Ginsberg M D and Reivich M (1979) Use of the 2-deoxyglucose method of local cerebral glucose utilization in the abnormal brain: Evaluation of the lumped constant during ischemiaActa Neurol Scand 60(suppl 72), 226–227Google Scholar
  30. Gledde A., Wienhard K, Heiss W-D, Kloster G., Diemer N H, Herholz K, and Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patrents With special reference to the regional estimation of the lumped constantJ Cereb Blood Flow Metab 5, 163–178CrossRefGoogle Scholar
  31. Graham M. M, Bassingthwaighte J. and Chan J. (1985) Validation of compartmental models of deoxyglucose kinetics using data from a distributed model.J Cereb Blood Flow Metab 5(suppl1), S573–S574.Google Scholar
  32. Grubb R. L, Jr, Raichle M. E, Phelps M E., and Ratcheson R. A (1975) Effects of increased intracranial pressure on cerebral blood volume, blood flow and oxygen utilization in monkeys.J Neurosurg 43, 385–398.PubMedCrossRefGoogle Scholar
  33. Grubb R. L., Jr, Raichle M E, Higgins S., and Eichling J O (1978) Measurement of regional cerebral blood volume by emission tomography.Ann Neurol.4, 322–328PubMedCrossRefGoogle Scholar
  34. Hawkins R. A, Phelps M E., Huang S-C., and Kuhl D E. (1981) Effect of ischemia on quanlification of local cerebral glucose metabolic rate in man.J. Cereb Blood Flow Metab 1, 37–51PubMedCrossRefGoogle Scholar
  35. Hawkins R A, Phelps M E, and Huang S.-C. (1986) Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment. Studies in human brain tumors with PETJ Cereb Blood Flow Metab.6, 170–183PubMedCrossRefGoogle Scholar
  36. Herscovitch P and Raichle M E (1983) Effect of tissue heterogeneity on the measurement of cerebral blood flow with the equilibrium C15O2 inhalation techniqueJ Cereb Blood Flow Metab 3, 407–415.PubMedCrossRefGoogle Scholar
  37. Herscovitch P and Raichle M E (1985a) What is the correct value for the brain-blood partition coefficient for water?J Cereb Blood Flow Metab 5, 65–69PubMedCrossRefGoogle Scholar
  38. Herscovitch P. and Raichle M E. (3985b) Effect of tissue heterogeneity on the measurement of regional cerebral oxygen extraction and metabolic rate with positron emission tomographyJ Cereb Blood Flow Metab.5(suppl1), S671–S672.Google Scholar
  39. Herscovitch P, Markham J., and Raichle M E. (1983) Brain blood flow measured with intravenous H2 15O. I. Theory and error analysisJ Nucl. Med. 24, 782–789.PubMedGoogle Scholar
  40. Herscovitch P., Raichle M. E, Kilbourn M R., and Welch M J (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using15O-water and11C-butanol.J. Cereb. Blood Flow Metab., in press.Google Scholar
  41. Herscovitch P, Mintun M A, and Raichle M. E. (1985) Brain oxygen utilization measured with oxygen-15 radiotracers and position emission tomography Generation of metabolic imagesJ Nucl Med 26, 416–417PubMedGoogle Scholar
  42. Herscovitch P., Auchus A. P, Gado M, Chi D., and Raichle M. E (1986) Correction of positron emission tomography data for cerebral atrophyJ Cereb Blood Flow Metab 6, 120–124PubMedCrossRefGoogle Scholar
  43. Hoffman E. J. (1982) Instrumentation for Quantitative Tomographic Determination of Concentrations of Positron-Emitting, Receptor Binding Radiotracers, inReceptor-Binding Radiotracers vol II, (Eckelman W C., ed) CRC, Boca RatonGoogle Scholar
  44. Hoffman E J., Huang S.-C, and Phelps M. E. (1979) Quantitation in positron emission computed tomography. 1 Effect of object sizeJ Comput Assist. Tomogr.3, 299–308.PubMedCrossRefGoogle Scholar
  45. Hoffman E J, Huang S.-C, Phelps M. E, and Kuhl D E (1981) Quantitation in positron emission computed tomography. 4 Effect of accidental coincidences.J Comput Assist. Tomogr.5, 391–400PubMedCrossRefGoogle Scholar
  46. Holden J E, Gatley S J., Nickles R. J, Koeppe R. A, Celesla G. G., and Polcyn R E (1983) Regional Cerebral Blood Flow Measurement with Fluoromethane and Positron Emission Tomography, inPositron Emission Tomography of the Brain (Heiss W.-D. and Phelps M E, eds.) Springer-Verlag, Berlin.Google Scholar
  47. Huang S.-C., Phelps M. E., Hoffman E. J., and Kuhl D. E (1979) A theoretical study of quantitative flow measurements with constant infusion of short-lived isotopes.Phys. Med Biol 24, 1151–1161.PubMedCrossRefGoogle Scholar
  48. Huang S., Phelps M., Hoffman J., Sideris K, Selin C. J., and Kuhl D. E. (1980) Non-invasive determination of local cerebral metabolic rate of glucose in man.Am. J. Physiol.238, E69–E82PubMedGoogle Scholar
  49. Huang S.-C, Phelps M. E., Hoffman E. J., and Kuhl D. E. (1981) Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose.J Cereb Blood Flow Metab.1, 391–401PubMedCrossRefGoogle Scholar
  50. Huang S, Carson R.E., and Phelps M. E. (1982) Measurement of local blood flow and distribution volume with short-lived isotopes: A general input techniqueJ Cereb Blood Flow Metab.2, 99–108.PubMedCrossRefGoogle Scholar
  51. Huang S.-C., Carson R. E., Hoffman E. J., Carson J., MacDonald N., Barrio J. R., and Phelps M. E. (1983) Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and15O-waterJ Cereb Blood Flow Metab 3, 141–153.PubMedCrossRefGoogle Scholar
  52. Hutchins G. D., Holden J. E., Koeppe R. A., Halama J. R., Gatley S. J., and Nickles R J (1984) Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia.J. Cereb Blood Flow Metab.4, 35–40.PubMedCrossRefGoogle Scholar
  53. Jones T., Chesler D. A, and Ter-Pogossian M. M (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man.Br. J. Radiol 49, 339–343PubMedCrossRefGoogle Scholar
  54. Jones S. C., Greenberg J H., and Reivich M (1982) Error analysis for the determination of cerebral blood flow with the continuous inhalation of15O-labeled carbon dioxide and position emission tomographyJ Comput Assist. Tomogr.6, 116–124.PubMedCrossRefGoogle Scholar
  55. Jones S C, Greenberg J. H., Dann R., Robinson, G. D., Jr., Kushner M., Alavi A., and Reivich M. (1985) Cerebral blood flow with the continuous infusion of oxygen-15 labeled waterJ Cereb Blood Flow Metab.5, 566–575.PubMedCrossRefGoogle Scholar
  56. Kanno I. and Lassen N. A. (1979) Two methods for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations.J. Comp Assist Tomogr.3, 71–76CrossRefGoogle Scholar
  57. Kanno I., Lammertsma A A, Heather J. D, Gibbs J. M., Rhodes G, Clark J. C., and Jones T (1984) Measurement of cerebral blood flow using bolus inhalation of15O2 and position emission tomography: Description of the method and its comparison with the C15O2 continuous inhalation method.J Cereb Blood Flow Metab 4, 224–234PubMedCrossRefGoogle Scholar
  58. Kearfott K. J. (1982) Absorbed dose estimates for position emission tomography (PET). C15O,11CO, and CO15O.J. Nucl. Med.23, 1031–1037.PubMedGoogle Scholar
  59. Kety S. S. (1951) The theory and applications of the exchange of inert gas at the lungs and tissues.Pharmacol. Rev. 3, 1–141.PubMedGoogle Scholar
  60. Kety S S. (1960) Measurement of local blood flow by the exchange of an inert diffusible substanceMeth. Med. Res. 8, 228–236.Google Scholar
  61. Kety S. S. and Schmidt C F. (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure, and normal values.J. Clin. Invest. 27, 476–483.PubMedCrossRefGoogle Scholar
  62. Koeppe R A., Holden J E, Polcyn R. E, Nickles R J., Hutchins G D, and Weese J, L (1985) Quantitation of local cerebral blood flow and partition coefficient without arterial sampling: Theory and validationJ Cereb Blood Flow Metab.5, 214–223PubMedCrossRefGoogle Scholar
  63. Kuhl D E., Phelps M E., Markham H., Metter E. J., Rlege W. H., and Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by18FDG and computed tomographic scanAnn. Neural.12, 425–434.CrossRefGoogle Scholar
  64. Lammertsma A. A. and Jones T (1983) Correction for the presence of intravascular oxygen-15 in the steady state technique for measuring regional oxygen extraction ratio in the brain. 1 Description of the method.J, Cereb. Blood Flow Metab 13, 416–424.CrossRefGoogle Scholar
  65. Lammertsma A. A., Jones T, Frackowiak R S. J., and Lenzl G.-L. (1981) A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15.J. Comput. Assist Tomogr.5, 544–550.PubMedCrossRefGoogle Scholar
  66. Lammertsma A A., Heather J D, Jones T., Frackowiak R. S. J., and Lenzi G.-L (1982) A statistical study of the steady state technique for measuring regional cerebral blood flow and oxygen utilisation using15OJ Comput Assist Tomogr 6, 566–573.PubMedCrossRefGoogle Scholar
  67. Lammertsma A A., Wise R. J. S., Heather J. D., Gibbs J. M., Leenders K. L, Frackowiak R S. J., Rhodes C. G, and Jones T. (1983) Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain 2. Results in normal subjects and brain tumour and stroke patients.J Cereb. Blood Flow Metab.3, 425–431.PubMedCrossRefGoogle Scholar
  68. Lammertsma A. A, Brooks D J., Beaney R. P., Turton D R., Kensett M. J., Heather J, D., Marshall J., and Jones T. (1984) In vivo measurement of regional cerebral haematocrit using positron emission tomography.J Cereb. Blood Flow Metab.4, 317–322PubMedCrossRefGoogle Scholar
  69. Lammertsma A A., Brooks D J., Frackowiak R. S. J., Beany R. P, Herold S., Heather J. D., Palmer A. J., and Jones T. (1987a) Measurement of glucose utilisation with [18F]2-fluoro-2-deoxy-D-glucose. A comparison of different analytical methods.J Cereb Blood Flow Metab 7, 161–172PubMedCrossRefGoogle Scholar
  70. Lammertsma A A, Baron J.-C, and Jones T (1987b) Correction for intravascular activity in the oxygen-15 steady-state technique is independent of the regional hematocrit.J Cereb Blood Flow Metab 7, 372–374.PubMedCrossRefGoogle Scholar
  71. Landau W. M., Freygang W H., Jr, Rowland L. P, Sokoloff L, and Kety S. (1955) The local circulation of the living brain, values in the unanesthetized and anesthetized cat.Trans Am Neural. Assoc. 80, 125–129Google Scholar
  72. Larson K B, Markham J, Herscovitch P, and Raichle M. E (1987) A distributed-parameter tracer-kinetic model for regional CBF measurement with PETJ Cereb Blood Flow Metab 7, S575.CrossRefGoogle Scholar
  73. Lassen N A and Ingvar D H (1972) Radioisotopic assessment of regional cerebral blood flowProxr Nucl Med 1, 376–409Google Scholar
  74. Leenders K L, Gibbs J M., Frackowiak R S J., Lammertsma A A, and Jones T. (1984) Positron emission tomography of the brain New possibilities for the investigation of human cerebral pathophysiologyProg Neuroblol 23, 1–38.CrossRefGoogle Scholar
  75. Leenders K. L, Wolfson L, Gibbs J. M., Wise R J S, Causon R, Jones T, and Legg N. J (1985) The effects of L-Dopa on regional cerebral blood flow and oxygen metabolism in patients with Parkinson’s disease.Brain 108, 171–191PubMedCrossRefGoogle Scholar
  76. Mazziotta J, C and Engel J, Jr (1984) The use and impact of positron computed tomography scanning in epilepsyEpilepsia 25(suppl 2), S86–S104PubMedCrossRefGoogle Scholar
  77. Mazziotta J C and Koslow S. H (1987) Assessment of goals and obstacles in data acquisition and analysis from emission tomography Report of a series of mternational workshopsJ Cereb Blood Flow Metab.7, Sl–S31CrossRefGoogle Scholar
  78. Mazziotta J, C, Phelps M E, Plummer D, and Kuhl D. E. (1981) Quantitation in positron computed tomography. 5 Physical-anatomical effects 1Comput Assist Tomogr 5, 734–743.CrossRefGoogle Scholar
  79. Mazziotta J. C., Phelps M E, Meadors A. K., Ricci A, Winter J, and Bentson J R (1982) Anatomical localization schemes for use in positron computed tomography using a specially designed headholderJ. Comput Assist Tomogr 6, 848–853.PubMedCrossRefGoogle Scholar
  80. Mazziotta J C., Huang S, Phelps M E., Carson R E., MacDonald N S, and Mahoney K (1985) A noninvasive positron computed tomography technique using oxygen-15-labeled water for the evaluation of neurobehavioral task batteriesJ Cereb Blood Flow Metab 5, 70–78PubMedCrossRefGoogle Scholar
  81. Meyer E. and Yamamoto Y. L (1984) The requirement for constant arterial radioactivity in the C15O2 steady-state blood-flow model.J Nucl Med 25, 455–460PubMedGoogle Scholar
  82. Mintun M A, Raichle M E., Martin W. R W, and Herscovitch P. (1984) Brain oxygen utilization measured with 0-15 radiotracers and positron emission tomography.J Nucl. Med 25, 177–187PubMedGoogle Scholar
  83. Mintun M A., Raichle M. E, Welch M J, and Kilbourn M. R. (1985) Brain glucose metabolism measured with PET and U-11C-glucose.J Cereb. Blood Flow Metab.5(suppl l), S623–S624Google Scholar
  84. Muehllehner G and Karp J. S (1986) Positron emission tomography Imaging—technical considerationsSem Nucl. Med 16, 35–50.CrossRefGoogle Scholar
  85. Obrist W D., Thompson H K, King C H, and Wang H S (1967) Determination of regional cerebral blood flow by inhalation of xenon-133Circ Res 20, 124–135PubMedCrossRefGoogle Scholar
  86. Pardridge W M., Crane P D., Mietus L. J., and Oldendorf W. H (1982) Kinetics of regional blood-brain barrier transport and brain phosphorylation of glucose and 2-deoxyglucose in the barbituate-anesthetized ratJ Neurochem 38, 560–568PubMedCrossRefGoogle Scholar
  87. Perlmutter J S and Raichle M E (1985) Regional blood flow in hemiparkinsonism.Neurology 35, 1127–1134.PubMedCrossRefGoogle Scholar
  88. Perlmutter J S, Powers W J, Herscovitch P., Fox P T., and Raichle M E (1987) Regional asymmetries of cerebral blood flow, blood volume, oxygen utilization and extraction in normal subjects.J Cereb Blood Flow Metab 7, 64–67.PubMedCrossRefGoogle Scholar
  89. Phelps M. E and Mazziotta J C (1985) Positron emission tomography Human brain function and biochemistryScience 228, 799–809PubMedCrossRefGoogle Scholar
  90. Phelps M E., Hoffman E J, Huang S, and Ter-Pogossian M M (1975) Effect of positron range on spatial resolutionJ Nucl Med 16, 649–652PubMedGoogle Scholar
  91. Phelps M E, Huang S C, Hoffman E J, and Kuhl D E (1979a) Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobinJ Nucl Med 20, 328–334PubMedGoogle Scholar
  92. Phelps M E, Huang S C, Hoffman E J, Selin C., Sokoloff L, and Kuhl D E (197913) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose Validation of methodAnn Neural 6, 371–388.CrossRefGoogle Scholar
  93. Phelps M E, Mazziotta J C, and Huang S.-C. (1982) Study of cerebral function with positron computed tomographyJ Cereb Blood Flow Metab 2, 113–162PubMedCrossRefGoogle Scholar
  94. Powers W. J and Raichle M. E (1985) Positron emission tomography and its application to the study of cerebrovascular disease in manStroke 16, 361–376.PubMedCrossRefGoogle Scholar
  95. Powers W J, Martin W, Herscovitch P., Grubb R L, Jr, and Raichle M. E (1983) The value of regional blood volume measurements in the diagnosis of cerebral lschemla.J Ceveb Blood Flow Metab 3(suppl. l), S598–S599Google Scholar
  96. Powers W J, Grubb R. L, Jr, and Raichle M E (1984) Physiologic responses to focal cerebral ischemla in humansAvon Neural 16, 546–552CrossRefGoogle Scholar
  97. Powers W J, Grubb R. L, Jr, Darriet D, and Raichle M E. (1986) CBF and CMRO2 requirements for cerebral function and viability in humansJ Cereb Blood Flow Metab 5, 600–608CrossRefGoogle Scholar
  98. Raichle M E, Larson K B., Phelps M. E, Grubb R L., Jr., Welch M. J, and Ter-Pogossian M. M. (1975) In viva measurement of brain glucose transport and metabolism employing glucose-11C.Am. J Physiol 228, 1936–1948PubMedGoogle Scholar
  99. Raichle M. E, Martin W R. W, Herscovitch P, Mintun M A., and Markham J. (1983) Brain blood flow measured with intravenous H2 15O II. Implementation and validation.J Nucl Med 24, 790–798PubMedGoogle Scholar
  100. Reiman E. M, Raichle M E, Robins E, Butler F. K., Herscovitch P., Fox P., and Perlmutter J (1986) The application of positron emission tomography to the study of panic disorderAm J Psychiatry 143, 469–477.PubMedGoogle Scholar
  101. Reivich M, Kuhl D., Wolf A, Greenberg J., Phelps M, Ido T., Casella V, Fowler J., Hoffman E., Alavi A., Som P, and Sokoloff L. (1979) The (18F)-fluorodeoxy-glucose method for the measurement of local cerebral glucose utilization in man.Circ Res. 44, 127–137.PubMedCrossRefGoogle Scholar
  102. Reivich M., Alavi A, Wolf A, Greenberg J. H., Fowler J., Christman D, MacGregor R., Jones S. C, London J, Shiue C., and Yonekura Y. (1982) Use of 2-deoxy-D[l-11C]glucose for the determination of local cerebral glucose metabolism in humans: Variation within and between sublects.J Cereb. Blood Flow Metab 2, 307–319PubMedCrossRefGoogle Scholar
  103. Reivich M., Alavi A, Wolf A, Fowler J., Russell J, Arnett C., MacGregor R. R, Shiue C Y., Atkins H, Anand A, Dann R, and Greenberg J H. (1985) Glucose metabolic rate kinetic model parameter determination in humans The lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucoseJ. Cereb Blood Flow Metab.5, 179–192PubMedCrossRefGoogle Scholar
  104. Rhodes C. G, Lenzi G L., Frackowiak R. S. J, Jones T., and Pozzilli C. (1981) Measurement of CBF and CMRO2 using continuous inhalation of15O2 and15O2 Experimental validation using CO2 reactivity in the anaesthetised dogJ. Neural SCI 50, 381–389CrossRefGoogle Scholar
  105. Sakal F., Nakazawa K., Tazaki Y., Ishii K., Hino H., Igarushi H., and Kanda T. (1985) Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomographyJ. Cereb Blood Flow Metab 5, 207–213CrossRefGoogle Scholar
  106. Sakurada O, Kennedy C., Jehle J., Brown J D., Carbon G. L., and Sokoloff L. (1978) Measurement of local cerebral blood flow with iodo[14C]antipyrmeAm J. Physiol 234, H59–H66PubMedGoogle Scholar
  107. Sasaki H, Kanno I, Murakami M., Shishido F., and Uemera K (1986) Tomographic mapping of kinetic rate constants in the fluorodeoxy-glucose model using dynamic positron emission tomographyJ. Cereb. Blood Flow Metab.6, 447–454PubMedCrossRefGoogle Scholar
  108. Sokoloff L and Smith C. B. (1985) Basic Principles Underlying Radioisotopic Methods for Assay of Biochemical Processes In Vivo, inThe Metabohsm of the Human Brain Studied with Position Emission Tomography (Greitz T., Ingvar D. H., and Widen L, eds) Raven, New YorkGoogle Scholar
  109. Sokoloff L., Reivich M., Kennedy C, Des Rosiers M. H., Patlak C. S., Pettigrew K D., Sakurada O., and Shinohara M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization. Theory, procedure, and normal values in the conscious and anesthetized albino rat.J Neurochem 28, 897–916PubMedCrossRefGoogle Scholar
  110. Steinling M and Baron J. C (1982) Mesure du debit sanguin cerebral local par inhalation continue de C15O2 et tomographie d’emission etude des limites du modeleJ Biophys. Med. Nucl 6, 89–95Google Scholar
  111. Steinling M., Baron J C., Mazlere B, Lasjaunias P, Loc’h C., Cabanis E. A, and Guillon B (1985) Tomographic measurement of cerebral blood flow by the68Ga-labelled-microsphere and continuous-C15O2-inhalation methods.Eur. J Nucl Med. 11, 29–32PubMedCrossRefGoogle Scholar
  112. Subramanyam R, Alpert N. M., Hoop B., Jr., Brownell G. L., and Taveras J. M. (1978) A model for reeonal cerebral oxygen distribution during continuous inhalation of15O2, C15O, and C15O2.J. Nucl. Med. 19, 48–53.PubMedGoogle Scholar
  113. Ter-Pogossian M M. (1981) Special characteristics and potential for dynamic function studies with PET.Sem. Nucl. Med. 11, 13–23.CrossRefGoogle Scholar
  114. Ter-Pogossian M. M, Eichling J. O, Davis D O., Welch M J., and Metzger J M. (1969) The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen 15.Radiology 93, 31–40.PubMedGoogle Scholar
  115. Ter-Pogossian M. M., Eichling J. O, Davis D. O., and Welch M. J. (1970) The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15.J. Clin. Invest. 49, 381–391.PubMedCrossRefGoogle Scholar
  116. Ter-Pogossran M. M., Phelps M. E., Hoffman E. J., and Mullani N. A. (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT).Radiology 114, 89–98Google Scholar
  117. Ter-Pogossian M. M, Ficke D C, Hood J. T., Sr., Yamamoto M, and Mullani N. A. (1982) PETT VI: A positron emission tomograph utilizing cesium fluoride scintillation detectors.J. Comput. Assist Tomogr.6, 125–133.PubMedCrossRefGoogle Scholar
  118. Videen O, Perlmutter J, S., Herscovitch P., and Raichle M. E. (1987) Brain blood volume, flow, and oxygen utilization measured with 0-15 radiotracers and positron emission tomography: Revised metabolrc computatrons.J. Cereb Blood Flow Metab.,7, 513–516PubMedCrossRefGoogle Scholar
  119. Welch M. J and Kilbourn M. R. (1984) Positron Emitters for Imaging, inFreeman and Johnson’s Clinical Radionuclide lmaging (Freeman L. M, ed.) Grune & Stration, Orlando, Florida.Google Scholar
  120. Welch M J and Kilbourn M R (1985) A remote system for the routine production of oxygen-15 radiopharmaceuticals.J Labeled Cmpds. 22, 1193–1200.CrossRefGoogle Scholar
  121. Wienhard K, Pawlik G, Herholz K, Wagner R, and Herss W-D (1985) Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: A crmcal appraisal of optimization proceduresJ Cereb Blood Flow Metab 5, 115–125PubMedCrossRefGoogle Scholar
  122. Wolf A (1981) Special characteristics and potential for radiopharmaceuticals for positron emission tomographySem Nucl. Med 11, 2–12CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Peter Herscovitch
    • 1
  1. 1.National Institutes of HealthBethesda

Personalised recommendations