Skip to main content

Part of the book series: Neuromethods ((NM,volume 9))

Abstract

Magnesium (Mg), the second most abundant soft tissue intracellular cation in vertebrates, is an essential nutrient for all organisms. Because of its small ionic radius and relatively large charge, Mg2+ functions within living cells primarily as a reversible chelator, forming relatively stable complexes, particularly with phosphoryl and carbonyl groups. In so doing, it activates or inhibits enzyme substrates involved in the metabolism of carbohydrates and lipids; is an essential cofactor in the synthesis of proteins and nucleic acids; facilitates the transfer of high-energy phosphate bonds; combines directly with certain enzymes and membrane-bound transport systems; forms stabilizing complexes with ribosomes, phospholipids, and components of the cytoskeleton; and promotes cellular cohesion. (see Aikawa, 1971; Guenther, 1981; Wacker, 1980). Although most of its biochemical functions have been worked out in vitro or in vivo in isolated enzyme and other biologic systems and in cells from nonnervous tissues, there is every reason to believe Mg2+ functions similarly in the cells in the nervous system. For example, CNS hexokinase, a critical enzme in aerobic metabolism of carbohydrates, probably requires Mg2+ for allosteric activation when the concentration of ATP falls below that of free Mg2+ in the cytosol (Lustyil, and Nagy, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman J. J. H., Grove T. H., Wong G. G., Gadian D. G., and Radda G. K. (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Aikawa J. (1965) Mg28 Studies of Magnesium Metabolism, in Radioisotopes in Animal Nutrition and Physiology International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Aikawa J. K. (1971) The Biochemical and Cellular Functions of Magnesium, in 1st Internatzonal Symposzum on Magneszum Deficit in Human Pathology (Durlach J., ed.) SGEMV, Vittel, France (Imprimerie Amelot, Brionne).

    Google Scholar 

  • Ashley C. C. and Ellory J. C. (1972) The efflux of magnesium from single crustacean muscle fibers. J Physlol. 226, 545–565.

    Google Scholar 

  • Bogucka K. and Wojtczak L. (1971) Intra-mitochondrial distribution of magnesium. Bzochem. Biophys. Res. Commun. 44, 1330–1337.

    Article  CAS  Google Scholar 

  • Bogucka K. and Wojtczak L. (1976) Binding of magnesium by proteins of the mitochondrial intermembrane compartment. Biochem. Biophys Res. Commun. 71, 161–176.

    Article  PubMed  CAS  Google Scholar 

  • Bottomley P. A., Hart H. R., Edelstein W. A., Schenck J. F., Smith L. S., Leue W. M., Mueller O. M., and Redington R. W. (1984) Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Radiology 150, 441–446.

    PubMed  CAS  Google Scholar 

  • Brinley F. J. and Scarpa A. (1975) Ionized magnesium concentration in axoplasm of dialyzed squid axons. FEBS Lett. 50, 82–85.

    Article  PubMed  CAS  Google Scholar 

  • Brmley F. J., Scarpa A., and Tiffert T. (1977) The concentration of ionized magnesium in barnacle fibers. J. Physiol. 266, 545–565.

    Google Scholar 

  • Burt C. T., Glonek T., and Barany M. (1976) Analysis of phosphate metabohtes, the mtracellular pH, and state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J. Bd. Chem. 251, 2584–2591.

    CAS  Google Scholar 

  • Cady E. B., Costello A. M., Dawson M. J., Delpy D. T., Hope P. L., Reynolds E. O., Tofts P S., and Wilkie D. R. (1983) Nonmvasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet ii, 1059–1062.

    Article  Google Scholar 

  • Casillas E., Harry D. J, and Kenny M. (1981) Measurement of ionized magnesium in biological fluids. Anal. Biochem. 116, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Chutkow J. G. (1965) Studies on the metabolism of magnesium in the magnesium-deficient rat. J. Lab. Clin. Med. 65, 912–926.

    PubMed  CAS  Google Scholar 

  • Chutkow J. G. (1971) Role of Magnesium in Neuromuscular Physiology, in 1st lnternattonal Symposium on Magnesmm Deficit in Human Pathology (Durlach J., ed.) SGEMV, Vittel, France (Imprimerie Amelot, Brionne).

    Google Scholar 

  • Chutkow J. G. (1972) Distribution of magnesium and calcium in brains of normal and magnesium-deficient rats. Mayo Clin. Proc. 47, 647–653.

    PubMed  CAS  Google Scholar 

  • Chutkow J. G. (1974) Metabolism of magnesium in central nervous system: Relationship between concentration of magnesium in the cerebrospinal fluid and brain in magnesium deficiency. Neurology 24, 780–787.

    PubMed  CAS  Google Scholar 

  • Chutkow J. G. (1978) Uptake of magnesium into the brain of the rat. Exp. Neural. 60, 592–602.

    Article  CAS  Google Scholar 

  • Chutkow J. G. (1980) The Neurophysiologic Functions of Magnesium: Effects of Magnesium Excess and Deficits, in Magnesium in Health and Dtsease (Cantm M. and Seehg M., eds.) Spectrum, New York.

    Google Scholar 

  • Chutkow J, G. (1981) The neurophysiologic function of magnesium: An update. Magnesium Bull. 3, 115–120.

    Google Scholar 

  • Chutkow J. G. and Grabow J D. (1972) Clmrcal and chemical correlations in magnesium-deprivation encephalopathy of young rats. Am. J. Physiol. 223, 1407–1414.

    PubMed  CAS  Google Scholar 

  • Chutkow J. G. and Meyers S. (1968) Chemical changes in the cerebrospinal fluid and brain in magnesium deficiency. Neurology 18, 963–974.

    PubMed  CAS  Google Scholar 

  • Clegg M. S., Keen C. L., Lonnerdal B., and Hurley L. S. (1981) Influence of ashing techniques on the analysis of trace elements in animal tissue I. Wet ashing. Biol. Truce Element Res 3, 107–115.

    Article  CAS  Google Scholar 

  • Cohen S. M and Burt C T. (1977) 31P nuclear magnetic relaxation studies of phosphocreatme in intact muscle Determination of intracellular free magnesium. Proc Nat1 Acad Sci USA 74: 4271–4275.

    Article  CAS  Google Scholar 

  • Craellus W., Jacobs R M., and Jones A. O. L (1980) Mineral composition of brains of normal and multiple sclerosis victims Proc Soc Exp. Biol. Med 165, 327–329.

    Google Scholar 

  • Diwan J. J, Daze M., Richardson R, and Aronson, D. (1979) Kinetics of Mg2+ flux into rat liver mitochondna. Biochemistry 18, 2590–2595.

    Article  PubMed  CAS  Google Scholar 

  • Donega H. M. and Burgess T. E. (1970) Atomic absorption analysis by flameless atomization in a controlled atmosphere Anal. Chem. 42, 1521–1524

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (1979) Guldelmes establlshing test procedures for the analysis of pollutants Proposed regulations. Appendix IV Inductively coupled plasma optical emlsslon spectrometric method for trace element analysis of water. Fed. Reg. 44(233), 69559–69564.

    Google Scholar 

  • Fassel V A. (1978) Quantitative elemental analyses by plasma emission spectroscopy. Science 202, 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Fassel V A. and Kmseley R. N (1974) Inductively coupled plasma—. optical emission spectroscopy Anal Chem 46, 1110A–1120A.

    Article  CAS  Google Scholar 

  • Flatman P and Lew V L. (1977) Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells. Nature 267, 360–362.

    Article  PubMed  CAS  Google Scholar 

  • Forslmd B., Kunst L., Malmqvist K. G., Carlsson L. E., and Roomans G. M. (1985) Quantitative correlative proton and electron microprobe analysis of biological specimens. Histochemistry 82: 425–427.

    Article  Google Scholar 

  • Galle P., Berry J P., and Escalg F. (1983) Secondary ion mass microanalysis: Appllcations in biology. Scan Electron Microsc. II, 827–839.

    Google Scholar 

  • Garfmkel L. and Garfmel D. (1984) Calculation of free-Mg2+ concentration in adenosme 5′-triphosphate containing solutions in vitro and in vivo. Biochemistry 23, 3547–3552

    Article  Google Scholar 

  • George G. A and Heaton W. F (1975) Changes in cellular composition during magnesium deficiency. Biochem J. 152, 609–615.

    PubMed  CAS  Google Scholar 

  • Gmsburg S, Grazianl L, Escriva A., and Katzman R. (1966) Exchange of magnesium between blood, brain and CSF. Physiologist 9, 186.

    Google Scholar 

  • Gottesberge-Orsulakova M and Kaufmann R (1985) Recent advances in laser microprobe mass analysis (LAMMA) of inner ear tissue. Scan Electron Microsc I, 393–405.

    Google Scholar 

  • Guenther Th. (1981) Biochemistry and pathobiochemlstry of magnesium. Magnesium Bull. 3, 91–101.

    Google Scholar 

  • Gupta R. K. and Moore R. D. (1980) 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J. Biol Chern. 255, 3987–3993.

    CAS  Google Scholar 

  • Gupta R. K. and Yushok W. D. (1980) 31P NMR probes of free Mg2++, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. USA 77 2487–2491.

    Article  PubMed  CAS  Google Scholar 

  • Gupta R. K., Benovic J. L., and Rose Z. B. (1978) The determination of the free magnesium level in human red blood cells by 31P NMR. J. Biol. Chem. 253, 6172–6176.

    PubMed  CAS  Google Scholar 

  • Gupta R. K., Gupta P., Yushok W. D., and Rose Z. B. (1983) Measurement of the dissociation constant of MgATP at physiologic nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem. Biophys. Res. Commun. 117, 210–216.

    Article  PubMed  CAS  Google Scholar 

  • Heaton F. W. and George G. A. (1979) Submitochondrial distribution of magnesium and calcium. Changes during magnesium deficiency. Int. J, Biochem. 10, 275–277.

    Article  CAS  Google Scholar 

  • Heinen H. J. and Holm R. (1984) Recent development with laser microprobe mass analyzer. Scan. Electron Microsc. III, 1129–1138.

    Google Scholar 

  • Heinen H. J., Hellenkamp F., Kaufmann R., Schroder W, and Wechsung R. (1980) LAMMA. A New Laser Microprobe Mass Analyzer for Biomedicine and Biological Materials Analysis, in Recent Developments in Mass Spectrometry in Biochemistry and Medicine, 6. (Figerio A. and McCamish M, eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Hershey C. O., Varnes A. W., Hershey L. A., and Strain W. H. (1983) Multiple element analysis of human cerebrospinal fluid and other tissues by inductively coupled argon plasma emission spectrometry. Neurotoxzcology 4, 157–160.

    CAS  Google Scholar 

  • Hershey L. A., Hershey C. O., Varnes A. W., Wongmonkolrit T., and Strain W. H. (1984) Zinc Content in CSF, Brain, and Other Tissues in Alzheimer Disease and Aging, in The Neurobiology of Zinc. B. Deficiency, Toxicity, and Pathology Alan R. Liss, New York.

    Google Scholar 

  • Hess P. and Weingart R. (1981) Free magnesium in cardiac and skeletal muscle with ion-selective micro-electrodes. J. Physiol. 318, 14P–15P.

    Google Scholar 

  • Hine G. J. and Brownell G. L. (1956) Radiation Dosimetry Academic, New York.

    Google Scholar 

  • Hwang J. Y., Mokeler C. J., and Ullucci P. A. (1972) Maximization of sensitivities in tantalum ribbon flameless atomic absorption spectrometry. Anal. Chem. 44, 2018–2021.

    Article  CAS  Google Scholar 

  • Lazzara R., Hyatt K, Love W., Cronvich J., and Burch G. E. (1963) Tissue distribution, kinetics and biological half-life of Mg28 in the dog. Am. J. Physlol. 204, 1086–1094.

    CAS  Google Scholar 

  • Lowry O. H, Passonneau J. V., Hasselberger F. X., and Schulz D. W. (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239, E–30.

    Google Scholar 

  • Lustyik Cy and Zs. Nagy I. (1985) Alteration of intracellular water and ion concentration in brain and liver cells during aging revealed by energy dispersive X-ray microanalysis of bulk specimen. Scan. Electron Microsc. I, 323–337.

    Google Scholar 

  • MacIntyre I (1959) Some aspects of magnesium metabolism and magnesium deficiency. Proc. Roy. Soc. Med. 52, 212–214.

    PubMed  CAS  Google Scholar 

  • Maughan D. (1983) Diffusible magnesium in frog skeletal muscle Electron probe microanalysis of 0.2 nl of liquid samples of sarcoplasm. Biophys J 43, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Moreton R. B. (1981) Electron-probe X-ray microanalysis Techniques and recent applications in biology. Biol. Rev. 56, 409–461.

    Article  PubMed  CAS  Google Scholar 

  • Nanninga L. B. (1961) Calculation of free magnesium, calcium, and potassium in muscle. Biochim. Biophys. Acta 54, 338–344.

    Article  PubMed  CAS  Google Scholar 

  • Nixon D. E., Fassel V. A., and Kniseley R. N. (1974) Inductively coupled plasma—.optical emission analytical spectroscope Tantalum filament vaporization of microliter samples. Anal. Chem 46, 210–213

    Article  CAS  Google Scholar 

  • Oppelt W., MacIntyre I., and Rall D. (1963) Magnesium exchange between blood and cerebrospinal fluid. Am. J. Physiol. 205, 959–962.

    PubMed  CAS  Google Scholar 

  • Ozawa K., Seta K., and Honda H. (1966) The effect of magnesium on brain mltochondrial metabolism. J Biol. Chem 60, 268–273.

    CAS  Google Scholar 

  • Panessa-Warren B. J. (1983) Basic biological X-ray microanalysis. Scan. Electron Microsc II, 713–723

    Google Scholar 

  • Rogers T and Mahan P. (1959) Exchange of radioactive magnesium in the rat. Proc Soc. Exp Biol. Med 100, 235–239

    PubMed  CAS  Google Scholar 

  • Rogers T., Slmesen M, Lunaas T, and Lulck J (1964) The exchange of radioactive magnesium in the tissues of the cow, calf, and fetus. Acta Vet. Scan. 5: 209–216.

    Google Scholar 

  • Rugolo M. and Zoccarato F. (1984) Magnesium transport by brain mitochondria: Energy requirement and dependence on Ca2+ fluxes. J. Neurochem 42, 1127–1130.

    Article  PubMed  CAS  Google Scholar 

  • Saetersdal T., Engedal H., Roli J., and Myklebust R. (1980) Calcium and magnesium levels in isolated mitochondrla from human cardiac biopsies Histochemistry 68, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Saubermann A. J and Scheid V. L. (1985) Elemental composition and water content of neuron and ghal cells in the central nervous system of the North American medicinal leech (Macrobdella decora). J Neurochem. 44, 825–834.

    Article  PubMed  CAS  Google Scholar 

  • Scarpa A (1974) Indicators of free magnesium in biological systems. Biochemistry 13, 2789–2794.

    Article  PubMed  CAS  Google Scholar 

  • Scarpa A. and Brinley F. J. (1981). In situ measurements of free cytosollc magnesium ions. Fed. Proc. 40, 2646–2652.

    PubMed  CAS  Google Scholar 

  • Shoubrldge E. A., Briggs R. W., and Radda G. K. (1982) 31P NMR saturation transfer measurements of steady state rates of creatme kinase and ATP synthetase in rat brain FEBS Lett. 140, 288–292

    Article  Google Scholar 

  • Somlyo A. P. and Walz B. (1985) Elemental distribution in Rosra pipiens retinal rods. Quantrtatrve electron probe analysis. J Physiol. 358, 183–195.

    PubMed  CAS  Google Scholar 

  • Somlyo A. V, Shuman H., and Somlyo A. P. (1977) Elemental distribution in striated muscle and the effects of hypertonicity. J. Cell. Biol. 74, 828–855.

    Article  PubMed  CAS  Google Scholar 

  • Veech R. L., Lawson J W. R., Cornell N. W., and Krebs H. A. (1979) Cytosolic phosphorylation potential. J, Biol. Chem. 254, 6538–6547.

    CAS  Google Scholar 

  • Veloso D., Guynn R. W., Oskarsson M., and Veech R. L. (1973) The concentrations of free and bound magnesium in rat tissues. J, Biol. Chem 248, 4811–4819

    CAS  Google Scholar 

  • Wacker W. E. C. (1980) Magnesium alzd Man. Harvard Umversity Press, Cambridge, Massachusetts.

    Google Scholar 

  • Woodward D. and Reed D. (1969) Uptake of 28Mg and 45Ca by tissues of magnesium-deficient rabbits. Am J. Physiol. 217: 1483–1486.

    PubMed  CAS  Google Scholar 

  • Wroblewskr R. and Wroblewskr J. (1984) Freeze drying and freeze substitution combined with low temperature embedding: Preparation techniques for microprobe analysis of soft tissues. Histochemistry 81, 469–475

    Article  Google Scholar 

  • Wroblewski J., Muller R. M., Wroblewski R., and Roomans G. M. (1983) Quantrtatrve X-ray mrcroanalysis of semi-thin cryosectrons. Histochemtstry 77, 447–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Chutkow, J.G. (1988). Magnesium Ions. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:691

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:691

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics