Magnesium Ions

  • Jerry G. Chutkow
Part of the Neuromethods book series (NM, volume 9)


Magnesium (Mg), the second most abundant soft tissue intracellular cation in vertebrates, is an essential nutrient for all organisms. Because of its small ionic radius and relatively large charge, Mg2+ functions within living cells primarily as a reversible chelator, forming relatively stable complexes, particularly with phosphoryl and carbonyl groups. In so doing, it activates or inhibits enzyme substrates involved in the metabolism of carbohydrates and lipids; is an essential cofactor in the synthesis of proteins and nucleic acids; facilitates the transfer of high-energy phosphate bonds; combines directly with certain enzymes and membrane-bound transport systems; forms stabilizing complexes with ribosomes, phospholipids, and components of the cytoskeleton; and promotes cellular cohesion. (see Aikawa, 1971; Guenther, 1981; Wacker, 1980). Although most of its biochemical functions have been worked out in vitro or in vivo in isolated enzyme and other biologic systems and in cells from nonnervous tissues, there is every reason to believe Mg2+ functions similarly in the cells in the nervous system. For example, CNS hexokinase, a critical enzme in aerobic metabolism of carbohydrates, probably requires Mg2+ for allosteric activation when the concentration of ATP falls below that of free Mg2+ in the cytosol (Lustyil, and Nagy, 1985).


Atomic Absorption Spectrophotometry Linear Dynamic Range Exchange Kinetic Flame Atomic Absorption Spectrophotometry Chromotropic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackerman J. J. H., Grove T. H., Wong G. G., Gadian D. G., and Radda G. K. (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283, 167–170.PubMedCrossRefGoogle Scholar
  2. Aikawa J. (1965) Mg28 Studies of Magnesium Metabolism, in Radioisotopes in Animal Nutrition and Physiology International Atomic Energy Agency, Vienna.Google Scholar
  3. Aikawa J. K. (1971) The Biochemical and Cellular Functions of Magnesium, in 1st Internatzonal Symposzum on Magneszum Deficit in Human Pathology (Durlach J., ed.) SGEMV, Vittel, France (Imprimerie Amelot, Brionne).Google Scholar
  4. Ashley C. C. and Ellory J. C. (1972) The efflux of magnesium from single crustacean muscle fibers. J Physlol. 226, 545–565.Google Scholar
  5. Bogucka K. and Wojtczak L. (1971) Intra-mitochondrial distribution of magnesium. Bzochem. Biophys. Res. Commun. 44, 1330–1337.CrossRefGoogle Scholar
  6. Bogucka K. and Wojtczak L. (1976) Binding of magnesium by proteins of the mitochondrial intermembrane compartment. Biochem. Biophys Res. Commun. 71, 161–176.PubMedCrossRefGoogle Scholar
  7. Bottomley P. A., Hart H. R., Edelstein W. A., Schenck J. F., Smith L. S., Leue W. M., Mueller O. M., and Redington R. W. (1984) Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Radiology 150, 441–446.PubMedGoogle Scholar
  8. Brinley F. J. and Scarpa A. (1975) Ionized magnesium concentration in axoplasm of dialyzed squid axons. FEBS Lett. 50, 82–85.PubMedCrossRefGoogle Scholar
  9. Brmley F. J., Scarpa A., and Tiffert T. (1977) The concentration of ionized magnesium in barnacle fibers. J. Physiol. 266, 545–565.Google Scholar
  10. Burt C. T., Glonek T., and Barany M. (1976) Analysis of phosphate metabohtes, the mtracellular pH, and state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J. Bd. Chem. 251, 2584–2591.Google Scholar
  11. Cady E. B., Costello A. M., Dawson M. J., Delpy D. T., Hope P. L., Reynolds E. O., Tofts P S., and Wilkie D. R. (1983) Nonmvasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet ii, 1059–1062.CrossRefGoogle Scholar
  12. Casillas E., Harry D. J, and Kenny M. (1981) Measurement of ionized magnesium in biological fluids. Anal. Biochem. 116, 319–324.PubMedCrossRefGoogle Scholar
  13. Chutkow J. G. (1965) Studies on the metabolism of magnesium in the magnesium-deficient rat. J. Lab. Clin. Med. 65, 912–926.PubMedGoogle Scholar
  14. Chutkow J. G. (1971) Role of Magnesium in Neuromuscular Physiology, in 1st lnternattonal Symposium on Magnesmm Deficit in Human Pathology (Durlach J., ed.) SGEMV, Vittel, France (Imprimerie Amelot, Brionne).Google Scholar
  15. Chutkow J. G. (1972) Distribution of magnesium and calcium in brains of normal and magnesium-deficient rats. Mayo Clin. Proc. 47, 647–653.PubMedGoogle Scholar
  16. Chutkow J. G. (1974) Metabolism of magnesium in central nervous system: Relationship between concentration of magnesium in the cerebrospinal fluid and brain in magnesium deficiency. Neurology 24, 780–787.PubMedGoogle Scholar
  17. Chutkow J. G. (1978) Uptake of magnesium into the brain of the rat. Exp. Neural. 60, 592–602.CrossRefGoogle Scholar
  18. Chutkow J. G. (1980) The Neurophysiologic Functions of Magnesium: Effects of Magnesium Excess and Deficits, in Magnesium in Health and Dtsease (Cantm M. and Seehg M., eds.) Spectrum, New York.Google Scholar
  19. Chutkow J, G. (1981) The neurophysiologic function of magnesium: An update. Magnesium Bull. 3, 115–120.Google Scholar
  20. Chutkow J. G. and Grabow J D. (1972) Clmrcal and chemical correlations in magnesium-deprivation encephalopathy of young rats. Am. J. Physiol. 223, 1407–1414.PubMedGoogle Scholar
  21. Chutkow J. G. and Meyers S. (1968) Chemical changes in the cerebrospinal fluid and brain in magnesium deficiency. Neurology 18, 963–974.PubMedGoogle Scholar
  22. Clegg M. S., Keen C. L., Lonnerdal B., and Hurley L. S. (1981) Influence of ashing techniques on the analysis of trace elements in animal tissue I. Wet ashing. Biol. Truce Element Res 3, 107–115.CrossRefGoogle Scholar
  23. Cohen S. M and Burt C T. (1977) 31P nuclear magnetic relaxation studies of phosphocreatme in intact muscle Determination of intracellular free magnesium. Proc Nat1 Acad Sci USA 74: 4271–4275.CrossRefGoogle Scholar
  24. Craellus W., Jacobs R M., and Jones A. O. L (1980) Mineral composition of brains of normal and multiple sclerosis victims Proc Soc Exp. Biol. Med 165, 327–329.Google Scholar
  25. Diwan J. J, Daze M., Richardson R, and Aronson, D. (1979) Kinetics of Mg2+ flux into rat liver mitochondna. Biochemistry 18, 2590–2595.PubMedCrossRefGoogle Scholar
  26. Donega H. M. and Burgess T. E. (1970) Atomic absorption analysis by flameless atomization in a controlled atmosphere Anal. Chem. 42, 1521–1524CrossRefGoogle Scholar
  27. Environmental Protection Agency (1979) Guldelmes establlshing test procedures for the analysis of pollutants Proposed regulations. Appendix IV Inductively coupled plasma optical emlsslon spectrometric method for trace element analysis of water. Fed. Reg. 44(233), 69559–69564.Google Scholar
  28. Fassel V A. (1978) Quantitative elemental analyses by plasma emission spectroscopy. Science 202, 183–191.PubMedCrossRefGoogle Scholar
  29. Fassel V A. and Kmseley R. N (1974) Inductively coupled plasma—. optical emission spectroscopy Anal Chem 46, 1110A–1120A.CrossRefGoogle Scholar
  30. Flatman P and Lew V L. (1977) Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells. Nature 267, 360–362.PubMedCrossRefGoogle Scholar
  31. Forslmd B., Kunst L., Malmqvist K. G., Carlsson L. E., and Roomans G. M. (1985) Quantitative correlative proton and electron microprobe analysis of biological specimens. Histochemistry 82: 425–427.CrossRefGoogle Scholar
  32. Galle P., Berry J P., and Escalg F. (1983) Secondary ion mass microanalysis: Appllcations in biology. Scan Electron Microsc. II, 827–839.Google Scholar
  33. Garfmkel L. and Garfmel D. (1984) Calculation of free-Mg2+ concentration in adenosme 5′-triphosphate containing solutions in vitro and in vivo. Biochemistry 23, 3547–3552CrossRefGoogle Scholar
  34. George G. A and Heaton W. F (1975) Changes in cellular composition during magnesium deficiency. Biochem J. 152, 609–615.PubMedGoogle Scholar
  35. Gmsburg S, Grazianl L, Escriva A., and Katzman R. (1966) Exchange of magnesium between blood, brain and CSF. Physiologist 9, 186.Google Scholar
  36. Gottesberge-Orsulakova M and Kaufmann R (1985) Recent advances in laser microprobe mass analysis (LAMMA) of inner ear tissue. Scan Electron Microsc I, 393–405.Google Scholar
  37. Guenther Th. (1981) Biochemistry and pathobiochemlstry of magnesium. Magnesium Bull. 3, 91–101.Google Scholar
  38. Gupta R. K. and Moore R. D. (1980) 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J. Biol Chern. 255, 3987–3993.Google Scholar
  39. Gupta R. K. and Yushok W. D. (1980) 31P NMR probes of free Mg2++, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. USA 77 2487–2491.PubMedCrossRefGoogle Scholar
  40. Gupta R. K., Benovic J. L., and Rose Z. B. (1978) The determination of the free magnesium level in human red blood cells by 31P NMR. J. Biol. Chem. 253, 6172–6176.PubMedGoogle Scholar
  41. Gupta R. K., Gupta P., Yushok W. D., and Rose Z. B. (1983) Measurement of the dissociation constant of MgATP at physiologic nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem. Biophys. Res. Commun. 117, 210–216.PubMedCrossRefGoogle Scholar
  42. Heaton F. W. and George G. A. (1979) Submitochondrial distribution of magnesium and calcium. Changes during magnesium deficiency. Int. J, Biochem. 10, 275–277.CrossRefGoogle Scholar
  43. Heinen H. J. and Holm R. (1984) Recent development with laser microprobe mass analyzer. Scan. Electron Microsc. III, 1129–1138.Google Scholar
  44. Heinen H. J., Hellenkamp F., Kaufmann R., Schroder W, and Wechsung R. (1980) LAMMA. A New Laser Microprobe Mass Analyzer for Biomedicine and Biological Materials Analysis, in Recent Developments in Mass Spectrometry in Biochemistry and Medicine, 6. (Figerio A. and McCamish M, eds.) Elsevier, Amsterdam.Google Scholar
  45. Hershey C. O., Varnes A. W., Hershey L. A., and Strain W. H. (1983) Multiple element analysis of human cerebrospinal fluid and other tissues by inductively coupled argon plasma emission spectrometry. Neurotoxzcology 4, 157–160.Google Scholar
  46. Hershey L. A., Hershey C. O., Varnes A. W., Wongmonkolrit T., and Strain W. H. (1984) Zinc Content in CSF, Brain, and Other Tissues in Alzheimer Disease and Aging, in The Neurobiology of Zinc. B. Deficiency, Toxicity, and Pathology Alan R. Liss, New York.Google Scholar
  47. Hess P. and Weingart R. (1981) Free magnesium in cardiac and skeletal muscle with ion-selective micro-electrodes. J. Physiol. 318, 14P–15P.Google Scholar
  48. Hine G. J. and Brownell G. L. (1956) Radiation Dosimetry Academic, New York.Google Scholar
  49. Hwang J. Y., Mokeler C. J., and Ullucci P. A. (1972) Maximization of sensitivities in tantalum ribbon flameless atomic absorption spectrometry. Anal. Chem. 44, 2018–2021.CrossRefGoogle Scholar
  50. Lazzara R., Hyatt K, Love W., Cronvich J., and Burch G. E. (1963) Tissue distribution, kinetics and biological half-life of Mg28 in the dog. Am. J. Physlol. 204, 1086–1094.Google Scholar
  51. Lowry O. H, Passonneau J. V., Hasselberger F. X., and Schulz D. W. (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239, E–30.Google Scholar
  52. Lustyik Cy and Zs. Nagy I. (1985) Alteration of intracellular water and ion concentration in brain and liver cells during aging revealed by energy dispersive X-ray microanalysis of bulk specimen. Scan. Electron Microsc. I, 323–337.Google Scholar
  53. MacIntyre I (1959) Some aspects of magnesium metabolism and magnesium deficiency. Proc. Roy. Soc. Med. 52, 212–214.PubMedGoogle Scholar
  54. Maughan D. (1983) Diffusible magnesium in frog skeletal muscle Electron probe microanalysis of 0.2 nl of liquid samples of sarcoplasm. Biophys J 43, 75–80.PubMedCrossRefGoogle Scholar
  55. Moreton R. B. (1981) Electron-probe X-ray microanalysis Techniques and recent applications in biology. Biol. Rev. 56, 409–461.PubMedCrossRefGoogle Scholar
  56. Nanninga L. B. (1961) Calculation of free magnesium, calcium, and potassium in muscle. Biochim. Biophys. Acta 54, 338–344.PubMedCrossRefGoogle Scholar
  57. Nixon D. E., Fassel V. A., and Kniseley R. N. (1974) Inductively coupled plasma—.optical emission analytical spectroscope Tantalum filament vaporization of microliter samples. Anal. Chem 46, 210–213CrossRefGoogle Scholar
  58. Oppelt W., MacIntyre I., and Rall D. (1963) Magnesium exchange between blood and cerebrospinal fluid. Am. J. Physiol. 205, 959–962.PubMedGoogle Scholar
  59. Ozawa K., Seta K., and Honda H. (1966) The effect of magnesium on brain mltochondrial metabolism. J Biol. Chem 60, 268–273.Google Scholar
  60. Panessa-Warren B. J. (1983) Basic biological X-ray microanalysis. Scan. Electron Microsc II, 713–723Google Scholar
  61. Rogers T and Mahan P. (1959) Exchange of radioactive magnesium in the rat. Proc Soc. Exp Biol. Med 100, 235–239PubMedGoogle Scholar
  62. Rogers T., Slmesen M, Lunaas T, and Lulck J (1964) The exchange of radioactive magnesium in the tissues of the cow, calf, and fetus. Acta Vet. Scan. 5: 209–216.Google Scholar
  63. Rugolo M. and Zoccarato F. (1984) Magnesium transport by brain mitochondria: Energy requirement and dependence on Ca2+ fluxes. J. Neurochem 42, 1127–1130.PubMedCrossRefGoogle Scholar
  64. Saetersdal T., Engedal H., Roli J., and Myklebust R. (1980) Calcium and magnesium levels in isolated mitochondrla from human cardiac biopsies Histochemistry 68, 1–8.PubMedCrossRefGoogle Scholar
  65. Saubermann A. J and Scheid V. L. (1985) Elemental composition and water content of neuron and ghal cells in the central nervous system of the North American medicinal leech (Macrobdella decora). J Neurochem. 44, 825–834.PubMedCrossRefGoogle Scholar
  66. Scarpa A (1974) Indicators of free magnesium in biological systems. Biochemistry 13, 2789–2794.PubMedCrossRefGoogle Scholar
  67. Scarpa A. and Brinley F. J. (1981). In situ measurements of free cytosollc magnesium ions. Fed. Proc. 40, 2646–2652.PubMedGoogle Scholar
  68. Shoubrldge E. A., Briggs R. W., and Radda G. K. (1982) 31P NMR saturation transfer measurements of steady state rates of creatme kinase and ATP synthetase in rat brain FEBS Lett. 140, 288–292CrossRefGoogle Scholar
  69. Somlyo A. P. and Walz B. (1985) Elemental distribution in Rosra pipiens retinal rods. Quantrtatrve electron probe analysis. J Physiol. 358, 183–195.PubMedGoogle Scholar
  70. Somlyo A. V, Shuman H., and Somlyo A. P. (1977) Elemental distribution in striated muscle and the effects of hypertonicity. J. Cell. Biol. 74, 828–855.PubMedCrossRefGoogle Scholar
  71. Veech R. L., Lawson J W. R., Cornell N. W., and Krebs H. A. (1979) Cytosolic phosphorylation potential. J, Biol. Chem. 254, 6538–6547.Google Scholar
  72. Veloso D., Guynn R. W., Oskarsson M., and Veech R. L. (1973) The concentrations of free and bound magnesium in rat tissues. J, Biol. Chem 248, 4811–4819Google Scholar
  73. Wacker W. E. C. (1980) Magnesium alzd Man. Harvard Umversity Press, Cambridge, Massachusetts.Google Scholar
  74. Woodward D. and Reed D. (1969) Uptake of 28Mg and 45Ca by tissues of magnesium-deficient rabbits. Am J. Physiol. 217: 1483–1486.PubMedGoogle Scholar
  75. Wroblewskr R. and Wroblewskr J. (1984) Freeze drying and freeze substitution combined with low temperature embedding: Preparation techniques for microprobe analysis of soft tissues. Histochemistry 81, 469–475CrossRefGoogle Scholar
  76. Wroblewski J., Muller R. M., Wroblewski R., and Roomans G. M. (1983) Quantrtatrve X-ray mrcroanalysis of semi-thin cryosectrons. Histochemtstry 77, 447–463.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Jerry G. Chutkow
    • 1
  1. 1.Department of Neurology, School of MedicineState Untversity of New York at BuffaloBuffalo

Personalised recommendations