Skip to main content

Part of the book series: Neuromethods ((NM,volume 9))

Abstract

The involvement of calcium (Ca) in living organisms has long been recognized, particularly its presence in invertebrate shells and vertebrate bones. It was not, however, before the studies of S. Ringer (1882), who showed that its presence was necessary for normal heart beating, that its role in physiological processes was assessed. Since that time, it has become more and more apparent that the number of cellular functions that are triggered, regulated, or otherwise influenced by calcium ions is quite large, ranging from activation of a whole palette of enzymes to playing a pivotal role as an intracellular messenger in the physiology of excitable cells (Carafoli and Crompton, 1978; Campbell, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed Z. and Connor J A (1979) Measurements of calcium influx under voltage clamp in molluscan neurones using the metallochromic dye Arsenazo III. J Physiol. 286, 61–82.

    PubMed  CAS  Google Scholar 

  • Allen D. G. and Blinks J. R. (1979) The Interpretation of Light Signals from Aequorm-Inlected Skeletal and Cardiac Muscle Cells: A New Method of Calibration, in Detection and Meusurerment of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Allen D. G., Blinks J. R., and Prendergast F G. (1977) Aequorin luminescence: Relation of light emission to calcium concentration-a calcium-independent component. Science 196, 996–998.

    Google Scholar 

  • Alvarez-Leefmans F. J., Rink T. J., and Tsien R. Y. (1981) Free calcium ions in neurones of Helix aspersa measured with ion-selective electrodes. J. Physiol. 315, 531–548.

    PubMed  CAS  Google Scholar 

  • Ames III A., Sakanoue M., and Endo S. (1964) Na+, K+, Mg, 2+ and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J. Neurophysiol. 27, 672–681.

    PubMed  Google Scholar 

  • Ammann D. (1986) Ion-Selective Microelectrodes. Principles, Design and Appliation Springer-Verlag, Berlin, Heidelberg, New York, Toronto.

    Google Scholar 

  • Ammann D., Bissig R, Cimerman Z, Fiedler V., Guggi M., Morf W. E, Oehme M., Osswald H, Pretsch E, and Simon W. (1976) Synthetic Neutral Carrier for Cations, in Ion and Enzyme Electrodes in Biology and Medicine (Kessler M., Clark L C., Lubbers D. W, Silver I A., and Simon W., eds.) University Park Press, London.

    Google Scholar 

  • Ashley C C. and Campbell A K (1978) Calcium transients in barnacle muscle induced by the putative excitatory transmitter, L-glutamate. Blochim. Biophys. Acta 512, 429–435.

    CAS  Google Scholar 

  • Ashley C. C. and Campbell A. K. (1979) Detection and Measurement of Free Ca2+ in Cells Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Ashley C. C. and Ridgway E. B. (1970) Aequorm-Calcium Luminescence and Its Application to Muscle Physiology, In Calcium and Cellular Function (Cuthbert A. W., ed.) MacMillan, London.

    Google Scholar 

  • Arslan P., Di VirGili F., Beitrame M., Tsien R. Y., and Pozzan T. (1985) Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas J. Blol. Chem. 260, 2719–2727.

    CAS  Google Scholar 

  • Baker P. F., Hodgkin A. L., and Ridgway E B. (1971) Depolarization and calcium entry in squid giant axon. J. Physiol. 218, 709–755.

    PubMed  CAS  Google Scholar 

  • Bates R. G., Dickson A. G., Gratzl M., Hrabeczy-Pall A., Lindner E., and Pungor E. (1983) Determination of mean activity coefficient with ion-selective electrodes. Anal. Chem. 55, 1275–1280.

    CAS  Google Scholar 

  • Baylor S. M., Chandler W. K, and Marshall M. W. (1982) Use of metallochromic dyes to measure changes in myoplasmic calcium activity in frog skeletal muscle fibers. J. Physiol. 331, 139–178.

    PubMed  CAS  Google Scholar 

  • Beeler T.J., Schibesi A., and Martonosi A. (1980) The binding of arsenazo III to cell components. Biochim. Biophys. Acta 629, 317–327.

    PubMed  CAS  Google Scholar 

  • Bers D. M. (1982) A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am. J. Physiol. 242, C404–C408.

    PubMed  CAS  Google Scholar 

  • Blinks J. R., Mattingly P. H., Jewell B. R., van Leewen M., Harre G. C, and Allen D. G. (1978) Practical aspects of the use of aequorin as a calcium indicator: Assay, preparation, microinjection, and interpretation of signals. Meth. Enzymol. 57, 292–328.

    CAS  Google Scholar 

  • Blinks J. R., Wier W. G., Hess P., and Prendergast F. G. (1982) Measurements of Ca2+ concentrations in living cells. Prog. Biophys. Molec. Biol. 40, 1–114.

    CAS  Google Scholar 

  • Boll W. and Lux H. D. (1985) Action of organic antagonists on neuronal calcium currents. Neurosci. Lett. 56, 335–339.

    PubMed  CAS  Google Scholar 

  • Bossu J. L., Feltz A., and Thomann J. M. (1985) Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pfluegers Arch. 396, 154–162.

    Google Scholar 

  • Brindley (1979) Techniques for Measuring Free Calcium In Situ in Single Isolated Cells Using Aequorin and Metallochromic Indicators, in Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) ElsevierlNorth Holland, Amsterdam.

    Google Scholar 

  • Brown J, E. and Pinto L. H. (1979) The Measurement of Intracellular Free Calcium Concentrations in Squid Axons and Limulus Ventral Receptor Using Arsenazo III, in Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) Elsevler/North Holland, Amsterdam.

    Google Scholar 

  • Brown H. M., Pemberton J. P., and Owen J. D. (1976) A calcium sensitive microelectrode suitable for intracellular measurement of calcium (II) activity. Anal. Chim. Acta 85, 261–276.

    CAS  Google Scholar 

  • Brown A. M., Wilson D. L., and Lux H. D. (1984) Activation of calcium channels. Biophys. J. 45, 125–127.

    PubMed  CAS  Google Scholar 

  • Campbell A. K. (1983) Intracellular Calcium: Its Universal Role as Regulator John Wiley, Chichester, Brisbane, Toronto, Singapore.

    Google Scholar 

  • CampbellA. K., LeaT. J., and Ashley C. C. (1979) Coelenterate Photoproteins, in Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Carafoli, E. (1974) Mitochondrial uptake of calcium ions and the regulation of cell function. Biochem. Soc. Symp. 39, 89–109.

    PubMed  CAS  Google Scholar 

  • Carafoli E. and Crompton M. (1978) The regulatron of intracellular calcium by mitochondria. Ann. NY Acad. Sci. 307, 269–284.

    PubMed  CAS  Google Scholar 

  • Carbone E. and Lux H. D. (1984) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys. J. 46, 413–418.

    PubMed  CAS  Google Scholar 

  • Caswell A. H. and Hutchinson J. D (1971) Selectivity of cation chelation to tetracycline: Evidence for special conformation of calcium chelate. Biochem Biophys. Res. Commun. 43, 625–630.

    PubMed  CAS  Google Scholar 

  • Charest R., Blackmore P. F., Berthon B., and Exton J. H. (1983) Changes in free cytosolic Ca2+ in hepatocytes following a-adrenergic stimulation J. Biol. Chem. 258, 8769–8773.

    PubMed  CAS  Google Scholar 

  • Christoffersen G. R. J. and Johansen E. S. (1976) Microdesign for a calcium-sensitive electrode. Anal. Chim. Acta 8, 191–195.

    Google Scholar 

  • Cobbold P. H. (1980) Cytoplasmic free calcium and amoeboid movement. Nature 285, 441–446.

    PubMed  CAS  Google Scholar 

  • Cobbold P. H. and Bourne P. K. (1984) Aequorin measurements of free calcium in single heart cells. Nature 312, 446–448.

    Google Scholar 

  • Coray A., Fry C. H., Hess P., Mcguigan J. A. S., and Weingart R. (1980) Resting calcium in sheep cardiac tissue and in frog skeletal muscle measured with ion-selective microelectrodes. J. Physiol. 305, 60P–61P.

    Google Scholar 

  • Dagostino M. and Lee C. O. (1982) Neutral carrier Na+ and Ca2+ selective microelectrodes for intracellular application. Biophys. J. 40, 199–208.

    PubMed  CAS  Google Scholar 

  • Deyhimi F. and Coles J. A. (1982) Rapid silylation of a glass surface: Choice of reagent and effect of experimental parameters on hydrophobicity. Helv. Chim. Acta 65, 1752–1759.

    CAS  Google Scholar 

  • Dingledine R. and Somlen G. (1981) Calcium dependence of synaptic transmission in the hippocampal slice. Bram Res. 207, 218–222.

    CAS  Google Scholar 

  • DiPolo P. L., Requena F., Brindley F. J., Mullins L. J., Scarpa A., and Tiffert T. (1976) Ionized calcium concentrations in squid axon. J. Gen. Physiol. 67, 433–467.

    PubMed  CAS  Google Scholar 

  • Dipolo R., Rojas H., Vergara J., Lopez R., and Caputo C. (1983). Measurements of intracellular ionized calcium in squid giant axons using calcium-selective electrodes, Biochim. Biophys. Acta 728, 311–318.

    PubMed  CAS  Google Scholar 

  • Dubois R. (1887) Fonction photogèmque chez le Pholas dactylus. C. R Soc. Biol. 39, 564–565.

    Google Scholar 

  • Eusebi F., Miledi R., and Stinnakre J. (1985) Post-synaptic calcium influx at the giant synapse of the squid during activation by glutamate. J. Physiol. 369, 183–197.

    PubMed  CAS  Google Scholar 

  • Fiedler V. (1977) Influence of the dielectric constant of the medium on the selectivities of neutral carrier ligands in electrode membranes. Anal. Chim. Acta 89, 11–18.

    Google Scholar 

  • Fozzard H. A., Chapman R. A., and Friedlander I. R. (1985) Measurements of intracellular calcium ion activity with neutral exchanger ion sensitive microelectrodes. Cell Calcium 6, 57–68.

    PubMed  CAS  Google Scholar 

  • Gorman A. L. F. and Thomas M. V. (1978) Changes in the intracellular concentration of free calcium ions in a pacemaker neurone, measured with the metallochromic indicator dye arsenazo III. J. Physiol. 275, 357–376.

    PubMed  CAS  Google Scholar 

  • Gorman A. L. F. and Thomas M. V. (1980) Intracellular calcium accumulation during depolarization in a molluscan neurone. J. Physiol. 308, 259–285.

    PubMed  CAS  Google Scholar 

  • Gorman A. L. F., Levy S., Nasi E., and Tillotson D. (1984) Intracellular calcium measured with calcium-sensitive microelectrodes and arsenazo III in voltage-clamped “Aplysia” neurones J. Physiol. 353, 127–142.

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G., Poeme M., and Tsien R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  • Hainaut K., Brunko E, Kats R., Bourguet M., and Desmedt J. E. (1975) Aequorin and intracellular calcium movements in skeletal muscle fibres. Arch. Int. Physiol. Biochem. 83, 15–18.

    CAS  Google Scholar 

  • Hansen A. K. (1985) Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148.

    PubMed  CAS  Google Scholar 

  • Harris E. W., Ganong A. H., and Cotman C. W. (1984) Long-term potemtiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323, 132–137.

    PubMed  CAS  Google Scholar 

  • Hastings J. W., Mitchell G., Mattingly P., Blinks J. R., and Van Leewen M. (1969) Response of aequorin bioluminescence to rapid changes in calcium concentration Nature 222, 1047–1050.

    PubMed  CAS  Google Scholar 

  • Heinemann U. and Pumain R. (1980) Extracellular calcium activity changes in cat sensory cortex induced by iontophoretic applications of excitatory amino acids. Exp Brain Res. 40, 247–250.

    PubMed  CAS  Google Scholar 

  • Heinemann U., Lux H. D., and Gutnick M. J. (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27, 237–243.

    PubMed  CAS  Google Scholar 

  • Jahnsen H. and Llinas R. (1984) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol. 349, 227–247.

    PubMed  CAS  Google Scholar 

  • JobsisF. F. and O’Connor M. J. (1966) Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun 25, 246–252.

    Google Scholar 

  • Johnson F. H. and Shimomura O. (1978) Introduction to the bioluminescence of medusae, with special reference to the photoprotein aequorm. Meth. Enzymol. 57, 271–291.

    CAS  Google Scholar 

  • Kendrick N. C., Ratzlaff R., and Blaustein M. P. (1977) Arsenazo III as an indicator for ionized calcium in physiological salt solutions. Its use for the determination of the CaATP dissociation constant. Anal. Biochem. 83, 433–450.

    PubMed  CAS  Google Scholar 

  • Kowacs L., Rios E., and Schneider M. F. (1979) Calcium transients and intramembrane charge movements in skeletal muscle fibers. Nature 279, 391–396.

    Google Scholar 

  • Kraig R. P. and Nicholson C. (1978) Extracellular ionic variations during spreading depression. Neuroscience 3, 1045–1059.

    PubMed  CAS  Google Scholar 

  • Kretsinger R. H. (1979) The informational role of calcium in the cytosol. Adv. Cyclic Nucleotzde Res. 11, 1–26.

    CAS  Google Scholar 

  • Krnjevic K. and Lisiewicz A. (1972) Injection of calcium ions into spinal motoneurones. J. PhysioI. 225, 363–390.

    CAS  Google Scholar 

  • Kruskal B. A., Keith C. H., and Maxfield F. R. (1984) Thyrotropin-releasing hormon-induced changes in intracellular [Ca2+] measured by microspectrofluorometry on individual quin2-loaded cells. J. Cell. Biol. 99, 1167–1172.

    PubMed  CAS  Google Scholar 

  • Kudo Y. and Ogura A. (1986) Glutamate-induced increase in intracellular Ca2+ concentration in isolated hippocampal neurones. Br. J. Pharmacol. 89, 191–198.

    PubMed  CAS  Google Scholar 

  • Kudo Y., Ito K., Miyakawa H., Izumi Y., Ogura A., and Kato H. (1987) Cytoplasmic calcium elevation in hippocampal granule cell induced by perforant path stimulation and L-glutamate application. BraIn Res. 407, 168–172.

    PubMed  CAS  Google Scholar 

  • Kudo Y., Ozaki K., Miyakawa A., Amato T., and Ogura A. (1986) Monitoring of intracellular Ca2+ elevation in a single neuron using a microscope/video-camera system. Jpn. J. Pharmacol. 41, 345–351.

    PubMed  CAS  Google Scholar 

  • Kusano K., Miledi R., and Stinnakre J. (1975) Post-synaptic entry of calcium induced by transmitter action. Proc. Roy Soc. Land. B. 189, 49–56.

    CAS  Google Scholar 

  • Lanter F, Steiner R. A., Ammann D., and Simon W. (1982) Critical evaluation of the applicability of neutral-based calcium selective microelectrodes. Anal. Chum. Acta 135, 51–59.

    CAS  Google Scholar 

  • Lee C O. (1981) Ionic activities in cardiac muscle cells and application of ion-selective microelectrodes. Am. J. Physzol. 241, 459–478.

    Google Scholar 

  • Lee C. O., Taylor A., and Whinhager E. E. (1980a) Cytosohc calcium ion activity in epithelial cells of necturus kidney. Nature 287, 859–861.

    PubMed  CAS  Google Scholar 

  • Lee C. O., Uhm D. Y., and Dresdner K. (1980b) Sodium-calcmm exchange in rabbit heart muscle cells: Direct measurement of sarcoplasmic Ca-activity. Science 209, 699–701

    PubMed  CAS  Google Scholar 

  • Lindner E., Toth E., Morf W. E., and Simon W. (1978) Response time studies on neutral carrier ion-selective membrane electrodes, Anal Chem. 50, 1627–1631.

    CAS  Google Scholar 

  • Lopez J. R., Alamo L., Caputo C., DiPolo R., and Vergara J. (1983) Determination of ionic calcium in frog skeletal muscle fibers Biophys J 43, 1–4.

    PubMed  CAS  Google Scholar 

  • Loschen G. and Chance B. (1971) Rapid kinetic studies of the light emitting protein aequorin. Nature New Biol. 233, 273–274.

    PubMed  CAS  Google Scholar 

  • Lux H. D. and Neher E. (1973) The equilibration time course of [K+], in cat cortex. Exp. Brain Res. 17, 190–205.

    PubMed  CAS  Google Scholar 

  • MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S J., and Barker J. L. (1986) NMDA-receptor actrvation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321, 519–522.

    PubMed  CAS  Google Scholar 

  • Marban E., Rink T., Tsien R. W., and Tsien R. Y. (1980) Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes. Nature 286, 845–850.

    PubMed  CAS  Google Scholar 

  • Martell A. E. and Smith R. M. (1974) Critical Stability Constants Plenum, New York.

    Google Scholar 

  • Meech R. W. (1978) Calcium-dependent potassium activation in nervous tissues. Ann. Rev. Biophys. Bioeng. 7, 1–18.

    CAS  Google Scholar 

  • Meier P. C. (1982) Two parameter Debye-Huckel approximation for the evaluation of mean activity coefficient of 109 electrolytes. Anal. Chim Acta 136, 363–368.

    CAS  Google Scholar 

  • Meldrum B. S., Croucher M. J., Badman G., and Collins J. F. (1983) Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio. Neurosci Lett. 39, 101–104.

    CAS  Google Scholar 

  • Metcalfe J. C., Hesketh T. R., and Smith G. A. (1985) Free cytosolic Ca2+ measurements with fluorine labelled indicators using 19FNMR. Cell Calcium 6, 183–195.

    PubMed  CAS  Google Scholar 

  • Michaylova V. and Ilkova P. (1971) Photometric determination of microamounts of calcium with arsenazo III. Anal. Chim. Acta 53, 194–198.

    Google Scholar 

  • Mohan M. S. and Bates R. G. (1975) Calibration of ion-selective electrodes for use in brological fluids. CIin. Chem. 21, 864–872.

    CAS  Google Scholar 

  • Morris M. E., Krnjevic K., and MacDonald J. F. (1985) Changes in intracellular free Ca2+ ion concentration evoked by electrical activity in cat spinal cord neurons in situ. Neuroscience 14, 563–580.

    PubMed  CAS  Google Scholar 

  • Mullins L. J. and Requena J. (1979) Calcium measurements in the periphery of an axon. J. Gen. Physiol. 74, 393–413.

    PubMed  CAS  Google Scholar 

  • Munoz J.-L., Deyhimi F., and Coles J. A. (1983) Silanization of glass in the making of ion-sensitive microelectrodes. J. Neurosci. Meth. 8, 231–247.

    CAS  Google Scholar 

  • Murphy E., Coll K., Rich T. L., and Williamson J. R. (1980) Hormonal effects on calcium homeostasis in isolated hepathocytes. J. Biol. Chem. 255, 6600–6608.

    PubMed  CAS  Google Scholar 

  • Nicholson C., Phillips J. M., and Gardner-Medwin A. R. (1979) Diffusion from an iontophoretic point source in the brain: Role of tortuosity and volume fraction. Brain Res. 169, 580–584.

    PubMed  CAS  Google Scholar 

  • Nicholson C., Ten Bruggencate G., Stockle H., and Steinberg R. (1978) Calcium and potassium changes in the extracellular microenvironment of cat cerebellar cortex. J. Neurophysiol. 41, 1026–1039.

    PubMed  CAS  Google Scholar 

  • O’Doherty J., Youmans S. J., Armstrong W. M., and Stark R. J. (1980) Calcium regulation during stimulus secretion coupling: Continuous measurements of intracellular calcium activities. Science 209, 510–513.

    PubMed  Google Scholar 

  • Oehme M., Kessler M., and Simon W. (1976) Neutral carrier Ca2+-microelectrode. Chimiu 30, 204–206.

    CAS  Google Scholar 

  • Ogawa Y., Harafugi H., and Kurebayashi N. (1980) Comparison of the characteristics of four metallochromic dyes as potential calcium indicators for biological experiments. Anal. Biochem. 87, 1293–1303.

    CAS  Google Scholar 

  • Ohnishi S. T. (1978) Characterization of the murexide method: Dualwavelength spectrophotometry of cations under physiological conditions. Anal. Biochem. 85, 165–179.

    PubMed  CAS  Google Scholar 

  • Ohnishl T. and Ebashl S. (1963) Spectrophotometrical measurements of instantaneous calcium binding of the relaxing factor of muscle. J. Biochem. 54, 506–511.

    Google Scholar 

  • Otto M. and Thomas J. D. R. (1984) Models for specification of alkali and alkaline earth metal ions in body and intracellular fluids. Anal. Proc. 21, 369–371.

    CAS  Google Scholar 

  • Parker I. (1979) Use of Arsenazo III for Recording Calcium Transients in Frog Skeletal Muscle Fibers, in Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Perney T. M., Dinerstein R. J., and Miller R. J. (1984) Depolarization-Induced increases in intracellular free calcium detected in single cultured neuronal cells. Neurosci. Lett. 51, 165–170.

    PubMed  CAS  Google Scholar 

  • Prendergast F. G. (1982) The use of photoprotein in the detection and quantification of Ca2+ in biological systems. Trends Anal. Chem. 1, 378–383.

    CAS  Google Scholar 

  • Prendergast F. G. and Mann K. G. (1978) Chemical and physical properties of aequorm and the green luminescent protein isolated from Aequoru forskalea. Biochermstry 17, 3448–3454.

    CAS  Google Scholar 

  • Pumain R. and Heinemann U. (1985) Stimulus-and amino acid-induced calcium and potassium changes in rat neocortex. J. Neurophysiol. 53, 1–16.

    PubMed  CAS  Google Scholar 

  • Pumain R., Kurcewicz I., and Louvel J. (1983) Fast extracellular calcium transients: Involvement in epileptic processes. Science 222, 177–179.

    PubMed  CAS  Google Scholar 

  • Pumam R., Kurcewicz I., and Louvel J. (1987) Ionic changes induced by excitatory amino acids in the rat cerebral cortex. Can. J. PhysioI. Pharmacol. 65, in press.

    Google Scholar 

  • Pumain R., Menmi C., Hememann, U., Louvel J., and Silva-Barra C. (1985) Chemical transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp. Neural. 89, 250–258.

    CAS  Google Scholar 

  • Quast U, Labhardt A. M, and Doyle V M. (1984) Stopped-flow kinetics of the interaction of the fluorescent calcium indicator qum-2 with calcium ions. Biochem. Biophys. Res. Commun. 123, 604–611.

    PubMed  CAS  Google Scholar 

  • Rao G. H. R., Peller J. D., and White J. G. (1985) Measurements of ionized calcium in blood platelets with new generation calcium indicators. Biochem. Biophys. Res. Commun. 132, 652–657.

    PubMed  CAS  Google Scholar 

  • Rasmussen H. and Barrett P. Q (1984) Calcium messenger system: An integrated view Physiol Rev 64, 939–984.

    Google Scholar 

  • Requena J., Hittenbury J, Tiffert T., Eisner D. A., and Mullins L. J (1984) A comparison of measurements of intracellular Ca by Ca electrode and optical indicators. Biochem. Biophys. Acta 805, 393–404.

    PubMed  CAS  Google Scholar 

  • Reynolds G. T. (1979) Localization of Free Ionized Calcium in Cells by Means of Image Intensification, In Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Reynolds G. T. (1980) Application of image intensification to low level fluorescence studies of living cells. Microsc. Acta 83, 55–62.

    Google Scholar 

  • Ridgway E. B. and Ashley C. C. (1967) Calcium transients in single muscle fibers. Biochem. Biophys. Res Commun. 29, 229–234

    PubMed  CAS  Google Scholar 

  • Ringer S. (1882) Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. J. Physiol. 3, 380–393.

    PubMed  CAS  Google Scholar 

  • Rink T. J. and Pozzan T. (1985) Using qum2 in cell suspension. Cell Calcium 6, 133–144.

    PubMed  CAS  Google Scholar 

  • Roger J., Hesketh T. R, Smith G. A., Beaven M. A., Metcalfe J. C., Johnson P., and Garland P. (1983) Intracellular pH and free calcium changes in single cells using quene2 and quin2 probes and fluorescence microscopy. FEBS Lett. 161, 21–27

    Google Scholar 

  • Scarpa A. (1979) Measurement of Calcium Ion Concentrations with Metallochromic Indicators, In Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C and Campbell A. K., eds.) Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Scarpa A. (1982) Cell Ion Measurement with Metallochromic Indicators, in Techniques in Cellular Physiology (Baker, P. F, ed.) Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Scarpa A., Brindley F. J., and Dubyak G. (1978) Antipyrylazo III, a middle range metallochromic indicator. Biochemistry 17, 1378–1386.

    PubMed  CAS  Google Scholar 

  • Schwartzenbach G., Senn H., and Anderegg G. (1957) Komplexone. XXIX. Ein grosser chelateffekt besonderer art. Helv. Chim. Acta 40, 1886–1900.

    Google Scholar 

  • Sheu S. S. and Fozzard H. A. (1982) Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. Gen. Physiol 80, 325–351.

    PubMed  CAS  Google Scholar 

  • Shimomura O. and Johnson F. H. (1966) Partial Purification and Properties of the Chaetopterus Luminescence System, in Bioluminescence in Progress (Johnson F. H. and Haneda, Y., eds). Princeton University Press, Princeton.

    Google Scholar 

  • Shimomura O. and Johnson F. H. (1969) Properties of the bioluminescent protein aequorin. Biochemistry 8, 3991–3997.

    PubMed  CAS  Google Scholar 

  • Shimomura O. and Johnson F. H. (1970) Calcium binding, quantum yield, and emitting molecule in aequorm bioluminescence. Nature 227, 1356–1357.

    PubMed  CAS  Google Scholar 

  • Shimomura O. and Johnson F. H. (1975) Regeneration of the photoprotem aequorm. Nature 256, 236–238.

    Google Scholar 

  • Shimomura O. and Johnson F. H. (1979) Chemistry of the Calcium-Sensitive Photoprotem Aequorm, in Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) Elsevier/ North Holland, Amsterdam

    Google Scholar 

  • Shimomura O., Johnson F. H., and Saiga Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequora. J. Cell Cornp. Physiol. 59, 223–239.

    CAS  Google Scholar 

  • Shimomura O., Johnson F. H., and Saiga Y. (1963) Further data on the bioluminescent protein, aequorm. J. Cell Camp. Physiol. 62, 1–8.

    CAS  Google Scholar 

  • Simon W., Ammann D., Oehme M., and Morf W E. (1978) Calcium-selective electrodes. Ann. NY Acad. Sci 307, 52–69.

    CAS  Google Scholar 

  • Simon W., Ammann D., Oehme M., and Morf W E. (1978) Calcium-selective electrodes. Ann. NY Acad. Sci 307, 52–69.

    CAS  Google Scholar 

  • Steiner R. A., Oehme M, Ammann D., and Simon W. (1979) Neutral carrier sodium ion-selective microelectrodes for intracellular studies Anal. Chem. 51, 351–353.

    CAS  Google Scholar 

  • Stinnakre J. (1979) Pressure Injection of Aequorm into Molluscan Neurones, in Detection and Measurement of Free Ca 2+ in Cells (Ashley C. C. and Campbell A. K., eds.) Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Stinnakre J. (1981) Detection and measurement of intracellular calcium A comparison of techniques. Trends Neurosci. 4, 46–50.

    CAS  Google Scholar 

  • Thoma A. P., Viviam-Nauer A., Arvanitis S., Morf W. E., and Simon W. (1977) Mechanism of neutral carrier mediated ion transport through ion selective bulk membranes. Anal. Chem. 49, 1567–1572

    CAS  Google Scholar 

  • Thomas M. V. (1979) Arsenazo III forms 2:1 complexes with Ca and 1:1 complexes with Mg under physiological conditions. Biophys. J. 25, 541–548.

    PubMed  CAS  Google Scholar 

  • Thomas M. V. (1982) Techniques in Calcium Reseurch Academic, London.

    Google Scholar 

  • Thomas R. C. (1978) Ion-sensitive Intracellular Microelectrodes. How To Make and Use Them. Academic, New York

    Google Scholar 

  • Tiffert T., Garcia-Sancho J., and Lew V. L. (1984) Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium chelator esters in intact red cells. Biochem. Biophys. Acta 773, 143–156.

    PubMed  CAS  Google Scholar 

  • Tsien R. Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and protein: Design, synthesis and properties of prototype structures. Biochemistry 19, 2396–2404.

    PubMed  CAS  Google Scholar 

  • Tsien R. Y. (1983) Intracellular measurements of ion activities. Ann. Rev. Biophys. Bioeng. 12, 91–116.

    CAS  Google Scholar 

  • Tsien R. Y. and Rink T. J. (1980) Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim. Biophys. Acta 599, 623–638.

    PubMed  CAS  Google Scholar 

  • Tsien R. Y. and Rink T. J. (1981) Ca2+-selective electrodes: A novel PVC-gelled neutral carrier mixture compared with other currently available sensors. J. Neurosci. Meth. 4, 73–86.

    CAS  Google Scholar 

  • Tsien R. Y., Pozzan T., and Rink T. J. (1982) Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol 94, 325–334.

    PubMed  CAS  Google Scholar 

  • Tsien R. Y., Pozzan T., and Rink T. J. (1984) Measuring and manipulating cytosolic Ca2+ with trapped indicators. Trends Biochem. Sci. 9, 263–266.

    CAS  Google Scholar 

  • Tsien R. Y., Rink T. J., and Poenie M. (1985) Measurements of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium 6, 145–157.

    PubMed  CAS  Google Scholar 

  • Ulec E., Keller E. E. O., Kriz N., Pavlik V., and Machek J. (1980) Lowimpedance, coaxial, ion-selective, double-barrel microelectrodes and their use in biological measurements. Bioelectrochem. Bioenerget. 7, 363–369.

    Google Scholar 

  • Wakasugi H., Kimura T., Haase W., Kribben A., Kaufmann R., and Schulz I. (1982) Calcium uptake into acini from rat pancreas: Evidence for intracellular ATP-dependent calcium sequestration. J. Memb. Biol. 65, 205–220.

    CAS  Google Scholar 

  • Walker J. L. (1971) Ion specific liquid ion exchanger microelectrodes Anal. Chem. 43, 89A–92A.

    CAS  Google Scholar 

  • Weingart R. and Hess P. (1984) Free calcium in sheep cardiac tissue and frog skeletal muscle measured with Ca2+ selective micraelectrodes. Pfluegers Arch. 402, 1–9.

    CAS  Google Scholar 

  • Williams D. A., Forgarty K. E., Tsien, R. Y., and Fay F. S. (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2. Nature 318, 558–561.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Pumain, R. (1988). Calcium Ions. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:589

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:589

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics